第一篇:遺傳算法的應(yīng)用及研究動向
遺傳算法的應(yīng)用及研究動向
摘要 本文主要介紹了遺傳算法的基本概念和基本原理,分析說明了遺傳算法應(yīng)用領(lǐng)域,指出了遺傳算法在應(yīng)用中的幾個(gè)關(guān)鍵問題,同時(shí)簡要介紹了遺傳算法研究新動向及存在的問題。
關(guān)鍵詞 遺傳算法;編碼機(jī)制;遺傳算子;適應(yīng)度函數(shù)
一、遺傳算法的基本原理
遺傳算法類似于自然進(jìn)化,通過作用于染色體上基因?qū)ふ易詈玫娜旧w來求解問題。與自然界相似,遺傳算法對求解問題的本身一無所知,它所需要的僅是對遺傳算法所產(chǎn)生的染色體有更多的繁殖機(jī)會。在遺傳算法中,通過隨機(jī)方式產(chǎn)生若干個(gè)所求解問題的數(shù)字編碼,即染色體,形成初始種群;通過適應(yīng)度函數(shù)給每個(gè)個(gè)體一個(gè)數(shù)值評價(jià),淘汰低適應(yīng)度的個(gè)體,選擇高適應(yīng)度的個(gè)體參加遺傳操作,經(jīng)過遺傳操作后的個(gè)體集合成下一代新的種群,對這個(gè)新種群進(jìn)行下一輪進(jìn)化[1]。
二、遺傳算法的應(yīng)用
遺傳算法在應(yīng)用中最關(guān)鍵的問題有如下3 個(gè)[2-3]。
(1)串的編碼方式。本質(zhì)是問題編碼。一般把問題的各種參數(shù)用二進(jìn)制編碼,構(gòu)成子串;然后把子串拼接構(gòu)成“染色體”串。串長度及編碼形式對算法收斂影響極大。
(2)適應(yīng)函數(shù)的確定。適應(yīng)函數(shù)(fitness function)也稱對象函數(shù)(object function),這是問題求解品質(zhì)的測量函數(shù);往往也稱為問題的“環(huán)境”。一般可以把問題的模型函數(shù)作為對象函數(shù);但有時(shí)需要另行構(gòu)造。
(3)遺傳算法自身參數(shù)設(shè)定。遺傳算法自身參數(shù)有3 個(gè),即群體大小n、交叉概率Pc 和變異概率Pm。群體大小n 太小時(shí)難以求出最優(yōu)解,太大則增長收斂時(shí)間。一般n=30-160。交叉概率Pc 太小時(shí)難以向前搜索,太大則容易破壞高適應(yīng)值的結(jié)構(gòu)。一般取Pc=0.25-0.75。變異概率Pm太小時(shí)難以產(chǎn)生新的基因結(jié)構(gòu),太大使遺傳算法成了單純的隨機(jī)搜索。一般取Pm=0.01-0.2。
遺傳算法的主要應(yīng)用領(lǐng)域[4-5]在于函數(shù)優(yōu)化(非線性、多模型、多目標(biāo)等),機(jī)器人學(xué)(移動機(jī)器人路徑規(guī)劃、關(guān)節(jié)機(jī)器人運(yùn)動軌跡規(guī)劃、細(xì)胞機(jī)器人的結(jié)構(gòu)優(yōu)化等),控制(瓦斯管道控制、防避導(dǎo)彈控制、機(jī)器人控制等),規(guī)劃(生產(chǎn)規(guī)劃、并行機(jī)任務(wù)分配等),設(shè)計(jì)(VLSI 布局、通信網(wǎng)絡(luò)設(shè)計(jì)、噴氣發(fā)動機(jī)設(shè)計(jì)等),組合優(yōu)化(TSP 問題、背包問題、圖分劃問題等),圖像處理(模式識別、特征提取、圖像恢復(fù)等),信號處理(濾波器設(shè)計(jì)等),人工生命(生命的遺傳進(jìn)化等)。
三、遺傳算法的研究新動向(1)基于遺傳算法的機(jī)器學(xué)習(xí)
這一新的研究方向把遺傳算法從歷史離散的搜索空間的優(yōu)化搜索算法擴(kuò)展到具有獨(dú)特的規(guī)則生成功能嶄新的機(jī)器學(xué)習(xí)算法。這一新的學(xué)習(xí)機(jī)制對于解決人工智能中知識獲取和知識優(yōu)化精煉的瓶頸難題帶來了希望。遺傳算法作為一種搜索算法從一開始就與機(jī)器學(xué)習(xí)有著密切聯(lián)系。分類器系統(tǒng)CS-1 是GA 的創(chuàng)立Holland 教授等實(shí)現(xiàn)的第一個(gè)基于遺傳算法的機(jī)器學(xué)習(xí)系統(tǒng)。分類器系統(tǒng)在很多領(lǐng)域都得到了應(yīng)用。例如,分類器系統(tǒng)在學(xué)習(xí)式多機(jī)器人路徑規(guī)劃系統(tǒng)中得到了成功應(yīng)用;Goldberg 研究了用分類器系統(tǒng)來學(xué)習(xí)控制一個(gè)煤氣管道仿真系統(tǒng);Wilson 研究了一種用于協(xié)調(diào)可移動式視頻攝像機(jī)的感知運(yùn)動的分類器系統(tǒng)等。(2)遺傳算法與其他計(jì)算智能方法的相互滲透和結(jié)合
