第一篇:數(shù)學(xué)歸納法證明不等式鞏固學(xué)案
數(shù)學(xué)歸納法證明不等式鞏固學(xué)案
1.用數(shù)學(xué)歸納法證明“111111?????≥,(n∈N+)”時(shí),由n=k到n=k+1n?1n?2n?3n?n2
4時(shí),不等式左邊應(yīng)添加的項(xiàng)是()A.1111111111??????B.C D.2k?12k?2k?1k?22(k?1)2k?12k?22k?12k?2k?
1111++…+
1111A.1<2B.1+<2C.1++<2D.1+<2 223
31113.用數(shù)學(xué)歸納法證明“1+++…+n
推證n=k+1時(shí),左邊應(yīng)增加的項(xiàng)數(shù)是()
A.2k-1B.2k-1C.2kD.2k+1
4.關(guān)于正整數(shù)n的不等式2n>n2成立的條件是()
A.n∈N+B.n≥4C.n>4D.n=1或n>4
5、已知f(n)=(2n+7)·3n+9,存在自然數(shù)m,對(duì)任意n∈N,都使m整除f(n),則最大的m為()
A.306、若不等式B.26C.36D.6 111m?????對(duì)大于1的一切自然數(shù)n都成立,則自然數(shù)m的n?1n?22n2
4最大值為()
A.12B.13C.14D.不存在7、設(shè)n為正整數(shù),f(n)=1+111357++…+,計(jì)算得f(2)=,f(4)>2,f(8)>,f(16)>3,f(32)>,觀23n222察上述結(jié)果,可推測(cè)出一般結(jié)論()
2n?1n?2n?2B.f(n2)≥C.f(2n)≥D.以上都不對(duì) 22218、如果1×2×3+2×3×4+3×4×5+…+n(n+1)(n+2)=n(n+1)(n+a)(n+b)對(duì)一切正整數(shù)n都成立,4A.f(2n)>
a,b的值應(yīng)該等于()
A.a=1,b=3B.a=-1,b=1C.a=1,b=2D.a=2,b=
3an?bna?bn?()(A.,B.是非負(fù)實(shí)數(shù),n∈N)時(shí),假設(shè)n=k命題
9、用數(shù)學(xué)歸納法證明2
2成立之后,證明n=k+1命題也成立的關(guān)鍵是__________.10、用數(shù)學(xué)歸納法證明11111??????,假設(shè)n=k時(shí),不等式成立之2222n?223(n?1)
15?(n?2,n?N?)3n6后,證明n=k+1時(shí),應(yīng)推證的目標(biāo)不等式是_______________.11、求證:11??n?1n?2?
12、互不相等正數(shù)a、b、c成等差數(shù)列,當(dāng)n>1,n∈N*,試證明:an+cn>2bn.1113、已知,Sn?1???2
314.證明:對(duì)一切大于1的自然數(shù)n,不等式(1+
立.15.設(shè)數(shù)列{an}滿足a1=2,an+1=an+n?1??,n?N,證明:S2n?1?(n?2,n?N)2n1112n?1)(1+)…(1+)>成532n?121(n=1,2,3,…)求證:an>2n?1對(duì)一切正整數(shù)n成立.an
na?2x?a?216.設(shè)f(x)=是奇函數(shù)如果g(n)=(n∈N+),比較f(n)與g(n)的大?。╪∈N+).xn?12?
