欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      數(shù)學(xué)歸納法證明不等式教案

      時(shí)間:2019-05-13 21:42:15下載本文作者:會(huì)員上傳
      簡介:寫寫幫文庫小編為你整理了多篇相關(guān)的《數(shù)學(xué)歸納法證明不等式教案》,但愿對你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫還可以找到更多《數(shù)學(xué)歸納法證明不等式教案》。

      第一篇:數(shù)學(xué)歸納法證明不等式教案

      §2.3用數(shù)學(xué)歸納法證明不等式

      學(xué)習(xí)目標(biāo):1.理解數(shù)學(xué)歸納法的定義、數(shù)學(xué)歸納法證明基本步驟;

      2.重、難點(diǎn):應(yīng)用數(shù)學(xué)歸納法證明不等式.一、知識(shí)情景:

      1.關(guān)于正整數(shù)n的命題(相當(dāng)于多米諾骨牌),我們可以采用下面方法來證明其正確性:

      10.驗(yàn)證n取第一個(gè)值時(shí)命題成立(即n=n?時(shí)命題成立)(歸納奠基);

      20.假設(shè)當(dāng)n=k時(shí)命題成立,證明當(dāng)n=k+1時(shí)命題也成立(歸納遞推).30.由10、20知,對于一切n≥n?的自然數(shù)n命題都成立!(結(jié)論)

      要訣: 遞推基礎(chǔ)不可少,歸納假設(shè)要用到,結(jié)論寫明莫忘掉.二、數(shù)學(xué)歸納法的應(yīng)用:

      例1.用數(shù)學(xué)歸納法證明不等式sinn?≤nsin?.(n?N?)

      證明:(1)當(dāng) n=1時(shí),上式左邊=│Sinθ│=右邊,不等式成立。

      (2)假設(shè)當(dāng)n=k(k≥1)時(shí)命題成立,即有│Sin kθ│≤k│Sinθ│

      當(dāng)n=k+1時(shí),│Sin(k+1)θ│=│Sin kθCosθ+Cos kθSin θ│

      ≤│Sin kθCosθ│+│Cos kθSin θ│

      =│Sin kθ││Cosθ│+│Cos kθ││Sin θ│

      ≤│Sin kθ│+│Sin θ│≤k│Sinθ│+│Sin θ│=(k+1)│Sinθ│

      所以當(dāng)n=k+1時(shí),不等式也成立。

      由(1)(2)可知,不等式對一切正整數(shù)n均成立。

      例2. 證明貝努力(Bernoulli)不等式:

      已知x?R,且x> ?1,且x?0,n?N*,n≥2.求證:(1+x)n>1+nx.證明:(1)當(dāng)n=2時(shí),由x≠0得(1+x)2=1+2x+x2>1+2x,不等式成立。

      (2)假設(shè)n=k(k≥2)時(shí),不等式成立,即有(1+x)k>1+kx

      當(dāng)n=k+1時(shí),(1+x)k+1=(1+x)(1+x)k>(1+x)(1+kx)=1+x+kx+ kx2>1+x+kx=1+(k+1)x 所以當(dāng)n=k+1時(shí),不等式成立

      由(1)(2)可知,貝努力不等式成立。

      例3 證明: 如果n(n為正整數(shù))個(gè)正數(shù)a1,a2,?,an的乘積a1a2?an?1,那么它們的和a1?a2???an≥n.三、當(dāng)堂檢測

      1、(1)不等式2n?n4對哪些正整數(shù)n成立?證明你的結(jié)論。

      1(2)求滿足不等式(1?)n?n的正整數(shù)n的范圍。n

      n2*2?2?n(n?N).

      2、用數(shù)學(xué)歸納法證明

      證明:(1)當(dāng)n=1時(shí),2?2?1,不等式成立; 當(dāng)n=2時(shí),2?2?2,不等式成立;當(dāng)n=3時(shí),2?2?3,不等式成立.

      *n?k(k?3,k?N)時(shí)不等式成立,即 2k?2?k2.(2)假設(shè)當(dāng)

      k?1k222則當(dāng)n?k?1時(shí),2?2?2(2?2)?2?2k?2?(k?1)?k?2k?3,1222

      322kk?3∵,∴?2k?3?(k?3)(k?1)?0,(*)

      k?1222k?122?2?(k?1)?k?2k?3?(k?1)2?2?(k?1)從而,∴. 即當(dāng)n?k?1時(shí),不等式

      也成立. 由(1),(2)可知,2?2?n對一切n?N都成立.

      四、課堂小結(jié)

      1.用數(shù)學(xué)歸納法證明,要完成兩個(gè)步驟,這兩個(gè)步驟是缺一不可的.但從證題的難易來分析,證明第二步是難點(diǎn)和關(guān)鍵,要充分利用歸納假設(shè),做好命題從n=k到n=k+1的轉(zhuǎn)化,這個(gè)轉(zhuǎn)化要求在變化過程中結(jié)構(gòu)不變.