遺傳算法正日益和神經(jīng)網(wǎng)絡(luò)、模糊推理以及混沌理論等其它智能計(jì)算方法相互滲透和結(jié)合,以達(dá)到取長補(bǔ)短的作用。近年來在這方面已經(jīng)取得了不少研究成果,并形成了“計(jì)算智能”的研究領(lǐng)域,這對開拓21 世紀(jì)中新的智能計(jì)算技術(shù)具有重要意義。GA 的出現(xiàn)使神經(jīng)網(wǎng)絡(luò)的訓(xùn)練(包括連接權(quán)系數(shù)的優(yōu)化、網(wǎng)絡(luò)空間結(jié)構(gòu)的優(yōu)化和網(wǎng)絡(luò)的學(xué)習(xí)規(guī)劃優(yōu)化)有了一個(gè)嶄新的面貌,目標(biāo)函數(shù)既不要求連續(xù),也不要求可微,僅要求該問題可計(jì)算,而且搜索始終遍及整個(gè)解空間,因此容易得到全局最優(yōu)解。(3)并行處理的遺傳算法
并行處理的遺傳算法的研究不僅是遺傳算法本身的發(fā)展,而且對于新一代智能計(jì)算機(jī)體系結(jié)構(gòu)的研究都是十分重要的。GA 在操作上具有高度的并行性,許多研究人員都在探索在并行機(jī)上高效執(zhí)行GA 的策略。研究表明,只要通過保持多個(gè)群體和恰當(dāng)?shù)乜刂迫后w間的相互作用來模擬并執(zhí)行過程,即使不使用并行計(jì)算機(jī),我們也能提高算法的執(zhí)行效率。在并GA 的研究方面,一些并GA 模型已經(jīng)被人們在具體的并行機(jī)上執(zhí)行了;并行GA 可分為兩類:一類是粗粒度并行GA,主要開發(fā)群體間的并行性;另一類是細(xì)粒GA,主要開發(fā)一個(gè)群體中的并行性。(4)遺傳算法與人工生命的滲透
人工生命是用計(jì)算機(jī)、機(jī)械等人工媒體模擬或構(gòu)造出的具有自然生物系統(tǒng)特有行為的人造系統(tǒng),人工生命與遺傳算法有著密切的關(guān)系,基于遺傳算法的進(jìn)化模型是研究人工生命現(xiàn)象的重要理論基礎(chǔ)。雖然人工生命的研究尚處于啟蒙階段,但遺傳算法已在其進(jìn)化模型、學(xué)習(xí)模型、行為模型、自組織模型等方面顯示出了初步的應(yīng)用能力,并且必將得到更為深入的應(yīng)用和發(fā)展。人工生命與遺傳算法相輔相成,遺傳算法為人工生命的研究提供了一個(gè)有效的工具,人工生命的研究也必將促進(jìn)遺傳算法的進(jìn)一步發(fā)展。(5)遺傳算法與進(jìn)化規(guī)則及進(jìn)化策略的結(jié)合
遺傳算法、進(jìn)化規(guī)則及進(jìn)化策略是演化計(jì)算的3 個(gè)主要分支,這3 種典型的進(jìn)化算法都以自然界中生物的進(jìn)化過程為自適應(yīng)全局優(yōu)化搜索過程的借鑒對象,所以三者之間有較大的相似性;另一方面,這3 種算法又是從不完全相同的角度出發(fā)來模擬生物進(jìn)化過程,分別是依據(jù)不同的生物進(jìn)化背景、不同的生物進(jìn)化機(jī)制而開發(fā)出來的,所以三者之間也有一些差異。隨著各種進(jìn)化計(jì)算方法之間相互交流深入,以及對各種進(jìn)化算法機(jī)理研究的進(jìn)展,要嚴(yán)格地區(qū)分它們既不可能、也沒有必要。在進(jìn)化計(jì)算領(lǐng)域內(nèi)更重要的工作是生物進(jìn)化機(jī)制,構(gòu)造性能更加優(yōu)良、適應(yīng)面更加廣泛的進(jìn)化算法。
參考文獻(xiàn)
[1] 張文修,梁怡.遺傳算法的教學(xué)基礎(chǔ)[M].西安:西安交通大學(xué)出版社,2000.[2] 余建坤,張文彬,陸玉昌.遺傳算法及其應(yīng)用[J].云南民族學(xué)院學(xué)報(bào),2002(4).[3] 蔡自興,徐光祐.人工智能及應(yīng)用[M].北京:清華大學(xué)出版社,2003.[4]蔣騰旭.智能優(yōu)化算法概述[J].電腦知識與技術(shù),2007(8).[5]任慶生,葉中行.遺傳算法中常用算子的分析[J].電子學(xué)報(bào),2005(5).
