欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      復合函數(shù)不等式 2

      時間:2019-05-13 21:41:43下載本文作者:會員上傳
      簡介:寫寫幫文庫小編為你整理了多篇相關的《復合函數(shù)不等式 2》,但愿對你工作學習有幫助,當然你在寫寫幫文庫還可以找到更多《復合函數(shù)不等式 2》。

      第一篇:復合函數(shù)不等式 2

      復合函數(shù)不等式

      一元二次不等式

      16.E3、B6、B7[2013·安徽卷] 已知一元二次不等式f(x)<0的解集為{x|x<-1或x>},2

      則f(10x)>0的解集為()

      A.{x|x<-1或x>-lg 2}

      B.{x|-1

      C.{x|x>-lg 2}

      D.{x|x<-lg 2}

      6.D

      2.[解析] 根據(jù)已知可得不等式f(x)>0的解是-1

      第二篇:復合函數(shù)的定義域

      復合函數(shù)的定義域

      復合函數(shù)的計算

      用極限的夾逼準則求極限

      無窮小量與無窮大量

      兩個重要極限

      等價無窮小量 用洛必達法則或等價無窮小量求極限 用定義研究分段函數(shù)連續(xù)性

      用定義研究分段函數(shù)連續(xù)性可導性 用連續(xù)函數(shù)零點定理證明函數(shù)等式 用導數(shù)的定義計算導數(shù) 冪指函數(shù)求極限及求導數(shù) 利用導數(shù)是平面曲線切線的斜率求切線方程 隱函數(shù)求微分 通過導數(shù)討論函數(shù)單調(diào)區(qū)間 利用函數(shù)的單調(diào)性證明函數(shù)不等式 通過導數(shù)討論函數(shù)的拐點 求函數(shù)的極值

      原函數(shù)

      用換元法計算不定積分 求三角函數(shù)的不定積分 用分部積分法求不定積分

      第三篇:構(gòu)造函數(shù)證明不等式

      在含有兩個或兩個以上字母的不等式中,若使用其它方法不能解決,可將一邊整理為零,而另一邊為某個字母的二次式,這時可考慮用判別式法。一般對與一元二次函數(shù)有關或能通過等價轉(zhuǎn)化為一元二次方程的,都可考慮使用判別式,但使用時要注意根的取值范圍和題目本身條件的限制。

      例1.設:a、b、c∈R,證明:a2?ac?c2?3b(a?b?c)?0成立,并指出等號何時成立。

      解析:令f(a)?a2?(3b?c)a?c2?3b2?3bc

      ⊿=(3b?c)2?4(c2?3b2?3bc)??3(b?c)2 ∵b、c∈R,∴⊿≤0 即:f(a)?0,∴a2?ac?c2?3b(a?b?c)?0恒成立。

      當⊿=0時,b?c?0,此時,f(a)?a2?ac?c2?3ab?(a?c)2?0,∴a??b?c時,不等式取等號。

      ?4?例2.已知:a,b,c?R且a?b?c?2,a2?b2?c2?2,求證: a,b,c??0,?。

      ?3??a?b?c?222解析:?2 消去c得:此方程恒成立,a?(b?2)a?b?2b?1?0,22?a?b?c?2∴⊿=(b?2)2?4(b2?2b?1)??3b2?4b?0,即:0?b??4?同理可求得a,c??0,?

      ?3?4。3② 構(gòu)造函數(shù)逆用判別式證明不等式

      對某些不等式證明,若能根據(jù)其條件和結(jié)論,結(jié)合判別式的結(jié)構(gòu)特征,通過構(gòu)造二項平方和函數(shù):f(x)?(a1x?b1)2?(a2x?b2)2???(anx?bn)2

      由f(x)?0,得⊿≤0,就可以使一些用一般方法處理較繁瑣的問題,獲得簡捷明快的證明。

      例3.設a,b,c,d?R?且a?b?c?d?1,求證:4a?1?4b?1?4c?1?4d?1﹤6。解析:構(gòu)造函數(shù):

      f(x)?(4a?1x?1)2?(4b?1x?1)2?(4c?1x?1)2?(4d?1x?1)