1n(n?1)(n?1)
2??2?2?3???n(n?1)?17.求證:(n∈N+)22
數(shù)學(xué)歸納法證明不等式拓展--數(shù)列、不等式中數(shù)學(xué)歸納法
1、已知數(shù)列{A.n}的各項(xiàng)都是正數(shù),且滿足:A.0=1,A.n+1=1A.n(4-A.n),n∈N.證明:
2A.n (2)為保護(hù)生態(tài)環(huán)境,防止水土流失,該地區(qū)每年的森林木材量應(yīng)不少于719a,如果b=a,972那么該地區(qū)今后會(huì)發(fā)生水土流失嗎?若會(huì),需要經(jīng)過(guò)幾年?(取lg2=0.30).3、已知數(shù)列{B.n}是等差數(shù)列,B.1=1,B.1+B.2+…+B.10=145.(1)求數(shù)列{B.n}的通項(xiàng)公式B.n; (2)設(shè)數(shù)列{A.n}的通項(xiàng)A.n=logA.(1+1)(其中A.>0且A.≠1),記Sn是數(shù)列{A.n}的前n項(xiàng)和.bn 試比較Sn與 1logA.B.n+1的大小,并證明你的結(jié)論.34、已知數(shù)列{bn}是等差數(shù)列,b1=1,b1+b2+…+b10=145(n∈N+) (1)求數(shù)列{bn}的通項(xiàng).(2)設(shè)數(shù)列{an}的通項(xiàng)an=loga(1+1)(其中a>0且a≠1),記Sn是數(shù)列{an}的前n項(xiàng)和,試比bn 較Sn與 1logabn+1的大小,并證明你的結(jié)論.35、已知函數(shù)f(x)=x?3(x≠-1).設(shè)數(shù)列{A.n}滿足A.1=1,A.n+1=f(A.n),數(shù)列{B.n}滿足x? 1B.n=|A.n-3|,Sn=B.1+B.2+…+B.n(n∈N*).(?1)n (1)用數(shù)學(xué)歸納法證明:B.n≤;2n?1 (2)證明:Sn<23.36、已知曲線Cn:x2?2nx?y2?0(n?1,2,).從點(diǎn)P(?1,0)向曲線Cn引斜率kn(kn?0)的切線ln,切點(diǎn)為Pn(xn,yn). (1)求數(shù)列{xn}與{yn}的通項(xiàng)公式;(2) 證明:x1?x3?x5? ?x2n?1?xn.yn x?3f(x)?(x??1), 設(shè)數(shù)列{a}滿足a?1,a?f(a),7、已知函數(shù)n1n?1nx? 1{b n}滿足bn?|an|,Sn?b1?b2??bn(n?N*) (Ⅰ)用數(shù)學(xué)歸納法證明bn?(Ⅱ)證明Sn?.8、已知不等式2?3???n?2[log2n],其中n為大于2的整數(shù),[log2n]表示不超過(guò)log2n的最大整數(shù).設(shè)數(shù)列{an}的各項(xiàng)為正,且滿足a1?b(b?0),an? 證明:an? nan?1,n?2,3,4,? n?an?111112b,n?3,4,5,? 2?b[log2n] §2.3用數(shù)學(xué)歸納法證明不等式 學(xué)習(xí)目標(biāo):1.理解數(shù)學(xué)歸納法的定義、數(shù)學(xué)歸納法證明基本步驟; 2.重、難點(diǎn):應(yīng)用數(shù)學(xué)歸納法證明不等式.一、知識(shí)情景: 關(guān)于正整數(shù)n的命題(相當(dāng)于多米諾骨牌),我們可以采用下面方法來(lái)證明其正確性: 10.驗(yàn)證n取時(shí)命題(即n=n?時(shí)命題成立)(歸納奠基) 20.假設(shè)當(dāng)時(shí)命題成立,證明當(dāng)n=k+1時(shí)命題(歸納遞推).30.