第二篇:遺傳算法學(xué)習(xí)心得體會
遺傳算法
概念
遺傳算法是模仿自然界生物進(jìn)化機(jī)制發(fā)展起來的隨機(jī)全局搜索和優(yōu)化方法,它借鑒了達(dá)爾文的進(jìn)化論和孟德爾的遺傳學(xué)說。其本質(zhì)是一種高效、并行、全局搜索的方法,它既能在搜索中自動獲取和積累有關(guān)空間知識,并自適應(yīng)地控制搜索過程以求得最優(yōu)解遺傳算法操作使用適者生存的原則,在潛在的解決方案種群中逐次產(chǎn)生一個(gè)近視最優(yōu)方案。在遺傳算法的每一代中,根據(jù)個(gè)體在問題域中的適應(yīng)度值和從自然遺傳學(xué)中借鑒來的再造方法進(jìn)行個(gè)體選擇,產(chǎn)生一個(gè)新的近視解。這個(gè)過程導(dǎo)致種群中個(gè)體的進(jìn)化,得到的新個(gè)體比原個(gè)體更適應(yīng)環(huán)境,就像自然界中的改造一樣。
應(yīng)用
遺傳算法在人工智能的眾多領(lǐng)域具有廣泛應(yīng)用。例如,機(jī)器學(xué)習(xí)、聚類、控制(如煤氣管道控制)、規(guī)劃(如生產(chǎn)任務(wù)規(guī)劃)、設(shè)計(jì)(如通信網(wǎng)絡(luò)設(shè)計(jì)、布局設(shè)計(jì))、調(diào)度(如作業(yè)車間調(diào)度、機(jī)器調(diào)度、運(yùn)輸問題)、配置(機(jī)器配置、分配問題)、組合優(yōu)化(如tsp、背包問題)、函數(shù)的最大值以及圖像處理和信號處理等等。遺傳算法多用應(yīng)與復(fù)雜函數(shù)的優(yōu)化問題中。原理
遺傳算法模擬了自然選擇和遺傳中發(fā)生的復(fù)制、交叉、和變異等現(xiàn)象,從任一初始種群出發(fā),通過隨機(jī)選擇、交叉、變異操作,產(chǎn)生一群更適合環(huán)境的個(gè)體,使群體進(jìn)行到搜索空間中越來越好的區(qū)域,這樣一代一代地不斷繁衍進(jìn)化,最后收斂到一群最適合環(huán)境的個(gè)體求得問題的最優(yōu)解。
算法流程 1.編碼:解空間中的解數(shù)據(jù)x,作為作為遺傳算法的表現(xiàn)型形式。從表現(xiàn)
型到基本型的映射稱為編碼。遺傳算法在進(jìn)行搜索之前先將解空間的解數(shù)據(jù)表示成遺傳空間的基本型串結(jié)構(gòu)數(shù)據(jù),這些串結(jié)構(gòu)數(shù)據(jù)的不同的組合就構(gòu)成了不同的點(diǎn)。2.初始種群的形成:隨機(jī)產(chǎn)生n個(gè)初始串?dāng)?shù)據(jù),每個(gè)串?dāng)?shù)據(jù)稱為一個(gè)個(gè)體,n個(gè)串?dāng)?shù)據(jù)構(gòu)成了一個(gè)群體。遺傳算法以這n個(gè)串結(jié)構(gòu)作為初始點(diǎn)開始迭代。設(shè)置進(jìn)化代數(shù)計(jì)數(shù)器t 0;設(shè)置最大進(jìn)行代數(shù)t;隨機(jī)生成m個(gè)個(gè)體作為初始群體p(0)。3.適應(yīng)度檢測:適應(yīng)度就是借鑒生物個(gè)體對環(huán)境的適應(yīng)程度,適應(yīng)度函數(shù) 就是對問題中的個(gè)體對象所設(shè)計(jì)的表征其優(yōu)劣的一種測度。根據(jù)具體問題計(jì)算p(t)的適應(yīng)度。
4.選擇:將選擇算子作用于群體。選擇的目的是把優(yōu)化的個(gè)體直接遺傳到
下一代或通過配對交叉產(chǎn)生新的個(gè)體再遺傳到下一代。選擇操作是建立在群體中個(gè)體的適應(yīng)度評估基礎(chǔ)上的。
5.交叉:將交叉算子作用于群體。所謂交叉是指把兩個(gè)父代個(gè)體的部分結(jié)
構(gòu)加以替換重組而生成新個(gè)體的操作。遺傳算法中起核心作用的就是交叉算子。6.變異:將變異算子作用于群體。即是對群體中的個(gè)體串的某些基因座上的基因值作變動。
群體p(t)經(jīng)過選擇、交叉、變異運(yùn)算之后得到下一代群體p(t+1)。7.終止條件判斷:若t<=t,則t=t+1,轉(zhuǎn)到第3步,否則以進(jìn)化過程中所得
到的具有最大適應(yīng)度個(gè)體作為最優(yōu)解輸出,終止計(jì)算。
遺傳算法流程圖如下圖所示: 遺傳算法
下幾種:適應(yīng)度比例方法、隨機(jī)遍歷抽樣法、局部選擇法。
其中輪盤賭選擇法是最簡單也是最常用的選擇方法。在該方法中,各個(gè)個(gè)體的選擇概率和其適應(yīng)度值成比例。設(shè)群體大小為n,其中個(gè)體i的適應(yīng)度為,則i 被選擇的概率,為遺傳算法
2、交叉:在自然界生物進(jìn)化過程中起核心作用的是生物遺傳基因的重組(加上變異)。同樣,遺傳算法中起核心作用的是遺傳操作的交叉算子。所謂交叉是指把兩個(gè)父代個(gè)體的部分結(jié)構(gòu)加以替換重組而生成新個(gè)體的操作。通過交叉,遺傳算法的搜索能力得以飛躍提高。
交叉算子根據(jù)交叉率將種群中的兩個(gè)個(gè)體隨機(jī)地交換某些基因,能夠產(chǎn)生新的基因組合,期望將有益基因組合在一起。根據(jù)編碼表示方法的不同,可以有以下的算法: b)二進(jìn)制交叉(binary valued crossover)1)單點(diǎn)交叉(single-point crossover)2)多點(diǎn)交叉(multiple-point crossover)3)均勻交叉(uniform crossover)4)洗牌交叉(shuffle crossover)5)縮小代理交叉(crossover with reduced surrogate)。