      2.用數(shù)學(xué)歸納法證明不等式是較困難的課題,除運(yùn)用證明不等式的幾種基本方法外,經(jīng)常使用的方法就是放縮法,針對目標(biāo),合理放縮,從而達(dá)到目標(biāo).

      n2*

      第二篇:不等式的證明教案

      不等式的證明

      教學(xué)目標(biāo):

      (1)理解證明不等式的三種方法:比較法、綜合法和分析法的意義;

      (2)掌握用比較法、綜合法和分析法證明簡單的不等式;

      (3)能根據(jù)實(shí)際題目靈活地選擇適當(dāng)?shù)刈C明方法;

      (4)通過不等式證明,培養(yǎng)學(xué)生邏輯推理論證的能力和抽象思維能力.教學(xué)建議:

      1.知識(shí)結(jié)構(gòu):(不等式證明三種方法的理解)==〉(簡單應(yīng)用)==〉(綜合應(yīng)用)

      2.重點(diǎn)、難點(diǎn)分析

      重點(diǎn):不等式證明的主要方法的意義和應(yīng)用;

      難點(diǎn):①理解分析法與綜合法在推理方向上是相反的;

      ②綜合性問題證明方法的選擇.

      (1)不等式證明的意義

      不等式的證明是要證明對于滿足條件的所有數(shù)都成立(或都不成立),而并非是帶入具體的數(shù)

      值去驗(yàn)證式子是否成立.

      (2)比較法證明不等式的分析

      ①在證明不等式的各種方法中,比較法是最基本、最重要的方法.

      ②證明不等式的比較法,有求差比較法和求商比較法兩種途徑.

      由于a>b<==>a-b>0,因此,證明a>b,可轉(zhuǎn)化為證明與之等價(jià)的a-b>0.這種證法就是求差比較法.由于當(dāng)b>0時(shí),a>b<==>(a/b)>1,因此,證明a>b(b>0),可以轉(zhuǎn)化為證明與之等價(jià)的(a/b)>1(b>0).這種證法就是求商比較法,使用求商比較法證明一定要注意(b>0)這一前提條件.

      ③求差比較法的基本步驟是:“作差?變形?斷號(hào)”.

      其中,作差是依據(jù),變形是手段,判斷符號(hào)才是目的.

      變形的方法一般有配方法、通分法和因式分解法等,變成能夠判斷出差的符號(hào)是正或負(fù)的數(shù)(或式子)即可.④作商比較法的基本步驟是:“作商?變形?判斷商式與1的大小關(guān)系”,需要注意的是,作商比較法一般用于證明不等號(hào)兩側(cè)的式子同號(hào)的不等式.

      (3)綜合法證明不等式的分析

      ①利用某些已經(jīng)證明過的不等式和不等式的性質(zhì)推導(dǎo)出所要證明的不等式成立,這種證明方法通常叫做綜合法.

      ②綜合法的思路是“由因?qū)Ч保簭囊阎牟坏仁匠霭l(fā),通過一系列已知條件推導(dǎo)變換,推導(dǎo)出求證的不等式.

      ③綜合法證明不等式的邏輯關(guān)系是:

      (已知)==〉(逐步推演不等式成立的必要條件)==〉(結(jié)論)

      (4)分析法證明不等式的分析

      ①從求證的不等式出發(fā),逐步尋求使不等式成立的充分條件,直至所需條件被確認(rèn)成立,就斷定求證的不等式成立,這種證明方法就是分析法.

      有時(shí),我們也可以首先假定所要證明的不等式成立,逐步推出一個(gè)已知成立的不等式,只要這個(gè)推出過程中的每一步都是可以逆推的,那么就可以斷定所給的不等式成立.這也是用分析法,注意應(yīng)強(qiáng)調(diào)“以上每一步都可逆”,并說出可逆的根據(jù).

      ②分析法的思路是“執(zhí)果導(dǎo)因”:從求證的不等式出發(fā),探索使結(jié)論成立的充分條件直至已成立的不等式.它與綜合法是對立統(tǒng)一的兩種方法.

      ③用分析法證明不等式的邏輯關(guān)系是:

      (已知)<==(逐步推演不等式成立的必要條件)<==(結(jié)論)

      ④分析法是證明不等式時(shí)一種常用的基本方法.當(dāng)證明不知從何入手時(shí),有時(shí)可以運(yùn)用分析法而獲得解決.特別對于條件簡單而結(jié)論復(fù)雜的題目往往更實(shí)用.(5)關(guān)于分析法與綜合法關(guān)系

      ①分析法與綜合法是思維方向相反的兩種思考方法.

      ②在數(shù)學(xué)解題中,分析法是從數(shù)學(xué)題的待證結(jié)論或需求問題出發(fā),逐步地推導(dǎo),最后達(dá)到題設(shè)的已知條件.即推理方向是:結(jié)論已知.綜合法則是從數(shù)學(xué)題的已知條件出發(fā),經(jīng)過逐步的邏輯推理,最后達(dá)到待證結(jié)論或需求問題.即:已知 結(jié)論.

      ③分析法的特點(diǎn)是:從“結(jié)論”探求“需知”,逐步靠攏“已知”,其逐步推理實(shí)際上是要尋找結(jié)論的充分條件.

      綜合法的特點(diǎn)是:從“已知”推出“可知”,逐步推向“未知”,其逐步推理實(shí)際上是要尋找已知的必要條件.