由10、20知,對(duì)于一切n≥n?的自然數(shù)n命題!(結(jié)論) 要訣: 遞推基礎(chǔ)不可少,歸納假設(shè)要用到,結(jié)論寫明莫忘掉.二、數(shù)學(xué)歸納法的應(yīng)用: 例1.用數(shù)學(xué)歸納法證明不等式sinn?≤nsin?.(n?N?) 例2證明貝努力(Bernoulli)不等式: 已知x?R,且x> ?1,且x?0,n?N*,n≥2.求證:(1+x)n>1+nx.1; 例3 證明: 如果n(n為正整數(shù))個(gè)正數(shù)a1,a2,?,an的乘積a1a2?an?1,那么它們的和a1?a2???an≥n.三、當(dāng)堂檢測(cè) 1、(1)不等式2n?n4對(duì)哪些正整數(shù)n成立?證明你的結(jié)論。 (2)求滿足不等式(1?1n n)?n的正整數(shù)n的范圍。 2、用數(shù)學(xué)歸納法證明 2n?2?n2(n?N*). §2.3用數(shù)學(xué)歸納法證明不等式作業(yè)紙班級(jí)姓名 1、用數(shù)學(xué)歸納法證明3≥n(n≥3,n∈N)第一步應(yīng)驗(yàn)證() A.n=1B.n=2C.n=3D.n=4 2、觀察下面兩個(gè)數(shù)列,從第幾項(xiàng)起an始終小于bn?證明你的結(jié)論。 {an=n}:1,4,9,16,25,36,49,64,81, ……{bn=2}:2,4,8,16,32,64,128,256,512, …… k 2n3、用數(shù)學(xué)歸納法證明:對(duì)于任意大于1的正整數(shù)n,不等式122?132???1n?1n ?n都成立。 4、若a、b、c三個(gè)正數(shù)成等差數(shù)列,公差d?0,自然數(shù)n?2,求證:an?cn?2bn。 不等式證明 不等式是數(shù)學(xué)的基本內(nèi)容之一,它是研究許多數(shù)學(xué)分支的重要工具,在數(shù)學(xué)中有重要的地位,也是高中數(shù)學(xué)的重要組成部分,在高考和競(jìng)賽中都有舉足輕重的地位。不等式的證明變化大,技巧性強(qiáng),它不僅能夠檢驗(yàn)學(xué)生數(shù)學(xué)基礎(chǔ)知識(shí)的掌握程度,而且是衡量學(xué)生數(shù)學(xué)水平的一個(gè)重要標(biāo)志,本文將著重介紹以下幾種不等式的初等證明方法和部分方法的例題以便理解。 一、不等式的初等證明方法 1.綜合法:由因?qū)Ч?/p> 2.分析法:執(zhí)果索因?;静襟E:要證..只需證..,只需證..(1)“分析法”證題的理論依據(jù):尋找結(jié)論成立的充分條件或者是充要條件。 (2)“分析法”證題是一個(gè)非常好的方法,但是書寫不是太方便,所以我們可利用分析法尋找證題的途徑,然后用“綜合法”進(jìn)行表達(dá)。 3.反證法:正難則反。 4.放縮法:將不等式一側(cè)適當(dāng)?shù)姆糯蠡蚩s小以達(dá)證題目的。放縮法的方法有: (1)添加或舍去一些項(xiàng),如: 2)利用基本不等式,如: (3)將分子或分母放大(或縮小): 5.換元法:換元的目的就是減少不等式中變量,以使問(wèn)題 化難為易、化繁為簡(jiǎn),常用的換元有三角換元和代數(shù)換元。 6.構(gòu)造法:通過(guò)構(gòu)造函數(shù)、方程、數(shù)列、向量或不等式來(lái)證明不等式。 證明不等式的方法靈活多樣,但比較法、綜合法、分析法和數(shù)學(xué)歸納法仍是證明不等式的最基本方法。 7.