3、變異
變異算子的基本內(nèi)容是對群體中的個(gè)體串的某些基因座上的基因值作變動。依據(jù)個(gè)體編碼表示方法的不同,可以有以下的算法: a)實(shí)值變異 b)二進(jìn)制變異。
一般來說,變異算子操作的基本步驟如下: a)對群中所有個(gè)體以事先設(shè)定的編譯概率判斷是否進(jìn)行變異 b)對進(jìn)行變異的個(gè)體隨機(jī)選擇變異位進(jìn)行變異。
例:簡單一元函數(shù)優(yōu)化
求下面函數(shù)的最大值:
f(x)=xsin(10*pi*x)+2.0,-1<=x<=2;程序: figure(1);fplot(variable.*sin(10*pi*variable)+2.0,[-1,2]);%畫出函數(shù)曲線 %定義遺傳算法參數(shù)
nind=40;%個(gè)體數(shù)目(number of individuals)maxgen=25;%最大遺傳代數(shù)(maximum number of generations)preci=20;%變量的二進(jìn)制位數(shù)(precision of variables)ggap=0.9;%代溝(generation gap)trace=zeros(2, maxgen);%尋優(yōu)結(jié)果的初始值 fieldd=[20;-1;2;1;0;1;1];%區(qū)域描述器(build field descriptor)chrom=crtbp(nind, preci);%初始種群 gen=0;%代計(jì)數(shù)器 variable=bs2rv(chrom, fieldd);
%計(jì)算初始種群的十進(jìn)制轉(zhuǎn)換
objv=variable.*sin(10*pi*variable)+2.0;%計(jì)算目標(biāo)函數(shù)值 while gen 基本概念 遺傳算法(genetic algorithms, ga)是一類借鑒生物界自然選擇和自然遺傳機(jī)制的隨機(jī)化搜索算法。 它模擬自然選擇和自然遺傳過程中發(fā)生的繁殖、交叉和基因突變現(xiàn)象,在每次迭代中都保留一組候選解,并按某種指標(biāo)從解群中選取較優(yōu)的個(gè)體,利用遺傳算子(選擇、交叉和變異)對這些個(gè)體進(jìn)行組合,產(chǎn)生新一代的候選解群,重復(fù)此過程,直到滿足某種收斂指標(biāo)為止。ga的組成:(1)編碼(產(chǎn)生初始種群) (2)適應(yīng)度函數(shù) (3)遺傳算子(選擇、交叉、變異) (4)運(yùn)行參數(shù) 編碼 基因在一定能夠意義上包含了它所代表的問題的解。基因的編碼方式有很多,這也取決于要解決的問題本身。常見的編碼方式有: (1)二進(jìn)制編碼,基因用0或1表示(常用于解決01背包問題)如:基因a:00100011010(代表一個(gè)個(gè)體的染色體)(2)互換編碼(用于解決排序問題,如旅行商問題和調(diào)度問題) 如旅行商問題中,一串基因編碼用來表示遍歷的城市順序,如:234517986,表示九個(gè)城市中,先經(jīng)過城市2,再經(jīng)過城市3,依此類推。 (3)樹形編碼(用于遺傳規(guī)劃中的演化編程或者表示) 如,問題:給定了很多組輸入和輸出。請你為這些輸入輸出選擇一個(gè)函數(shù),使得這個(gè)函數(shù)把每個(gè)輸入盡可能近地映射為輸出。 編碼方法:基因就是樹形結(jié)構(gòu)中的一些函數(shù)。 (4)值編碼(二進(jìn)制編碼不好用時(shí),解決復(fù)雜的數(shù)值問題) 在值編碼中,每個(gè)基因就是一串取值。這些取值可以是與問題有關(guān)任何值:整數(shù),實(shí)數(shù),字符或者其他一些更復(fù)雜的東西。 適應(yīng)度函數(shù) 遺傳算法對一個(gè)個(gè)體(解)的好壞用適應(yīng)度函數(shù)值來評價(jià),適應(yīng)度函數(shù)值越大,解的質(zhì)量越好。適應(yīng)度函數(shù)是遺傳算法進(jìn)化過程的驅(qū)動力,也是進(jìn)行自然選擇的唯一標(biāo)準(zhǔn),它的設(shè)計(jì)應(yīng)結(jié)合求解問題本身的要求而定。 如tsp問題,遍歷各城市路徑之和越小越好,這樣可以用可能的最大路徑長度減去實(shí)際經(jīng)過的路徑長度,作為該問題的適應(yīng)度函數(shù)。 遺傳算子——選擇 遺傳算法使用選擇運(yùn)算來實(shí)現(xiàn)對群體中的個(gè)體進(jìn)行優(yōu)勝劣汰操作:適應(yīng)度高的個(gè)體被遺傳到下一代群體中的概率大;適應(yīng)度低的個(gè)體,被遺傳到下一代群體中的概率小。選擇操作的任務(wù)就是按某種方法從父代群體中選取一些個(gè)體,遺傳到下一代群體。sga(基本遺傳算法)中采用輪盤賭選擇方法。 輪盤賭選擇又稱比例選擇算子,基本思想:各個(gè)個(gè)體被選中的概率與其適應(yīng)度函數(shù)值大小成正比。設(shè)群體大小為n,個(gè)體i 的適應(yīng)度為 fi,則個(gè)體i 被選中遺傳到下一代群體的概率為: 遺傳算子——交叉 所謂交叉運(yùn)算,是指對兩個(gè)相互配對的染色體依據(jù)交叉概率按某種方式相互交換其部分基因,從而形成兩個(gè)新的個(gè)體。交叉運(yùn)算在ga中起關(guān)鍵作用,是產(chǎn)生新個(gè)體的主要方法。1.