      2=8x2?2(4a?1?4b?1?4c?1?4d?1)x?4.(?a?b?c?d?1)由f(x)?0,得⊿≤0,即⊿=4(4a?1?4b?1?4c?1?4d?1)2?128?0.∴4a?1?4b?1?4c?1?4d?1?42﹤6.例4.設a,b,c,d?R?且a?b?c?1,求解析:構(gòu)造函數(shù)f(x)?(=(1ax?a)2?(149??的最小值。abc2bx?b)2?(3cx?c)2

      1492??)x?12x?1,(?a?b?c?1)abc111由f(x)?0(當且僅當a?,b?,c?時取等號),632149得⊿≤0,即⊿=144-4(??)≤0

      abc111149

      ∴當a?,b?,c?時,(??)min?36 632abc

      構(gòu)造函數(shù)證明不等式

      1、利用函數(shù)的單調(diào)性

      +例

      5、巳知a、b、c∈R,且a b?mb[分析]本題可以用比較法、分析法等多種方法證明。若采用函數(shù)思想,構(gòu)造出與所證不等式密切相關的函數(shù),利用函數(shù)的單調(diào)性來比較函數(shù)值而證之,思路則更為清新。

      a?x+,其中x∈R,0

      b?xb?x證明:令 f(x)= ∵b-a>0 b?a+ 在R上為減函數(shù) b?xb?a+從而f(x)= 在R上為增函數(shù)

      b?x∴y= ∵m>0 ∴f(m)> f(0)

      ∴a?ma> b?mb例

      6、求證:a?b1?a?b≤

      a?b1?a?b(a、b∈R)

      [分析]本題若直接運用比較法或放縮法,很難尋其線索。若考慮構(gòu)造函數(shù),運用函數(shù)的單調(diào)性證明,問題將迎刃而解。

      [證明]令 f(x)=

      x,可證得f(x)在[0,∞)上是增函數(shù)(證略)1?x 而 0<∣a+b∣≤∣a∣+∣b∣

      得 f(∣a+b∣)≤ f(∣a∣+∣b∣)

      即: a?b1?a?b≤

      a?b1?a?b

      [說明]要證明函數(shù)f(x)是增函數(shù)還是減函數(shù),若用定義來證明,則證明過程是用比較法證明f(x1)與f(x2)的大小關系;反過來,證明不等式又可以利用函數(shù)的單調(diào)性。

      2、利用函數(shù)的值域

      7、若x為任意實數(shù),求證:—

      x11≤≤ 221?x2[分析]本題可以直接使用分析法或比較法證明,但過程較繁。聯(lián)想到函數(shù)的值域,于是構(gòu)造函數(shù)f(x)= x11,從而只需證明f(x)的值域為[—,]即可。

      1?x222x2證明:設 y=,則yx-x+y=0 21?x ∵x為任意實數(shù) ∴上式中Δ≥0,即(-1)-4y≥0 1 411得:—≤y≤

      22x11 ∴—≤≤

      21?x22 ∴y≤2[說明]應用判別式說明不等式,應特別注意函數(shù)的定義域。

      另證:類比萬能公式中的正弦公式構(gòu)造三角函數(shù)更簡單。

      8、求證:必存在常數(shù)a,使得Lg(xy)≤ Lga.lg2x?lg2y

      對大于1的任意x與y恒成立。

      [分析]此例即證a的存在性,可先分離參數(shù),視參數(shù)為變元的函數(shù),然后根據(jù)變元函數(shù)的值域來求解a,從而說明常數(shù)a的存在性。若s≥f(t)恒成立,則s的最小值為f(t)的最大值;若 s≤f(t)恒成立,則s的最大值為f(t)的最小值。

      22證明:∵lgx?lgy > 0(x>1,y>1)∴原不等式可變形為:Lga≥

      lgx?lgylgx?lgy22

      2(lgx?lgy)2lgxlgy 令 f(x)= == 1?222222lgx?lgylgx?lgylgx?lgylgx?lgy 而 lgx>0,lgy>0, ∴l(xiāng)gx+lgy ≥ 2lgxlgy > 0 ∴2lgxlgy≤1 22lgx?lgy ∴ 1

      從而要使原不等式對于大于1的任意x與y恒成立,只需Lga≥2即 a≥10

      2即可。

      故必存在常數(shù)a,使原不等式對大于1的任意x、y恒成立。

      3、運用函數(shù)的奇偶性

      xx<(x≠0)1?2x2xx 證明:設f(x)=-(x≠0)x1?22 例

      9、證明不等式:

      ?x?x?x2xx ∵f(-x)=-= x+ ?x1?222?12xxx

      [1-(1-2)]+ 1?2x2xx =-x+= f(x)x1?22 = ∴f(x)的圖象關于y軸對稱

      x ∵當x>0時,1-2<0,故f(x)<0 當x<0時,根據(jù)圖象的對稱性知f(x)<0 故當 x≠0時,恒有f(x)<0 即:xx<(x≠0)x1?22 [小結(jié)]本題運用了比較法,實質(zhì)是根據(jù)函數(shù)的奇偶性來證明的,本題也可以運用分類討論思想。但利用偶函數(shù)的軸對稱性和奇函數(shù)的中心對稱性,常能使所求解的問題避免復雜的討論。

      第四篇:構(gòu)造函數(shù)證明不等式

      構(gòu)造函數(shù)證明不等式

      構(gòu)造函數(shù)證明:>e的(4n-4)/6n+3)次方

      不等式兩邊取自然對數(shù)(嚴格遞增)有:

      ln(2^2/2^2-1)+ln(3^2/3^2-1)+...+ln(n^2/n^2-1)>(4n-4)/(6n+3)

      不等式左邊=2ln2-ln1-ln3+2ln3-ln2-ln4+...+2lnn-ln(n-1)-ln(n+1)

      =ln2-ln1+lnn-ln(n+1)=ln

      構(gòu)造函數(shù)f(x)=ln-(4x-4)/(6x+3)

      對f(x)求導,有:f'(x)=+^

      2當x>2時,有f'(x)>0有f(x)在x>2時嚴格遞增從而有

      f(n)>=f(2)=ln(4/3)-4/15=0.02>0

      即有l(wèi)n>(4n-4)/(6n+3)

      原不等式等證

      【解】:

      ∏{n^2/(n^2-1)}>e^((4n-4)/(6n+3))

      ∵n^2/(n^2-1)=n^2/(n+1)(n-1)

      ∴∏{n^2/(n^2-1)}=2n/(n+1)

      原式可化簡為:2n/(n+1)>e^((4n-4)/6n+3))

      構(gòu)建函數(shù):F(n)=2n/(n+1)-e^((4n-4)/(6n+3))

      其一階導數(shù)F’(n)={2-4e^((4n-4)/(6n+3))}/(n+1)^2

      ∵e^((4n-4)/(6n+3))

      ∴F’(n)>0

      而F=4/(2+1)-e^((8-4)/(12+3))=4/3-e^(4/15)>0

      所以F(n)>0

      即:2n/(n+1)>e^((4n-4)/6n+3))

      故得證。

      一、結(jié)合勘根定理,利用判別式“△”的特點構(gòu)造函數(shù)證明不等式

      例1若a,b,c∈R,且a≠0,又4a+6b+c>0,a-3b+c<0.求證:9b2>4ac.證明構(gòu)造函數(shù)f(x),設f(x)=ax2+3bx+c(a≠0),由f(2)=4a+6b+c>0,f(-1)=a-3b+c<0,根據(jù)勘根定理可知:f(x)在區(qū)間(-1,2)內(nèi)必有零點.又f(x)為二次函數(shù),由勘根定理結(jié)合可知:

      f(x)必有兩個不同的零點.令ax2+3bx+c=0可知△=(3b)2-4ac>0,所以可得:9b2>4ac.命題得證.評析本題合理變換思維角度,抓住問題本質(zhì),通過構(gòu)造二次函數(shù),將所要證明的結(jié)論轉(zhuǎn)化成判別式“△”的問題,再結(jié)合勘根定理和二次函數(shù)知識,從而使問題獲得解決.二、結(jié)合構(gòu)造函數(shù)的單調(diào)性證明不等式

      例2(2005年人教A版《選修4-5不等式選講》例題改編)已知a,b,c是實數(shù),求證:

      |a+b+c|1+|a+b+c|≤|a|1+|a|+|b|1+|b|+|c|1+|c|.證明構(gòu)造函數(shù)f(x),設f(x)=x1+x(x≥0).由于f′(x)=1(1+x)2,所以結(jié)合導數(shù)知識可知f(x)在[0,+∞)上是增函數(shù).∵0≤|a+b+c|≤|a|+|b|+|c|,∴f(|a+b+c|)≤f(|a|+|b|+|c|),即|a+b+c|1+|a+b+c|≤|a|+|b|+|c|1+|a|+|b|+|c|=|a|1+|a|+|b|+|c|+|b|1+|a|+|b|+|c|+|c|1+|a|+|b|+|c|≤|a|1+|a|+|b|1+|b|+|c|1+|c|.命題得證.三、結(jié)合構(gòu)造函數(shù)在某個區(qū)間的最值證明不等式