數(shù)學(xué)歸納法:數(shù)學(xué)歸納法證明不等式在數(shù)學(xué)歸納法中專門研究。 8.幾何法:用數(shù)形結(jié)合來(lái)研究問(wèn)題是數(shù)學(xué)中常用的方法,若求證的不等式是幾何不等式或有較明顯的幾何意義時(shí),可以考慮構(gòu)造相關(guān)幾何圖形來(lái)完成,若運(yùn)用得好,有時(shí)則有神奇的功效。 9.函數(shù)法:引入一個(gè)適當(dāng)?shù)暮瘮?shù),利用函數(shù)的性質(zhì)達(dá)到證明不等式的目的。 10.判別式法:利用二次函數(shù)的判別式的特點(diǎn)來(lái)證明一些不等式的方法。當(dāng)a>0時(shí),f(x)=ax2+bx+c>0(或<0).△<0(或>0)。當(dāng)a<0時(shí),f(x)>0(或<0).△>0(或<0)。 二、部分方法的例題 1.換元法 換元法是數(shù)學(xué)中應(yīng)用最廣泛的解題方法之一。有些不等式通過(guò)變量替換可以改變問(wèn)題的結(jié)構(gòu),便于進(jìn)行比較、分析,從而起到化難為易、化繁為簡(jiǎn)、化隱蔽為外顯的積極效果。 注意:在不等式的證明中運(yùn)用換元法,能把高次變?yōu)榈痛?,分式變?yōu)檎?,無(wú)理式變?yōu)橛欣硎?,能?jiǎn)化證明過(guò)程。尤其對(duì)含有若干個(gè)變?cè)凝R次輪換式或輪換對(duì)稱式的不等式,通過(guò)換元變換形式以揭示內(nèi)容的實(shí)質(zhì),可收到事半功倍之效。 2.放縮法 欲證A≥B,可將B適當(dāng)放大,即B1≥B,只需證明A≥B1。相反,將A適當(dāng)縮小,即A≥A1,只需證明A1≥B即可。 注意:用放縮法證明數(shù)列不等式,關(guān)鍵是要把握一個(gè)度,如果放得過(guò)大或縮得過(guò)小,就會(huì)導(dǎo)致解決失敗。放縮方法靈活多樣,要能想到一個(gè)恰到好處進(jìn)行放縮的不等式,需要積累一定的不等式知識(shí),同時(shí)要求我們具有相當(dāng)?shù)臄?shù)學(xué)思維能力和一定的解題智慧。 3.幾何法 數(shù)形結(jié)合來(lái)研究問(wèn)題是數(shù)學(xué)中常用的方法,若求證的不等式是幾何不等式或有較明顯的幾何意義時(shí),可以考慮構(gòu)造相關(guān)幾何圖形來(lái)完成,若運(yùn)用得好,有時(shí)則有神奇的功效。 不等式的證明 比較法證明不等式 a2?b2a?b?1.設(shè)a?b?0,求證:2.a?b2a?b 2.(本小題滿分10分)選修4—5:不等式選講 (1)已知x、y都是正實(shí)數(shù),求證:x3?y3?x2y?xy2; (2?對(duì)滿足x?y?z?1的一切正實(shí)數(shù) x,y,z恒成立,求實(shí)數(shù)a的取值范圍 .??,1?綜合法證明不等式(利用均值不等式)3.已知a?b?c, 求證:??1??? ??114??.a?bb?ca?c 4.設(shè)a,b,c均為正數(shù),且a+b+c=1,證明: 1(Ⅰ)ab+bc+ac?3; a2b2c2 ???1ca(Ⅱ)b 5.(1)求不等式x?3?2x???1的解集; 121225(a?)?(b?)??a,b?R,a?b?1ab2.(2)已知,求證: 6.若a、b、c是不全相等的正數(shù),求證: 分析法證明不等式 7.某同學(xué)在證明命題“7??要證明7?3??2”時(shí)作了如下分析,請(qǐng)你補(bǔ)充完整.6?2,只需證明________________,只需證明___________,+2?9?2,展開得9即?,只需證明14?18,________________,所以原不等式:??6?2成立.22?2?6?3,(7?2)?