      ④一般來說,對于較復(fù)雜的不等式,直接運(yùn)用綜合法往往不易入手,用分析法來書寫比較麻煩.因此,通常用分析法探索證題途徑,然后用綜合法加以證明,所以分析法和綜合法經(jīng)常是結(jié)合在一起使用的.

      第一課時(shí)不等式的證明(比較法)

      教學(xué)目標(biāo)

      1.掌握證明不等式的方法——比較法;

      2.熟悉并掌握比較法證明不等式的意義及基本步驟.

      教學(xué)重點(diǎn):比較法的意義和基本步驟.教學(xué)難點(diǎn):常見的變形技巧.教學(xué)方法; 啟發(fā)引導(dǎo)法.教學(xué)過程:

      (-)導(dǎo)入新課

      教師提問:根據(jù)前一節(jié)學(xué)過(不等式的性質(zhì))的知識(shí),我們?nèi)绾斡脤?shí)數(shù)運(yùn)算來比較兩個(gè)實(shí)數(shù)與的大小?

      找學(xué)生回答問題.

      (學(xué)生回答:,,)

      [點(diǎn)評]要比較兩個(gè)實(shí)數(shù) 與的大小,只要考察 與的差值的符號(hào)就可以了,這種證明不等式的方法稱為比較法.現(xiàn)在我們就來學(xué)習(xí):用比較法證明不等式.

      目的:通過教師設(shè)置問題,引導(dǎo)學(xué)生回憶所學(xué)的知識(shí),引出用比較法證明不等式,導(dǎo)入本節(jié)課學(xué)習(xí)的知識(shí).

      (二)新課講授

      【嘗試探索,建立新知】

      教師寫出一道(證明不等式)例題的題目

      [問題] 求證

      教師引導(dǎo)學(xué)生分析、思考,研究不等式的證明.

      學(xué)生研究證明不等式,嘗試完成問題.

      [本問點(diǎn)評]

      ①通過確定差的符號(hào),證明不等式的成立.這一方法,在前面比較兩個(gè)實(shí)數(shù)的大小、比較式子的大小、證明不等式性質(zhì)就已經(jīng)用過.

      ②通過求差將不等問題轉(zhuǎn)化為恒等問題,將兩個(gè)一般式子大小比較轉(zhuǎn)化為一個(gè)一般式子與0的大小比較,使問題簡化.

      ③理論依據(jù)是:

      ④由,知:要證明

      只需證

      ;需證明

      這種證明不等式的方法通常叫做比較法.

      目的:幫助學(xué)生構(gòu)建用比較法證明不等式的知識(shí)體系,培養(yǎng)學(xué)生化歸的數(shù)學(xué)思想.

      【例題示范,學(xué)會(huì)應(yīng)用】

      教師板書例題,引導(dǎo)學(xué)生研究問題,構(gòu)思證題方法,學(xué)會(huì)解題過程中的一些常用技巧,并點(diǎn)評.

      例1. 求證

      [分析]由比較法證題的方法,先將不等式兩邊作差,得

      關(guān)于的二次函數(shù),由配方法易知函數(shù)的最小值大干零,從而使問題獲證.,將此式看作證明:∵

      =,∴

      [本例點(diǎn)評] .

      ①作差后是通過配方法對差式進(jìn)行恒等變形,確定差的符號(hào);

      ②作差后,式子符號(hào)不易確定,配方后變形為一個(gè)完全平方式子與一個(gè)常數(shù)和的形式,使差式的符號(hào)易于確定;

      ③不等式兩邊的差的符號(hào)是正是負(fù),一般需要利用不等式的性質(zhì)經(jīng)過變形后,才能判斷;

      ④例1介紹了變形的一種常用方法——配方法.

      例2.已知都是正數(shù),并且,求證:

      [分析]這是分式不等式的證明題,依比較法證題將其作差,確定差的符號(hào),應(yīng)通分,由分子、分母的值的符號(hào)推出差值的符合,從而得證.

      證明:

      因?yàn)?/p>

      都是正數(shù),且,所以

      即:

      [本例點(diǎn)評]

      ①作差后是通過通分法對差式進(jìn)行恒等變形,由分子、分母的值的符號(hào)推出差的符號(hào);

      ②本例題介紹了對差變形,確定差值的符號(hào)的一種常用方法——通分法;

      ③例2的結(jié)論反映了分式的一個(gè)性質(zhì)(若都是正數(shù)

      1.當(dāng)

      時(shí),2.當(dāng)

      時(shí),.)

      目的:鞏固用比較法證明不等式的知識(shí),學(xué)會(huì)用比較法證明不等式時(shí),對差式變形的常用方法——配方法、通分法.

      【課堂練習(xí)】

      教師指定練習(xí)題,要求學(xué)生獨(dú)立思考.完成練習(xí);請甲、乙兩學(xué)生板演;巡視學(xué)生的解題情況,對正確的證法給予肯定和鼓勵(lì),對偏差點(diǎn)撥和糾正;點(diǎn)評練習(xí)中存在的問題.

      練習(xí):1.求證

      2.已知,,d都是正數(shù),且,求證

      目的:掌握用比較法證明不等式,并會(huì)靈活運(yùn)用配方法和通分法變形差式,確定差式符號(hào).反饋課堂教學(xué)效果,調(diào)節(jié)課堂教學(xué).