單交叉點(diǎn)法(用于二進(jìn)制編碼) 選擇一個(gè)交叉點(diǎn),子代在交叉點(diǎn)前面的基因從一個(gè)父代基因那里得到,后面的部分從另外一個(gè)父代基因那里得到。 如:交叉前: 00000|***00 11100|***01 交叉后: 00000|***01 11100|***00 2.雙交叉點(diǎn)法(用于二進(jìn)制編碼) 選擇兩個(gè)交叉點(diǎn),子代基因在兩個(gè)交叉點(diǎn)間部分來自一個(gè)父代基因,其余部分來自于另外一個(gè)父代基因.如:交叉前: 01 |0010| 11 11 |0111| 01 交叉后: 11 |0010| 01 01 |0111| 11 3.基于“ 與/或 ”交叉法(用于二進(jìn)制編碼)對父代按位與”邏輯運(yùn)算產(chǎn)生一子代a;按位”或”邏輯運(yùn)算產(chǎn)生另一子代b。該交叉策略在解背包問題中效果較好.如:交叉前: 01001011 11011101 交叉后: 01001001 11011111 4.單交叉點(diǎn)法(用于互換編碼) 選擇一個(gè)交叉點(diǎn),子代的從初始位置出發(fā)的部分從一個(gè)基因復(fù)制,然后在另一個(gè)基因中掃描,如果某個(gè)位點(diǎn)在子代中沒有,就把它添加進(jìn)去。如:交叉前: 87213 | 09546 98356 | 71420 交叉后: 87213 | 95640 98356 | 72104 5.部分匹配交叉(pmx)法(用于互換編碼)先隨機(jī)產(chǎn)生兩個(gè)交叉點(diǎn),定義這兩點(diǎn)間的區(qū)域?yàn)槠ヅ鋮^(qū)域,并用交換兩個(gè)父代的匹配區(qū)域。 父代a:872 | 130 | 9546 父代b:983 | 567 | 1420 變?yōu)椋? temp a: 872 | 567 | 9546 temp b: 983 | 130 | 1420 對于 temp a、temp b中匹配區(qū)域以外出現(xiàn)的數(shù)碼重復(fù),要依據(jù)匹配區(qū)域內(nèi)的位置逐一進(jìn)行替換。匹配關(guān)系:1<——>5 3<——>6 7<——>0 子代a:802 | 567 | 9143 子代b:986 | 130 | 5427 6.順序交叉法(ox)(用于互換編碼) 從父代a隨機(jī)選一個(gè)編碼子串,放到子代a的對應(yīng)位置;子代a空余的位置從父代b中按b的順序選?。ㄅc己有編碼不重復(fù))。同理可得子代b。父代a: 872 | 139 | 0546 父代b: 983 | 567 | 1420 交叉后: 子代a: 856 | 139 | 7420 子代b: 821 | 567 | 3904 7.循環(huán)交叉(cx)法(用于互換編碼)cx同ox交叉都是從一個(gè)親代中取一些城市,而其它城市來自另外一個(gè)親代,但是二者不同之處在于:ox中來自第一個(gè)親代的編碼子串是隨機(jī)產(chǎn)生的,而cx卻不是,它是根據(jù)兩個(gè)雙親相應(yīng)位置的編碼而確定的。 父代a:1 2 3 4 5 6 7 8 9 | | | | | 父代a:5 4 6 9 2 3 7 8 1 可得循環(huán)基因:1->5->2->4->9->1 用循環(huán)的基因構(gòu)成子代a,順序與父代a一樣 1 2 4 5 9 用父代b剩余的基因填滿子代a: 1 2 6 4 5 3 7 8 9 子代b的編碼同理。(循環(huán)基因 5->1->9->4->2->5) 遺傳算子——變異 變異是指依據(jù)變異概率將個(gè)體編碼串中的某些基因值用其它基因值來替換,從而形成一個(gè)新的個(gè)體。ga中的變異運(yùn)算是產(chǎn)生新個(gè)體的輔助方法,它決定了ga的局部搜索能力,同時(shí)保持種群的多樣性。交叉運(yùn)算和變異運(yùn)算的相互配合,共同完成對搜索空間的全局搜索和局部搜索。 注:變異概率pm不能太小,這樣降低全局搜索能力;也不能太大,pm > 0.5,這時(shí)ga退化為隨機(jī)搜索。篇三:計(jì)算智能學(xué)習(xí)心得體會 計(jì)算智能學(xué)習(xí)心得體會 本學(xué)期我們水利水電專業(yè)開了“計(jì)算智能概論”這門課,有我們學(xué)院的金菊良教授給我們授課,據(jù)說這門課相當(dāng)難理解,我們課下做了充分的準(zhǔn)備,借了計(jì)算智能和人工智能相關(guān)方面的書籍,并提前了解了一點(diǎn)相關(guān)知識,我感覺看著有點(diǎn)先進(jìn),給我們以往學(xué)的課程有很大區(qū)別,是一種全新的概念和理論,里面的遺傳算法、模糊集理論、神經(jīng)網(wǎng)絡(luò)更是聞所未聞,由于課前讀了一些書籍,我以為課堂上應(yīng)該能容易理解一點(diǎn),想不到課堂上聽著還是相當(dāng)玄奧,遺傳算法還好一點(diǎn),因?yàn)楦咧袑W(xué)過生物遺傳,遺傳算法還能理解一點(diǎn)。像模糊集理論神經(jīng)網(wǎng)絡(luò)便不知所云了。雖然金老師講課生動形象,幽默風(fēng)趣,而且舉了好多實(shí)際的例子,但有一些理論有點(diǎn)偏難。 多關(guān)于ci的解釋。 雖然有好多計(jì)算智能理論還不太清楚,但是我對新知識還是相當(dāng)渴望的,因?yàn)槲冶旧肀容^愛學(xué)習(xí),且喜歡讀書。