(6?3),因?yàn)?4?18成立。 a?b?c8.已知a,b,c?R。?3? 9.(本題滿分10分)已知函數(shù)f(x)?|x?1|。 (Ⅰ)解不等式f(x)?f(x?4)?8;{x|x≤-5,或x≥3}(Ⅱ)若|a|?1,|b|?1,且a?0,求證:f(ab)?|a|f().10.(本小題滿分10分)當(dāng)a,b?M??x|?2?x?2?時(shí),證明:2|a+b|<|4+ab|.反證法證明不等式 11.已知a,b,c均為實(shí)數(shù),且a=x?2y+2baπππ22,b=y?2z+,c=z?2x+,236 求證:a,b,c中至少有一個(gè)大于0.12.(12分)若x,y?R,x?0,y?0,且x?y?2。求證:1?x和1?y中至少有一個(gè)小于2.yx 放縮法證明不等式 13.證明不等式:?111??11?21?2?3?1 1?2?3??n?2 214.設(shè)各項(xiàng)均為正數(shù)的數(shù)列?an?的前n項(xiàng)和為Sn,滿足4Sn?ann?N?,且 ?1?4n?1,a2,a5,a14構(gòu)成等比數(shù)列. (1)證明:a2? (2)求數(shù)列?an?的通項(xiàng)公式;an?2n?1 (3)證明:對(duì)一切正整數(shù)n,有11??a1a2a2a3?11?. anan?12 15.設(shè)數(shù)列?an?的前n項(xiàng)和為Sn.已知a1?1,2Sn12?an?1?n2?n?,n?N*.n33 (Ⅰ)求a2的值;a2?4(Ⅱ)求數(shù)列?an?的通項(xiàng)公式;an?n2(Ⅲ)證明:對(duì)一切正整數(shù)n,有數(shù)學(xué)歸納法證明不等式 16.(本小題滿分12分)若不等式11?? n?1n?2?1a對(duì)一切正整數(shù)n都成立,求正?3n?12411??a1a2?17?.an4 整數(shù)a的最大值,并證明結(jié)論.25 17.用數(shù)學(xué)歸納法證明不等式: . 金牌師資,笑傲高考 2013年數(shù)學(xué)VIP講義 【例1】 設(shè)a,b∈R,求證:a2+b2≥ab+a+b-1。 【例2】 已知0 【例3】 設(shè)A=a+d,B=b+c,a,b,c,d∈R+,ad=bc,a=max{a,b,c,d},試比較A與B的大小。 因A、B的表達(dá)形式比較簡(jiǎn)單,故作差后如何對(duì)因式進(jìn)行變形是本題難點(diǎn)之一。利用等式ad=bc,借助于消元思想,至少可以消去a,b,c,d中的一個(gè)字母。關(guān)鍵是消去哪個(gè)字母,因條件中已知a的不等關(guān)系:a>b,a>c,a>d,故保留a,消b,c,d中任一個(gè)均可。 由ad=bc得:d?bca1?ab?bc?caa?b?c?abc≥1。 bca??b?c?a?b?(a?b)(a?c)a?0bc?acaA-B=a+d-(b+c)=a? =a?b? c(a?b)a 【例4】 a,b,c∈R,求證:a4+b4+c4≥(a+b+c)。 不等號(hào)兩邊均是和的形式,利用一次基本不等式顯然不行。不等號(hào)右邊為三項(xiàng)和,根據(jù)不等號(hào)方向,應(yīng)自左向右運(yùn)用基本不等式后再同向相加。因不等式左邊只有三項(xiàng),故把三項(xiàng)變化六項(xiàng)后再利用二元基本不等式,這就是“化奇為偶”的技巧。 左=12(2a4?2b224?2c)?22412[(a24?b)?(b22244?c)?