      【分析歸納、小結(jié)解法】

      學(xué)生和老師一起分析歸納例題和練習(xí)的解題過程,小結(jié)用比較法證明不等式的解題方法,并讓學(xué)生記錄筆記.比較法是證明不等式的一種最基本、重要的方法.用比較法證明不等式的步驟(作差、變形、判斷符號(hào)).靈活掌握配方法和通分法對差式進(jìn)行恒等變形.

      (三)小結(jié)(培養(yǎng)學(xué)生對所學(xué)知識(shí)進(jìn)行概括歸納的能力,鞏固所學(xué)知識(shí))

      學(xué)生和老師一起小結(jié)本節(jié)課所學(xué)的知識(shí),并讓學(xué)生記錄筆記.

      本節(jié)課學(xué)習(xí)的用比較法證明不等式的步驟中,作差是依據(jù),變形是手段,判斷符號(hào)才是目的.掌握求差后對差式變形的常用方法(配方法和通分法).并在下節(jié)課繼續(xù)學(xué)習(xí)對差式變形的常用方法.

      (四)布置作業(yè)

      1.課本作業(yè):P14.1,2,3.(供學(xué)生鞏固基礎(chǔ)知識(shí))

      2.思考題:已知,求證:

      (培養(yǎng)其靈活掌握用比較法證明不等式的能力)

      3.研究性題:設(shè),都是正數(shù),且

      (為培養(yǎng)學(xué)生創(chuàng)新意識(shí))

      作業(yè)答實(shí):

      思考題:,求證:,又,從而得證.

      研究性題:.所以,

      第三篇:不等式證明

      不等式證明

      不等式是數(shù)學(xué)的基本內(nèi)容之一,它是研究許多數(shù)學(xué)分支的重要工具,在數(shù)學(xué)中有重要的地位,也是高中數(shù)學(xué)的重要組成部分,在高考和競賽中都有舉足輕重的地位。不等式的證明變化大,技巧性強(qiáng),它不僅能夠檢驗(yàn)學(xué)生數(shù)學(xué)基礎(chǔ)知識(shí)的掌握程度,而且是衡量學(xué)生數(shù)學(xué)水平的一個(gè)重要標(biāo)志,本文將著重介紹以下幾種不等式的初等證明方法和部分方法的例題以便理解。

      一、不等式的初等證明方法

      1.綜合法:由因?qū)Ч?/p>

      2.分析法:執(zhí)果索因?;静襟E:要證..只需證..,只需證..(1)“分析法”證題的理論依據(jù):尋找結(jié)論成立的充分條件或者是充要條件。

      (2)“分析法”證題是一個(gè)非常好的方法,但是書寫不是太方便,所以我們可利用分析法尋找證題的途徑,然后用“綜合法”進(jìn)行表達(dá)。

      3.反證法:正難則反。

      4.放縮法:將不等式一側(cè)適當(dāng)?shù)姆糯蠡蚩s小以達(dá)證題目的。放縮法的方法有:

      (1)添加或舍去一些項(xiàng),如:

      2)利用基本不等式,如:

      (3)將分子或分母放大(或縮小):

      5.換元法:換元的目的就是減少不等式中變量,以使問題

      化難為易、化繁為簡,常用的換元有三角換元和代數(shù)換元。

      6.構(gòu)造法:通過構(gòu)造函數(shù)、方程、數(shù)列、向量或不等式來證明不等式。

      證明不等式的方法靈活多樣,但比較法、綜合法、分析法和數(shù)學(xué)歸納法仍是證明不等式的最基本方法。

      7.數(shù)學(xué)歸納法:數(shù)學(xué)歸納法證明不等式在數(shù)學(xué)歸納法中專門研究。

      8.幾何法:用數(shù)形結(jié)合來研究問題是數(shù)學(xué)中常用的方法,若求證的不等式是幾何不等式或有較明顯的幾何意義時(shí),可以考慮構(gòu)造相關(guān)幾何圖形來完成,若運(yùn)用得好,有時(shí)則有神奇的功效。

      9.函數(shù)法:引入一個(gè)適當(dāng)?shù)暮瘮?shù),利用函數(shù)的性質(zhì)達(dá)到證明不等式的目的。

      10.判別式法:利用二次函數(shù)的判別式的特點(diǎn)來證明一些不等式的方法。當(dāng)a>0時(shí),f(x)=ax2+bx+c>0(或<0).△<0(或>0)。當(dāng)a<0時(shí),f(x)>0(或<0).△>0(或<0)。

      二、部分方法的例題

      1.換元法

      換元法是數(shù)學(xué)中應(yīng)用最廣泛的解題方法之一。有些不等式通過變量替換可以改變問題的結(jié)構(gòu),便于進(jìn)行比較、分析,從而起到化難為易、化繁為簡、化隱蔽為外顯的積極效果。

      注意:在不等式的證明中運(yùn)用換元法,能把高次變?yōu)榈痛?,分式變?yōu)檎剑瑹o理式變?yōu)橛欣硎?,能簡化證明過程。尤其對含有若干個(gè)變元的齊次輪換式或輪換對稱式的不等式,通過換元變換形式以揭示內(nèi)容的實(shí)質(zhì),可收到事半功倍之效。