      例3(第36屆IMO試題)

      設a,b,c為正實數(shù),且滿足abc=1,求證:

      1a3(b+c)+1b3(c+a)+1c3(a+b)≥32.證明構(gòu)造函數(shù),設f(a,b,c)=1a3(b+c)+1b3(c+a)+1c3(a+b),顯然a=b=c=1時,f(a,b,c)=32≥32成立.又abc=1,a,b,c為正實數(shù),則a,b,c中必有一個不大于1,不妨設0f(a,b,c)-f(a,1,c)=(1-b)1a3(b+c)(1+c)+1+b+b2b3(a+c)+1c3(a+b)(1+a)≥0,∴f(a,b,c)≥f(a,1,c),因此要證f(a,b,c)≥32,只要證f(a,1,c)≥32,此時ac=1,∴a,1,c成等比數(shù)列,令a=q-1,c=q(q>0).f(a,1,c)=q31+q+qq2+1+1q2(1+q)

      =q5+1q2(1+q)+qq2+1

      =(q4+1)-(q3+q)+q2q2+qq2+1

      =(q2+q-2)-(q+q-1)+1q+q-1+1

      =t2-t+1t-1.(其中t=q+q-1,且t≥2).由導數(shù)知識(方法同例

      2、例3)可知函數(shù)

      f(a,1,c)=t2-t+1t-1(t≥2)是增函數(shù),當且僅當t=2q=1a=c=1時,(f(a,1,c))min=22-2+12-1=32成立,∴f(a,1,c)≥32.故f(a,b,c)≥f(a,1,c)≥32.命題得證。

      第五篇:函數(shù)法證明不等式

      函數(shù)法證明不等式

      已知函數(shù)f(x)=x-sinx,數(shù)列{an}滿足0

      <1>證明0

      <2>證明an+1<(1/6)×(an)^

      3它提示是構(gòu)造一個函數(shù)然后做差求導,確定單調(diào)性??墒沁€是一點思路都沒有,各位能不能給出具體一點的解答過程啊?

      (1)f(x)=x-sinx,f'(x)=1-cosx

      00,f(x)是增函數(shù),f(0)

      因為0

      且an+1=an-sinan

      (2)求證不等式即(1/6)an^3-an+1=(1/6)an^3-an+sinan>0①

      構(gòu)造函數(shù)g(x)=(1/6)x^3-x+sinx(0

      g''(x)=x-sinx,由(1)知g''(x)>0,所以g'(x)單增,g'(x)>g'(0)=0

      所以g(x)單增且g(x)>g(0)=0,故不等式①成立

      因此an+1<(1/6)×(an)^3成立。

      證畢!

      構(gòu)造分式函數(shù),利用分式函數(shù)的單調(diào)性證明不等式

      【例1】證明不等式:≥(人教版教材p23T4)

      證明:構(gòu)造函數(shù)f(x)=(x≥0)

      則f(x)==1-在上單調(diào)遞增

      ∵f(|a|+|b|)=f(|a+b|)=且|a|+|b|≥|a+b|

      ∴f(|a|+|b|)≥f(|a+b|)即所證不等式正確。

      點評:本題還可以繼續(xù)推廣。如:求證:≥。利用分式函數(shù)的單調(diào)性可以證明的教材中的習題還有很多,如:

      p14第14題:已知c>a>b>0,求證:

      p19第9題:已知三角形三邊的長是a,b,c,且m是正數(shù),求證:

      p12例題2:已知a,b,m,都是正數(shù),且a

      二、利用分式函數(shù)的奇偶性證明不等式

      【例2】證明不等式:(x≠0)

      證明:構(gòu)造函數(shù)f(x)=

      ∵f(-x)=

      =f(x)

      ∴f(x)是偶函數(shù),其圖像關于y軸對稱。

      當x>0時,<0,f(x)<0;