(c2244?a)]24 ≥12(2ab?2bc?2ca)?ab?bc?ca 2發(fā)現(xiàn)縮小后沒(méi)有達(dá)到題目要求,此時(shí)應(yīng)再利用不等式傳遞性繼續(xù)縮小,處理的方法與剛才類似。 中天教育咨詢電話:0476-8705333 第1頁(yè)/共9頁(yè) 金牌師資,笑傲高考 ab?1212 2013年數(shù)學(xué)VIP講義 22?bc2222?ca2222?212(2ab2222?2bc2222?2ca)22 ?ca)?(ca2[(ab?bc)?(bc22?ab)]22≥(2abc?2abc2?2abc)?ab(a?b?c)1a ?1c?【例5】(1)a,b,c為正實(shí)數(shù),求證:?(2)a,b,c為正實(shí)數(shù),求證: a21bb2≥ c21ab?1bc?1ac; b?c?a?ca?b≥ a?b?c2。 (1)不等式的結(jié)構(gòu)與例4完全相同,處理方法也完全一樣。 (2)同學(xué)們可試一試,再用剛才的方法處理該題是行不通的。注意到從左向右,分式變成了整式,可考慮在左邊每一個(gè)分式后配上該分式的分母,利用二元基本不等式后約去分母,再利用不等式可加性即可達(dá)到目的。試一試行嗎? a2b?cb2?(b?c)≥2a2b?cb2?(b?c)?2a a?cc2?(a?c)≥2a?c?(a?c)?2ba?b?(a?b)≥2c2a?b?(a?b)?2c 相加后發(fā)現(xiàn)不行,a,b,c的整式項(xiàng)全消去了。為了達(dá)到目的,應(yīng)在系數(shù)上作調(diào)整。 a2b?c?b?c4≥a,b2a?c?a?c4≥b,c2a?b?a?b4≥a 相向相加后即可。 【例6】 x,y為正實(shí)數(shù),x+y=a,求證:x+y≥ 2a22。 思路一;根據(jù)x+y和x2+y2的結(jié)構(gòu)特點(diǎn),聯(lián)想到算術(shù)平均數(shù)與平方平均數(shù)之間的不等關(guān)系?!?x?y22≤2x2?y22 2∴ x?y≥(x?y)2?a22 思路二:因所求不等式右邊為常數(shù),故可從求函數(shù)最小值的角度去思考。思路一所用的是基本不等式法,這里采用消元思想轉(zhuǎn)化為一元函數(shù),再用單調(diào)性求解。換元有下列三種途徑: 途徑1:用均值換元法消元: 令 x?2a2?m,y?aa22?m 22則 x?y?(?m)?(?m)?2m?222aa22≥ a22 途徑2:代入消元法: y=a-x,0 a2)2?a22≥ a22 中天教育咨詢電話:0476-8705333 第2頁(yè)/共9頁(yè) 金牌師資,笑傲高考 途徑3:三角換元法消元: 令 x=acos2θ,y=asin2θ,θ∈(0,] 2?2013年數(shù)學(xué)VIP講義 則 x2+y2=a2(cos4θ+sin4θ)=a2[(sin2θ+cos2θ)2-2sin2θcos2θ] =a[1-2(sin2θ)]=a(1-22122 12sin2θ)≥ a22 注:為了達(dá)到消元的目的,途徑1和途徑3引入了適當(dāng)?shù)膮?shù),也就是找到一個(gè)中間變量表示x,y。這種引參的思想是高中數(shù)學(xué)常用的重要方法?!纠?】 已知a>b>0,求證:(a?b)8a2?a?b2?ab?(a?b)8b2。 12所證不等式的形式較復(fù)雜(如從次數(shù)看,有二次,一次,次等),難以從某個(gè)角度著手。故考慮用分析法證明,即執(zhí)果索因,尋找使不等式成立的必要條件。實(shí)際上就是對(duì)所證不等式進(jìn)行適當(dāng)?shù)幕?jiǎn)、變形,實(shí)際上這種變形在相當(dāng)多的題目里都是充要的。 