      2.放縮法

      欲證A≥B,可將B適當(dāng)放大,即B1≥B,只需證明A≥B1。相反,將A適當(dāng)縮小,即A≥A1,只需證明A1≥B即可。

      注意:用放縮法證明數(shù)列不等式,關(guān)鍵是要把握一個(gè)度,如果放得過大或縮得過小,就會(huì)導(dǎo)致解決失敗。放縮方法靈活多樣,要能想到一個(gè)恰到好處進(jìn)行放縮的不等式,需要積累一定的不等式知識(shí),同時(shí)要求我們具有相當(dāng)?shù)臄?shù)學(xué)思維能力和一定的解題智慧。

      3.幾何法

      數(shù)形結(jié)合來研究問題是數(shù)學(xué)中常用的方法,若求證的不等式是幾何不等式或有較明顯的幾何意義時(shí),可以考慮構(gòu)造相關(guān)幾何圖形來完成,若運(yùn)用得好,有時(shí)則有神奇的功效。

      第四篇:不等式證明

      不等式的證明

      比較法證明不等式

      a2?b2a?b?1.設(shè)a?b?0,求證:2.a?b2a?b

      2.(本小題滿分10分)選修4—5:不等式選講

      (1)已知x、y都是正實(shí)數(shù),求證:x3?y3?x2y?xy2;

      (2?對滿足x?y?z?1的一切正實(shí)數(shù) x,y,z恒成立,求實(shí)數(shù)a的取值范圍

      .??,1?綜合法證明不等式(利用均值不等式)3.已知a?b?c, 求證:??1??? ??114??.a?bb?ca?c

      4.設(shè)a,b,c均為正數(shù),且a+b+c=1,證明:

      1(Ⅰ)ab+bc+ac?3;

      a2b2c2

      ???1ca(Ⅱ)b

      5.(1)求不等式x?3?2x???1的解集;

      121225(a?)?(b?)??a,b?R,a?b?1ab2.(2)已知,求證:

      6.若a、b、c是不全相等的正數(shù),求證:

      分析法證明不等式

      7.某同學(xué)在證明命題“7??要證明7?3??2”時(shí)作了如下分析,請你補(bǔ)充完整.6?2,只需證明________________,只需證明___________,+2?9?2,展開得9即?,只需證明14?18,________________,所以原不等式:??6?2成立.22?2?6?3,(7?2)?(6?3),因?yàn)?4?18成立。

      a?b?c8.已知a,b,c?R。?3?

      9.(本題滿分10分)已知函數(shù)f(x)?|x?1|。

      (Ⅰ)解不等式f(x)?f(x?4)?8;{x|x≤-5,或x≥3}(Ⅱ)若|a|?1,|b|?1,且a?0,求證:f(ab)?|a|f().10.(本小題滿分10分)當(dāng)a,b?M??x|?2?x?2?時(shí),證明:2|a+b|<|4+ab|.反證法證明不等式

      11.已知a,b,c均為實(shí)數(shù),且a=x?2y+2baπππ22,b=y?2z+,c=z?2x+,236

      求證:a,b,c中至少有一個(gè)大于0.12.(12分)若x,y?R,x?0,y?0,且x?y?2。求證:1?x和1?y中至少有一個(gè)小于2.yx

      放縮法證明不等式

      13.證明不等式:?111??11?21?2?3?1

      1?2?3??n?2

      214.設(shè)各項(xiàng)均為正數(shù)的數(shù)列?an?的前n項(xiàng)和為Sn,滿足4Sn?ann?N?,且

      ?1?4n?1,a2,a5,a14構(gòu)成等比數(shù)列.

      (1)證明:a2?

      (2)求數(shù)列?an?的通項(xiàng)公式;an?2n?1

      (3)證明:對一切正整數(shù)n,有11??a1a2a2a3?11?. anan?12

      15.設(shè)數(shù)列?an?的前n項(xiàng)和為Sn.已知a1?1,2Sn12?an?1?n2?n?,n?N*.n33

      (Ⅰ)求a2的值;a2?4(Ⅱ)求數(shù)列?an?的通項(xiàng)公式;an?n2(Ⅲ)證明:對一切正整數(shù)n,有數(shù)學(xué)歸納法證明不等式

      16.(本小題滿分12分)若不等式11??

      n?1n?2?1a對一切正整數(shù)n都成立,求正?3n?12411??a1a2?17?.an4

      整數(shù)a的最大值,并證明結(jié)論.25

      17.用數(shù)學(xué)歸納法證明不等式:

      第五篇:不等式證明經(jīng)典

      金牌師資,笑傲高考

      2013年數(shù)學(xué)VIP講義

      【例1】 設(shè)a,b∈R,求證:a2+b2≥ab+a+b-1。

      【例2】 已知0

      【例3】 設(shè)A=a+d,B=b+c,a,b,c,d∈R+,ad=bc,a=max{a,b,c,d},試比較A與B的大小。

      因A、B的表達(dá)形式比較簡單,故作差后如何對因式進(jìn)行變形是本題難點(diǎn)之一。利用等式ad=bc,借助于消元思想,至少可以消去a,b,c,d中的一個(gè)字母。關(guān)鍵是消去哪個(gè)字母,因條件中已知a的不等關(guān)系:a>b,a>c,a>d,故保留a,消b,c,d中任一個(gè)均可。