      當x<0時,-x>0,故f(x)=f(-x)<0

      ∴<0,即

      三、構(gòu)造一次函數(shù),利用一次函數(shù)的單調(diào)性證明不等式

      【例3】已知|a|<1,|b|<1,|c|<1,求證:a+b+c證明:構(gòu)造函數(shù)f(c)=(1-ab)c+a+b-2

      ∵|a|<1,|b|<1

      ∴-10

      ∴f(c)的(-1,1)上是增函數(shù)

      ∵f(1)=1-ab+a+b-2=a+b–ab-1=a(1-b)-(1-b)=(1-b)(a-1)<0

      ∴f(1)<0,即(1-ab)c+a+b-2<0

      ∴a+b+c。

      下載復合函數(shù)不等式 2word格式文檔
      下載復合函數(shù)不等式 2.doc
      將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
      點此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻自行上傳,本網(wǎng)站不擁有所有權,未作人工編輯處理,也不承擔相關法律責任。如果您發(fā)現(xiàn)有涉嫌版權的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進行舉報,并提供相關證據(jù),工作人員會在5個工作日內(nèi)聯(lián)系你,一經(jīng)查實,本站將立刻刪除涉嫌侵權內(nèi)容。

      相關范文推薦

        構(gòu)造函數(shù)證明不等式

        在含有兩個或兩個以上字母的不等式中,若使用其它方法不能解決,可將一邊整理為零,而另一邊為某個字母的二次式,這時可考慮用判別式法。一般對與一元二次函數(shù)有關或能通過等價轉(zhuǎn)化......

        復合函數(shù)的單調(diào)性的證明

        復合函數(shù)的單調(diào)性的證明例1、已知函數(shù)y?f(x)與y?g(x)的定義域都是R,值域分別是?0,???與???,0?,在R上f(x)是增函數(shù)而g(x)是減函數(shù),求證:F(x)?f(x)?g(x)在R上為減函數(shù). 分析:證明的依據(jù)應是減......

        構(gòu)造函數(shù)巧解不等式

        構(gòu)造函數(shù)巧解不等式湖南 黃愛民函數(shù)與方程,不等式等聯(lián)系比較緊密,如果從方程,不等式等問題中所提供的信息得知其本質(zhì)與函數(shù)有關,該題就可考慮運用構(gòu)造函數(shù)的方法求解。構(gòu)造函數(shù),......

        構(gòu)造函數(shù)處理不等式問題

        構(gòu)造函數(shù)處理不等式問題函數(shù)與方程,不等式等聯(lián)系比較緊密,如果從方程,不等式等問題中所提供的信息得知其本質(zhì)與函數(shù)有關,該題就可考慮運用構(gòu)造函數(shù)的方法求解。構(gòu)造函數(shù),直接把握......

        高一函數(shù)與不等式試題

        例1(1)已知0<x<(2)求函數(shù)y=x+1,求函數(shù)y=x(1-3x)的最大值; 31的值域. xx4?3x2?32求函數(shù)y=的最小值. 2x?1當x<3已知正數(shù)a,b,x,y滿足a+b=10,38時,求函數(shù)y=x+的最大值. 22x?3ab?=1,x+y的最小值......

        構(gòu)造函數(shù),妙解不等式

        構(gòu)不等式與函數(shù)是高中數(shù)學最重要的兩部分內(nèi)容。把作為高中數(shù)學重要工具的不等式與作為高中數(shù)學主線的函數(shù)聯(lián)合起來,這樣資源的優(yōu)化配置將使學習內(nèi)容在函數(shù)思想的指導下得到重......

        函數(shù)導數(shù)不等式測試題五篇

        昌樂二中 高三 數(shù)學自主檢測題函數(shù)、導數(shù)、不等式綜合檢測題2009.03.20注意事項:1.本試題滿分150分,考試時間為120分鐘.2.使用答題卡時,必須使用0.5毫米的黑色墨水簽字筆書寫,作圖......

        構(gòu)造法證明函數(shù)不等式

        構(gòu)造法證明函數(shù)不等式 1、利用導數(shù)研究函數(shù)的單調(diào)性極值和最值,再由單調(diào)性來證明不等式是函數(shù)、導數(shù)、不等式綜合中的一個難點,也是近幾年高考的熱點. 2、解題技巧是構(gòu)造輔助函......