a?b2?ab?a?b?2ab2b)(a?(a??(a?2b)2 a?b?(a?b)b)(a?8a2所證不等式可化為∵ a>b>0 ∴ a?b ∴ a?b?0 b)2?(a?2b)2?(a?b)(a?8b2b)2 ∴ 不等式可化為:(a?4ab)2?1?(a?4bb)2 2??(a?b)?4a即要證? 2??4b?(a?b)??a?b?2a只需證? ?2b?a?b?在a>b>0條件下,不等式組顯然成立 ∴ 原不等式成立 【例8】 已知f(x)=24xx?3?8,求證:對(duì)任意實(shí)數(shù)a,b,恒有f(a) 112.不等號(hào)兩邊字母不統(tǒng)一,采用常規(guī)方法難以著手。根據(jù)表達(dá)式的特點(diǎn),借助于函數(shù)思想,可分別求f(a)及g(b)=b2-4b+f(a)?112的最值,看能否通過(guò)最值之間的大小關(guān)系進(jìn)行比較。 ?8?2(2)a2a24aa?3?8?8?2a8?82a≤ 2?82?a?82a842?2 令 g(b)=b2-4b+11232 ≥32 g(b)=(b-2)2+ 中天教育咨詢電話:0476-8705333 第3頁(yè)/共9頁(yè) 金牌師資,笑傲高考 ∵ 32?22013年數(shù)學(xué)VIP講義 ∴ g(b)>f(a)注:本題實(shí)際上利用了不等式的傳遞性,只不過(guò)中間量為常數(shù)而已,這種思路在兩數(shù)大小比較時(shí)曾講過(guò)。由此也說(shuō)明,實(shí)數(shù)大小理論是不等式大小理論的基礎(chǔ)。 【例9】 已知a,b,c∈R,f(x)=ax2+bx+c,當(dāng)|x|≤1時(shí),有|f(x)|≤1,求證: (1)|c|≤1,|b|≤1; (2)當(dāng)|x|≤1時(shí),|ax+b|≤2。 這是一個(gè)與絕對(duì)值有關(guān)的不等式證明題,除運(yùn)用前面已介紹的不等式性質(zhì)和基本不等式以外,還涉及到與絕對(duì)值有關(guān)的基本不等式,如|a|≥a,|a|≥-a,||a|-|b||≤|a±b|≤|a|+|b|,|a1±a2±?±an|≤|a1|+|a2|+?+|an|。就本題來(lái)說(shuō),還有一個(gè)如何充分利用條件“當(dāng)|x|≤1時(shí),|f(x)|≤1”的解題意識(shí)。 從特殊化的思想出發(fā)得到: 令 x=0,|f(0)|≤1 即 |c|≤1 當(dāng)x=1時(shí),|f(1)|≤1;當(dāng)x=-1時(shí),|f(-1)|≤1 下面問(wèn)題的解決試圖利用這三個(gè)不等式,即把f(0),f(1),f(-1)化作已知量,去表示待求量。∵ f(1)=a+b+c,f(-1)=a-b+c ∴ b?12[f(1)?f(?1)] 12|f(1)?f(?1)|≤12[|f(1)|?|f(?1)|]≤ 12(1?1)≤1 ∴ |b|?(2)思路一:利用函數(shù)思想,借助于單調(diào)性求g(x)=ax+b的值域。 當(dāng)a>0時(shí),g(x)在[-1,1]上單調(diào)遞增 ∴ g(-1)≤g(x)≤g(1)∵ g(1)=a+1=f(1)-f(0)≤|f(1)-f(0)|≤|f(1)|+|f(0)|≤2 g(-1)=-a+b=f(0)-f(-1)=-[f(-1)-f(0)] ≥-|f(-1)-f(0)|≥-[|f(-1)|+|f(0)|]≥-2 ∴-2≤g(x)≤2 即 |g(x)|≤2 當(dāng)a<0時(shí),同理可證。 思路二:直接利用絕對(duì)值不等式 為了能將|ax+b|中的絕對(duì)值符號(hào)分配到a,b,可考慮a,b的符號(hào)進(jìn)行討論。