      由ad=bc得:d?bca1?ab?bc?caa?b?c?abc≥1。

      bca??b?c?a?b?(a?b)(a?c)a?0bc?acaA-B=a+d-(b+c)=a? =a?b? c(a?b)a

      【例4】 a,b,c∈R,求證:a4+b4+c4≥(a+b+c)。

      不等號(hào)兩邊均是和的形式,利用一次基本不等式顯然不行。不等號(hào)右邊為三項(xiàng)和,根據(jù)不等號(hào)方向,應(yīng)自左向右運(yùn)用基本不等式后再同向相加。因不等式左邊只有三項(xiàng),故把三項(xiàng)變化六項(xiàng)后再利用二元基本不等式,這就是“化奇為偶”的技巧。

      左=12(2a4?2b224?2c)?22412[(a24?b)?(b22244?c)?(c2244?a)]24

      ≥12(2ab?2bc?2ca)?ab?bc?ca

      2發(fā)現(xiàn)縮小后沒有達(dá)到題目要求,此時(shí)應(yīng)再利用不等式傳遞性繼續(xù)縮小,處理的方法與剛才類似。

      中天教育咨詢電話:0476-8705333

      第1頁/共9頁 金牌師資,笑傲高考

      ab?1212

      2013年數(shù)學(xué)VIP講義

      22?bc2222?ca2222?212(2ab2222?2bc2222?2ca)22

      ?ca)?(ca2[(ab?bc)?(bc22?ab)]22≥(2abc?2abc2?2abc)?ab(a?b?c)1a

      ?1c?【例5】(1)a,b,c為正實(shí)數(shù),求證:?(2)a,b,c為正實(shí)數(shù),求證:

      a21bb2≥

      c21ab?1bc?1ac;

      b?c?a?ca?b≥

      a?b?c2。

      (1)不等式的結(jié)構(gòu)與例4完全相同,處理方法也完全一樣。

      (2)同學(xué)們可試一試,再用剛才的方法處理該題是行不通的。注意到從左向右,分式變成了整式,可考慮在左邊每一個(gè)分式后配上該分式的分母,利用二元基本不等式后約去分母,再利用不等式可加性即可達(dá)到目的。試一試行嗎?

      a2b?cb2?(b?c)≥2a2b?cb2?(b?c)?2a

      a?cc2?(a?c)≥2a?c?(a?c)?2ba?b?(a?b)≥2c2a?b?(a?b)?2c

      相加后發(fā)現(xiàn)不行,a,b,c的整式項(xiàng)全消去了。為了達(dá)到目的,應(yīng)在系數(shù)上作調(diào)整。

      a2b?c?b?c4≥a,b2a?c?a?c4≥b,c2a?b?a?b4≥a 相向相加后即可。

      【例6】 x,y為正實(shí)數(shù),x+y=a,求證:x+y≥

      2a22。

      思路一;根據(jù)x+y和x2+y2的結(jié)構(gòu)特點(diǎn),聯(lián)想到算術(shù)平均數(shù)與平方平均數(shù)之間的不等關(guān)系?!?x?y22≤2x2?y22

      2∴ x?y≥(x?y)2?a22

      思路二:因所求不等式右邊為常數(shù),故可從求函數(shù)最小值的角度去思考。思路一所用的是基本不等式法,這里采用消元思想轉(zhuǎn)化為一元函數(shù),再用單調(diào)性求解。換元有下列三種途徑:

      途徑1:用均值換元法消元: 令 x?2a2?m,y?aa22?m

      22則 x?y?(?m)?(?m)?2m?222aa22≥

      a22

      途徑2:代入消元法: y=a-x,0

      a2)2?a22≥

      a22

      中天教育咨詢電話:0476-8705333

      第2頁/共9頁 金牌師資,笑傲高考

      途徑3:三角換元法消元:

      令 x=acos2θ,y=asin2θ,θ∈(0,]

      2?2013年數(shù)學(xué)VIP講義

      則 x2+y2=a2(cos4θ+sin4θ)=a2[(sin2θ+cos2θ)2-2sin2θcos2θ]

      =a[1-2(sin2θ)]=a(1-22122

      12sin2θ)≥

      a22

      注:為了達(dá)到消元的目的,途徑1和途徑3引入了適當(dāng)?shù)膮?shù),也就是找到一個(gè)中間變量表示x,y。這種引參的思想是高中數(shù)學(xué)常用的重要方法。【例7】 已知a>b>0,求證:(a?b)8a2?a?b2?ab?(a?b)8b2。

      12所證不等式的形式較復(fù)雜(如從次數(shù)看,有二次,一次,次等),難以從某個(gè)角度著手。故考慮用分析法證明,即執(zhí)果索因,尋找使不等式成立的必要條件。實(shí)際上就是對所證不等式進(jìn)行適當(dāng)?shù)幕?、變形,?shí)際上這種變形在相當(dāng)多的題目里都是充要的。

      a?b2?ab?a?b?2ab2b)(a?(a??(a?2b)2

      a?b?(a?b)b)(a?8a2所證不等式可化為∵ a>b>0 ∴ a?b ∴ a?b?0

      b)2?(a?2b)2?(a?b)(a?8b2b)2

      ∴ 不等式可化為:(a?4ab)2?1?(a?4bb)2

      2??(a?b)?4a即要證?