我感覺學(xué)到了許多知識:計(jì)算智能是一門經(jīng)驗(yàn)科學(xué),它研究自然的或人工的智能行為形成之原理以“推理即計(jì)算”為基本假設(shè),開發(fā)某種理論、說明某項(xiàng)智能可以算法化,從而可以用機(jī)器模擬和實(shí)現(xiàn);尋求和接受自然智能之啟迪,但不企圖完全仿制人類智能,其中心工程目標(biāo)是研究設(shè)計(jì)和建立智能計(jì)算系統(tǒng)的方法。 由于我們只有16課時(shí),所以我們學(xué)的面并不廣,金老師主要教了一些計(jì)算智能方面的經(jīng)典理論,我們所學(xué)的計(jì)算智能所涉及的領(lǐng)域主要包括以下三方面:遺傳算法、人工神經(jīng)網(wǎng)絡(luò)方法和模糊集理論。 遺傳算法最早由美國michigan大學(xué)john h.holland教授提出,按照生物進(jìn)化過程中的自然選擇(selection)、父代雜交(crossover)和子代變異(mutation)的自然進(jìn)化(natural evolution)方式,編制的計(jì)算機(jī)程序,能夠解決許多復(fù)雜的優(yōu)化問題,這類新的優(yōu)化方法稱之為遺傳算法(genetic algorithm,ga)[7]。ga模擬生物進(jìn)化過程中的主要特征有:(1)生物個(gè)體的染色體(chromosomes)的結(jié)構(gòu)特征,即基因碼序列(series of genetic code)決定了該個(gè)體對其生存環(huán)境的適應(yīng)能力。(2)自然選擇在生物群體(population)進(jìn)化過程中起著主導(dǎo)作用,它決定了群體中那些適應(yīng)能力(adaptability)強(qiáng)的個(gè)體能夠生存下來并傳宗接代,體現(xiàn)了“優(yōu)勝劣汰”的進(jìn)化規(guī)律。(3)個(gè)體繁殖(雜交)是通過父代個(gè)體間交換基因材料來實(shí)現(xiàn)的,生成的子代個(gè)體的染色體特征可能與父代的相似,也可能與父代的有顯著差異,從而有可能改變個(gè)體適應(yīng)環(huán)境的能力。 (4)變異使子代個(gè)體的染色體有別于其父代個(gè)體的染色體,從而也改變了子代個(gè)體對其環(huán)境的適應(yīng)能力。(5)生物的進(jìn)化過程,從微觀上看是生物個(gè)體的染色體特征不斷改善的過程,從宏觀上看則是生物個(gè)體的適應(yīng)能力不斷提高的過程。作為利用自然選擇和群體遺傳機(jī)制進(jìn)行高維非線性空間尋優(yōu)的一類通用方法,遺傳算法(ga)不一定能尋得最優(yōu)(optimal)點(diǎn),但是它可以找到更優(yōu)(superior)點(diǎn),這種思路與人類行為中成功的標(biāo)志是相似的。例如不必要求某個(gè)圍棋高手是最優(yōu)的,要戰(zhàn)勝對手只需他(她)比其對手更強(qiáng)即可。因此,ga可能會暫時(shí)停留在某些非最優(yōu)點(diǎn)上,直到變異發(fā)生使它遷移到另一更優(yōu)點(diǎn)上。遺傳算法隨編碼 方式、遺傳操作算子的不同而表現(xiàn)為不同形式,因此難以象傳統(tǒng)的共軛梯度法那樣從形式上給以明確定義,它的識別標(biāo)志在于它是否具有模擬生物的自然選擇和群體遺傳機(jī)理這一內(nèi)在特征。目前國內(nèi)外普遍應(yīng)用的實(shí)施方案是標(biāo)準(zhǔn)遺傳算法(simple genetic algorithm,sga)。bp神經(jīng)網(wǎng)絡(luò) bp神經(jīng)網(wǎng)絡(luò)是用反向傳播學(xué)習(xí)算法(back-propagation algorithm,bp算法)訓(xùn)練的一種多層前饋型非線性映射網(wǎng)絡(luò),網(wǎng)絡(luò)中各神經(jīng)元接受前一級的輸入,并輸出到下一級,網(wǎng)絡(luò)中沒有反饋聯(lián)接。bp神經(jīng)網(wǎng)絡(luò)通常可以分為不同的層(級),第j層的輸入僅與第j–1層的輸出聯(lián)接。由于輸入層節(jié)點(diǎn)和輸出層節(jié)點(diǎn)可與外界相連,直接接受環(huán)境的影響,所以稱為可見層,而其它中間層則稱為隱層(hidden layer)。決定一個(gè)bp神經(jīng)網(wǎng)絡(luò)性質(zhì)的要素有三個(gè):網(wǎng)絡(luò)結(jié)構(gòu)、神經(jīng)元作用函數(shù)和學(xué)習(xí)算法,對這三個(gè)要素的研究構(gòu)成了豐富多彩的內(nèi)容,尤其是后者被研究得最多。bp算法是目前應(yīng)用最為廣泛且較成功的一種算法,它解決了多層前饋網(wǎng)絡(luò)的學(xué)習(xí)問題,從而使該網(wǎng)絡(luò)在各方面獲得了廣泛應(yīng)用。它利用梯度搜索技術(shù)(gradient search technique)使代價(jià)函數(shù)(cost function)最小化。bp算法把一組樣本的輸入輸出問題歸納為一非線性優(yōu)化問題,它使用了最優(yōu)化方法中最常用的負(fù)梯度下降算法。用迭代運(yùn)算求解網(wǎng)絡(luò)權(quán)重和閾值對應(yīng)于網(wǎng)絡(luò)的學(xué)習(xí)記憶過程,加入隱層節(jié)點(diǎn)使得優(yōu)化問題的可調(diào)參數(shù)增加,從而可得到更精確的解。 模糊集理論 模糊集理論(又稱模糊數(shù)學(xué),fuzzy mathematics)就是應(yīng)用模糊集這一模擬人腦模糊思維的數(shù)學(xué)工具,來描述、分析、識別、分類、判斷、推理、決策和控制各種模糊事物所形成的一門現(xiàn)代應(yīng)用數(shù)學(xué)分支學(xué)科。