當(dāng)a>0時(shí) |ax+b|≤|ax|+|b|=|a||x|+|b|≤|a|+|b|≤a+|b| 下面對(duì)b討論 ① b≥0時(shí),a+|b|=a+b=|a+b|=|f(1)-f(0)| ≤ |f(1)|+|f(0)|≤2; ② b<0時(shí),a+|b|=a-b=|a-b|=|f(-1)-f(0)|≤|f(-1)|+f(0)|≤2?!?|ax+b|≤2 當(dāng)a<0時(shí),同理可證。 評(píng)注:本題證明過(guò)程中,還應(yīng)根據(jù)不等號(hào)的方向,合理選擇不等式,例如:既有|a-b|≥|a|-|b|,又有|a-b|≥|b|-|a|,若不適當(dāng)選擇,則不能滿足題目要求。 中天教育咨詢電話:0476-8705333 第4頁(yè)/共9頁(yè) 金牌師資,笑傲高考 2013年數(shù)學(xué)VIP講義 1、設(shè)a,b為正數(shù),且a+b≤4,則下列各式一定成立的是 A、C、1a12?1b1a≤?141b B、≤1 D、141a≤ ?1a?1b≤ ≤ 1b≥1 2、已知a,b,c均大于1,且logac·logbc=4,則下列各式中一定正確的是 A、ac≥b B、ab≥c C、bc≥a D、ab≤c 5、已知a,b,c>0,且a+b>c,設(shè)M= a4?a?bb?cc4?c,N=,則MN的大小關(guān)系是 A、M>N B、M=N C、M 6、已知函數(shù)f(x)=-x-x3,x1,x2,x3∈R,且x1+x2>0,x2+x3>0,x3+x1>0,則f(x1)+f(x2)+f(x3)的值 A、一定大于零 B、一定小于零 C、一定等于零 D、正負(fù)都有可能 7、若a>0,b>0,x?111(?)2ab1a?b1ab,y?,z?,則 A、x≥y>z B、x≥z>y C、y≥x>z D、y>z≥x 8、設(shè)a,b∈R,下面的不等式成立的是 A、a+3ab>b B、ab-a>b+ab C、(二)填空題 9、設(shè)a>0,b>0,a≠b,則aabb與abba的大小關(guān)系是__________。 10、若a,b,c是不全相等的正數(shù),則(a+b)(b+c)(c+a)______8abc(用不等號(hào)填空)。 12、當(dāng)00且t≠1時(shí),logat與log21t?1a2 2ab?a?1b?1 D、a+b≥2(a-b-1) 22的大小關(guān)系是__________。 n13、若a,b,c為Rt△ABC的三邊,其中c為斜邊,則an+bn與c(其中n∈N,n>2)的大小關(guān)系是________________。 (三)解答題 14、已知a>0,b>0,a≠b,求證:a? 15、已知a,b,c是三角形三邊的長(zhǎng),求 證:1? 中天教育咨詢電話:0476-8705333 第5頁(yè)/共9頁(yè) ab?c?ba?c?ca?b?2。 b?ab?ba。金牌師資,笑傲高考 16、已知a≥0,b≥0,求證: 18、若a,b,c為正數(shù),求證: 19、設(shè)a>0,b>0,且a+b=1,求證:(a? 20、已知a+b+c>0,ab+bc+ca>0,abc>0,求證:a,b,c全為正數(shù)。 1a)(b?1b)2541a?1b?1ca82013年數(shù)學(xué)VIP講義 12(a?b)2?14(a?b)≥aa?ba。 ≤ ?b383?c38。 abc≥。 中天教育咨詢電話:0476-8705333 第6頁(yè)/共9頁(yè)第二篇:數(shù)學(xué)歸納法證明不等式學(xué)案
第三篇:不等式證明
第四篇:不等式證明
第五篇:不等式證明經(jīng)典