      2??4b?(a?b)??a?b?2a只需證?

      ?2b?a?b?在a>b>0條件下,不等式組顯然成立 ∴ 原不等式成立 【例8】 已知f(x)=24xx?3?8,求證:對任意實(shí)數(shù)a,b,恒有f(a)

      112.不等號(hào)兩邊字母不統(tǒng)一,采用常規(guī)方法難以著手。根據(jù)表達(dá)式的特點(diǎn),借助于函數(shù)思想,可分別求f(a)及g(b)=b2-4b+f(a)?112的最值,看能否通過最值之間的大小關(guān)系進(jìn)行比較。

      ?8?2(2)a2a24aa?3?8?8?2a8?82a≤

      2?82?a?82a842?2

      令 g(b)=b2-4b+11232 ≥32 g(b)=(b-2)2+

      中天教育咨詢電話:0476-8705333

      第3頁/共9頁 金牌師資,笑傲高考

      ∵ 32?22013年數(shù)學(xué)VIP講義

      ∴ g(b)>f(a)注:本題實(shí)際上利用了不等式的傳遞性,只不過中間量為常數(shù)而已,這種思路在兩數(shù)大小比較時(shí)曾講過。由此也說明,實(shí)數(shù)大小理論是不等式大小理論的基礎(chǔ)。

      【例9】 已知a,b,c∈R,f(x)=ax2+bx+c,當(dāng)|x|≤1時(shí),有|f(x)|≤1,求證:

      (1)|c|≤1,|b|≤1;

      (2)當(dāng)|x|≤1時(shí),|ax+b|≤2。

      這是一個(gè)與絕對值有關(guān)的不等式證明題,除運(yùn)用前面已介紹的不等式性質(zhì)和基本不等式以外,還涉及到與絕對值有關(guān)的基本不等式,如|a|≥a,|a|≥-a,||a|-|b||≤|a±b|≤|a|+|b|,|a1±a2±?±an|≤|a1|+|a2|+?+|an|。就本題來說,還有一個(gè)如何充分利用條件“當(dāng)|x|≤1時(shí),|f(x)|≤1”的解題意識(shí)。

      從特殊化的思想出發(fā)得到: 令 x=0,|f(0)|≤1 即 |c|≤1 當(dāng)x=1時(shí),|f(1)|≤1;當(dāng)x=-1時(shí),|f(-1)|≤1 下面問題的解決試圖利用這三個(gè)不等式,即把f(0),f(1),f(-1)化作已知量,去表示待求量?!?f(1)=a+b+c,f(-1)=a-b+c ∴ b?12[f(1)?f(?1)] 12|f(1)?f(?1)|≤12[|f(1)|?|f(?1)|]≤

      12(1?1)≤1 ∴ |b|?(2)思路一:利用函數(shù)思想,借助于單調(diào)性求g(x)=ax+b的值域。

      當(dāng)a>0時(shí),g(x)在[-1,1]上單調(diào)遞增 ∴ g(-1)≤g(x)≤g(1)∵ g(1)=a+1=f(1)-f(0)≤|f(1)-f(0)|≤|f(1)|+|f(0)|≤2 g(-1)=-a+b=f(0)-f(-1)=-[f(-1)-f(0)]

      ≥-|f(-1)-f(0)|≥-[|f(-1)|+|f(0)|]≥-2 ∴-2≤g(x)≤2 即 |g(x)|≤2 當(dāng)a<0時(shí),同理可證。

      思路二:直接利用絕對值不等式

      為了能將|ax+b|中的絕對值符號(hào)分配到a,b,可考慮a,b的符號(hào)進(jìn)行討論。當(dāng)a>0時(shí)

      |ax+b|≤|ax|+|b|=|a||x|+|b|≤|a|+|b|≤a+|b| 下面對b討論

      ① b≥0時(shí),a+|b|=a+b=|a+b|=|f(1)-f(0)| ≤ |f(1)|+|f(0)|≤2; ② b<0時(shí),a+|b|=a-b=|a-b|=|f(-1)-f(0)|≤|f(-1)|+f(0)|≤2?!?|ax+b|≤2 當(dāng)a<0時(shí),同理可證。

      評注:本題證明過程中,還應(yīng)根據(jù)不等號(hào)的方向,合理選擇不等式,例如:既有|a-b|≥|a|-|b|,又有|a-b|≥|b|-|a|,若不適當(dāng)選擇,則不能滿足題目要求。

      中天教育咨詢電話:0476-8705333

      第4頁/共9頁 金牌師資,笑傲高考

      2013年數(shù)學(xué)VIP講義

      1、設(shè)a,b為正數(shù),且a+b≤4,則下列各式一定成立的是 A、C、1a12?1b1a≤?141b B、≤1 D、141a≤

      ?1a?1b≤

      1b≥1

      2、已知a,b,c均大于1,且logac·logbc=4,則下列各式中一定正確的是 A、ac≥b B、ab≥c C、bc≥a D、ab≤c

      5、已知a,b,c>0,且a+b>c,設(shè)M=

      a4?a?bb?cc4?c,N=,則MN的大小關(guān)系是

      A、M>N B、M=N C、M

      6、已知函數(shù)f(x)=-x-x3,x1,x2,x3∈R,且x1+x2>0,x2+x3>0,x3+x1>0,則f(x1)+f(x2)+f(x3)的值 A、一定大于零 B、一定小于零 C、一定等于零 D、正負(fù)都有可能