經(jīng)典數(shù)學(xué)僅考慮現(xiàn)實(shí)世界的數(shù)量而拋棄現(xiàn)實(shí)世界的質(zhì)量,而模糊集理論則反映了現(xiàn)實(shí)世界數(shù)量與質(zhì)量的統(tǒng)一性,是對經(jīng)典數(shù)學(xué)的一種補(bǔ)充和完善。定義模糊集、模糊關(guān)系的不同運(yùn)算(目前主要是代數(shù)運(yùn)算),就可得到相應(yīng)的不同模糊數(shù)學(xué)方法。目前已研究成熟并廣為應(yīng)用的模糊數(shù)學(xué)方法主要有模糊模式識別、模糊聚類分析、模糊綜合評價(jià)、模糊推理、模糊控制等方法。在現(xiàn)代科學(xué)技術(shù)體系中定性因素和主觀因素定量化處理的方法至今仍很少,而模糊數(shù)學(xué)方法正是其中的典型代表,目前已在各科學(xué)和工程領(lǐng)域得到了廣泛的成功應(yīng)用,其主要原因在于它異于其它方法的一些顯著特點(diǎn):(1)模糊集的引入改善了二值邏輯中硬性的分類方法,是普通集合的推廣,使模糊數(shù)學(xué)方法更加接近于廣泛存在模糊性和不精確性的現(xiàn)實(shí)世界,也更加接近于人類思維方式。這些真實(shí)性使得模糊數(shù)學(xué)方法能很好地平衡系統(tǒng)的復(fù)雜性與描述系統(tǒng)的精確性,也有助于模糊數(shù)學(xué)方法充分提取各種專家經(jīng)驗(yàn)信息和其它人類語言信息。(2)當(dāng)系統(tǒng)為多輸入多輸出、強(qiáng)非線性、定性信息與定量信息混雜的動態(tài)系統(tǒng)時(shí),系統(tǒng)的數(shù)學(xué)模型非常復(fù)雜或根本就不存在確定性數(shù)學(xué)模型,常規(guī)方法難以或不能有效處理這樣的復(fù)雜系統(tǒng),而模糊數(shù)學(xué)方法可以用建立在語言型經(jīng)驗(yàn)之上的模糊集及其運(yùn)算就可以簡便有效地處理,有時(shí)甚至不需要輔以確定的數(shù)學(xué)模型。(3)模糊數(shù)學(xué)方法可以直接利用人類語言型概念及其運(yùn)算,篇四:遺傳算法總結(jié) 遺傳算法總結(jié) 遺傳算法是借鑒生物的自然選擇和遺傳進(jìn)化機(jī)制而開發(fā)出的一種全局自適應(yīng)概率搜索算法。 一、遺傳算法流程圖 圖1 遺傳算法流程圖 二、遺傳算法的原理和方法 1)染色體編碼 把一個(gè)問題的可行解從其解空間轉(zhuǎn)換到遺傳算法所能處理的搜索空間的轉(zhuǎn)換方法就稱為編碼。de jong曾提出了兩條操作性較強(qiáng)的實(shí)用編碼原則:編碼原則一:應(yīng)使用能易于產(chǎn)生與所求問題相關(guān)的且具有低階、短定義長度模式的編碼方案;編碼原則二:應(yīng)使用能使問題得到自然表示或描述的具有最小編碼字符集的編碼方案。 編碼方法主要有以下幾種:二進(jìn)制編碼方法、格雷碼編碼方法、浮點(diǎn)數(shù)編碼方法、符號編碼方法、參數(shù)級聯(lián)編碼方法、多參數(shù)交叉編碼方法。2)適應(yīng)值計(jì)算 由解空間中某一點(diǎn)的目標(biāo)函數(shù)值f(x)到搜索空間中對應(yīng)個(gè)體的適應(yīng)度函數(shù)值 fit(f(x))的轉(zhuǎn)換方法基本上有一下三種: a. 直接以待解的目標(biāo)函數(shù)值f(x)轉(zhuǎn)化為適應(yīng)度函數(shù)值fit(f(x)),令 ?f(x)目標(biāo)函數(shù)為最大化函數(shù) fit(fx())= ? ??f(x)目標(biāo)函數(shù)為最小化函數(shù) ?cmax?f(x)f(x)?cmax b. 對于最小值的問題,做下列轉(zhuǎn)化fit(f(x))??,其中cmax是 0 其他? f(x)的最大輸入值。 c. 若目標(biāo)函數(shù)為最小值問題,fit(f(x))? 1 , c?0, c?f(x)?0 1?c?f(x)1 , c?0, c?f(x)?0 1?c?f(x)若目標(biāo)函數(shù)為最大值問題,fit(f(x))?3)選擇、交叉、變異 遺傳算法使用選擇算子來對群體中的個(gè)體進(jìn)行優(yōu)勝劣汰操作:根據(jù)每個(gè)個(gè)體的適應(yīng)度值大小選擇。適應(yīng)度較高的個(gè)體被遺傳到下一代群體中的概率較大;適應(yīng)度較低的個(gè)體的被遺傳到下一代群體中的概率較小。其中選擇的方法有:輪盤賭選擇、隨機(jī)競爭選擇、最佳保留選擇、無回放隨機(jī)選擇、確定式選擇等。 遺傳算法中的所謂交叉運(yùn)算,是指對兩個(gè)相互配對的染色體按某種方式相互交換其部分基因,從而形成兩個(gè)新的個(gè)體。交叉操作主要有單點(diǎn)交叉、兩點(diǎn)交叉與多點(diǎn)交叉、均勻交叉和算數(shù)交叉四種。 遺傳算法中的變異運(yùn)算,是指將個(gè)體染色體編碼串中的某些基因座上的基因值用該基因座的其他基因來替換,從而形成一個(gè)新的個(gè)體。主要有基本位變異、均勻變異、邊界變異等幾種變異操作方法。4)控制參數(shù)選擇 交叉概率pcpm 三、算例 min f(x1,x2)?(x1?3)2?(x2?2)2 2 ?g1(x1,x2)?x12?x2?5? s.t.?h1(x1,x2)?x1?2x2?4?0?x,x?10,x?n 121?(1)1)三種不同的遺傳方法 方法一:原模型中x1、x2均為決策變量,操作如下。