      7、若a>0,b>0,x?111(?)2ab1a?b1ab,y?,z?,則

      A、x≥y>z B、x≥z>y C、y≥x>z D、y>z≥x

      8、設(shè)a,b∈R,下面的不等式成立的是 A、a+3ab>b B、ab-a>b+ab C、(二)填空題

      9、設(shè)a>0,b>0,a≠b,則aabb與abba的大小關(guān)系是__________。

      10、若a,b,c是不全相等的正數(shù),則(a+b)(b+c)(c+a)______8abc(用不等號(hào)填空)。

      12、當(dāng)00且t≠1時(shí),logat與log21t?1a2

      2ab?a?1b?1 D、a+b≥2(a-b-1)

      22的大小關(guān)系是__________。

      n13、若a,b,c為Rt△ABC的三邊,其中c為斜邊,則an+bn與c(其中n∈N,n>2)的大小關(guān)系是________________。

      (三)解答題

      14、已知a>0,b>0,a≠b,求證:a?

      15、已知a,b,c是三角形三邊的長,求 證:1?

      中天教育咨詢電話:0476-8705333

      第5頁/共9頁

      ab?c?ba?c?ca?b?2。

      b?ab?ba。金牌師資,笑傲高考

      16、已知a≥0,b≥0,求證:

      18、若a,b,c為正數(shù),求證:

      19、設(shè)a>0,b>0,且a+b=1,求證:(a?

      20、已知a+b+c>0,ab+bc+ca>0,abc>0,求證:a,b,c全為正數(shù)。

      1a)(b?1b)2541a?1b?1ca82013年數(shù)學(xué)VIP講義

      12(a?b)2?14(a?b)≥aa?ba。

      ?b383?c38。

      abc≥。

      中天教育咨詢電話:0476-8705333

      第6頁/共9頁

      下載數(shù)學(xué)歸納法證明不等式教案word格式文檔
      下載數(shù)學(xué)歸納法證明不等式教案.doc
      將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
      點(diǎn)此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會(huì)在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        不等式證明[精選]

        §14不等式的證明 不等式在數(shù)學(xué)中占有重要地位,由于其證明的困難性和方法的多樣性,而成為競賽和高考的熱門題型. 證明不等式就是對不等式的左右兩邊或條件與結(jié)論進(jìn)行代數(shù)變......

        不等式證明

        不等式證明 1. 比較法: 比較法是證明不等式的最基本、最重要的方法之一,它可分為作差法、作商法 (1)作差比較: ①理論依據(jù)a-b>0a>b; a-b=0a=b; a-b0),只要證;要證A0),只要證②證明......

        2018考研高數(shù):不等式證明的方法

        凱程考研輔導(dǎo)班,中國最權(quán)威的考研輔導(dǎo)機(jī)構(gòu) 2018考研高數(shù):不等式證明的方法 不等式證明是考研數(shù)學(xué)試卷中的中上等難度題目,下面凱程網(wǎng)考研頻道簡單講一下不等式的幾種證明方......

        基本不等式的證明 教案

        課題:基本不等式的證明(1)斜橋中學(xué)肖劍一、教材分析不等式是高中的重點(diǎn)也是難點(diǎn),而本節(jié)內(nèi)容又是該章的重中之重,是《考試說明》中八個(gè)C級(jí)考點(diǎn)之一。基本不等式的證明方法(比較......

        2017不等式的證明方法教案[合集]

        1.5.1--1.5.2 不等式的證明方法(一) 教案 教學(xué)目標(biāo):了解證明不等式的最基本的基本方法即比較法、綜合法、分析法. 教學(xué)重點(diǎn)、難點(diǎn):分析法 教學(xué)過程: 一、情景引入: 不等式歷來是......

        用比較法證明不等式·教案

        用比較法證明不等式·教案北京二十五中 馮睿 教學(xué)目標(biāo) 1.理解,掌握比較法證明不等式. 2.培養(yǎng)滲透轉(zhuǎn)化、分類討論等數(shù)學(xué)思想,提高分析、解決問題能力. 3.鍛煉學(xué)生的思維品質(zhì)(思維的嚴(yán)......

        不等式證明練習(xí)題

        不等式證明練習(xí)題(1/a+2/b+4/c)*1=(1/a+2/b+4/c)*(a+b+c)展開,得=1+2a/b+4a/c+b/a+2+4b/c+c/a+2c/b+4=7+2a/b+4a/c+b/a+4b/c+c/a+2c/b基本不等式,得>=19>=18用柯西不等式:(a+b+......

        常用均值不等式及證明證明

        常用均值不等式及證明證明這四種平均數(shù)滿足Hn?Gn?An?Qn?、ana1、a2、?R?,當(dāng)且僅當(dāng)a1?a2???an時(shí)取“=”號(hào)僅是上述不等式的特殊情形,即D(-1)≤D(0)≤D(1)≤D(2)由以上簡化,有一個(gè)簡單結(jié)論,......