a.采用混合整數(shù)編碼,對x1進(jìn)行十進(jìn)制編碼,x2進(jìn)行二進(jìn)制編碼; b.適應(yīng)度函數(shù)值采用fit(f(x1,x2))? 1 計(jì)算,其中 c?f(x1,x2)c???max{0,g1(x1,x2)?5}???max{0,|h1(x1,x2)?4|},?=?=10000; c.采用賭輪盤選擇、單點(diǎn)交叉和基本位變異; d.pc=0.8,pm=0.1,遺傳代數(shù)為200,種群中個(gè)體數(shù)100; e.終止條件為連續(xù)十次最優(yōu)個(gè)體保持不變或遺傳代數(shù)到達(dá)200。方法二:已知等式約束h1(x1,x2),可得x2?(4?x1)/2,則原問題可化為 min f(x1)?(x1?3)2?((4?x1)?2)22(2)4?x12?2 g(x)?x?()?5111? 2?s..t?0?x1?10,x1?n?4?x1?0??10 2? x min f(x1)?(x1?3)2?(1)2 2 即等式約束簡化后的模型為 4?x12?2 g(x)?x?()?5?1 s..t?112??0?x1?4,x1?n 其中a~b的操作如下,而c~e的操作同方法一。a.對x1進(jìn)行十進(jìn)制編碼; b.適應(yīng)度函數(shù)值采用fit(f(x1,x2))?(3)1 計(jì)算,其中 c?f(x1,x2)c???max{0,g1(x1,x2)?5},?=10000 方法三:在方法二的基礎(chǔ)上,改變x1的編碼方法,對x1進(jìn)行二進(jìn)制編碼。由于0?x1?4,且為自然數(shù),則二進(jìn)制編碼至少為3位,但3位的二進(jìn)制可以表示0~7的整數(shù),所以存在冗余編碼。則通過懲罰來排除冗余編碼,即適應(yīng)度函數(shù)值采用 fit(f(x1,x2))? 1 計(jì)算。c?f(x1,x2)其中c???max{0,g1(x1,x2)?5}???max{0,x1(i)?4},?=10000。x1(i)表示個(gè)體解碼后的x1。 2)三種方法的計(jì)算結(jié)果 方法一可得到三個(gè)不同的解: 解1:x1?2,x2?1, fit(f(x1,x2))?0.4646, f(x)?2.0000,適應(yīng)度趨勢圖如下: 圖2 方法一解1的適應(yīng)度趨勢圖 解2:x1?0,x2?2, fit(f(x1,x2))?0.1075, f(x)?9.0000,適應(yīng)度趨勢圖如下: 篇五:遺傳算法學(xué)習(xí)作業(yè) 遺傳算法學(xué)習(xí)總結(jié) 1.1 概述 遺傳算法是一類借鑒生物界的進(jìn)化規(guī)律(適者生存,優(yōu)勝劣汰遺傳機(jī)制)演化而來的自適應(yīng)概率性隨機(jī)化迭代搜索算法。1962年霍蘭德(holland)教授首次提出了ga算法的思想,它的基本思想是基于darwin進(jìn)化論和mendel的遺傳演說。darwin進(jìn)化論最重要的是適者生存的原理,它認(rèn)為每一代種群總是向著前進(jìn)方向發(fā)展,越來越適應(yīng)環(huán)境。每一個(gè)個(gè)體都有繼承前代的特性,但不是完全繼承,會產(chǎn)生一些新特性。最終只有適應(yīng)環(huán)境的特征才能被保留下來。mendel遺傳學(xué)說最重要的是基因遺傳原理,它認(rèn)為遺傳以密碼方式存在細(xì)胞中,并以基因形式包含在染色體內(nèi)。一條染色體中存在很多基因,每個(gè)基因有自己的位置并控制著外部特征;基因的產(chǎn)生和變異直接影響到個(gè)體的特性是否能適應(yīng)環(huán)境。經(jīng)過存優(yōu)去劣的自然淘汰,適應(yīng)性高的基因結(jié)構(gòu)得以保存下來。 遺傳算法正是借用了仿真生物遺傳學(xué)和自然選擇機(jī)理,通過自然選擇、遺傳、變異等作用機(jī)制,實(shí)現(xiàn)各個(gè)個(gè)體的適應(yīng)性的提高。 與自然界相似,遺傳算法對求解問題的本身一無所知,從代表問題可能潛在解集的一個(gè)種群(population)開始,每一個(gè)種群則由經(jīng)過基因(gene)編碼(coding)的一定數(shù)目的個(gè)體(individual)構(gòu)成。每個(gè)個(gè)體實(shí)際上是染色體(chromosome)帶有特征的實(shí)體。把問題的解表示成染色體,并基于適應(yīng)值來選擇染色體,遺傳算法所需要的僅是對算法所產(chǎn)生的每個(gè)染色體進(jìn)行評價(jià),使適應(yīng)性好的染色體有更多的繁殖機(jī)會。在算法中也就是以二進(jìn)制編碼的串。并且,在執(zhí)行遺傳算法之前,給出一群染色體,也就是假設(shè)解。然后,把這些假設(shè)解置于問題的“環(huán)境”中,也即在一個(gè)適應(yīng)度函數(shù)中來評價(jià)。并按適者生存的原則,從中選擇出較適應(yīng)環(huán)境的染色體進(jìn)行復(fù)制,淘汰低適應(yīng)度的個(gè)體,再通過交叉,變異過程產(chǎn)生更適應(yīng)環(huán)境的新一代染色體群。對這個(gè)新種群進(jìn)行下一輪進(jìn)化,直到最適合環(huán)境的值。1.2遺傳算法的基本原理和特點(diǎn) 1.2.1 算法原理 在遺傳算法中,通過隨機(jī)方式產(chǎn)生若干個(gè)所求解問題的數(shù)字編碼,即染色體,形成初始種群;通過適應(yīng)度函數(shù)給每個(gè)個(gè)體一個(gè)數(shù)值評價(jià),淘汰低適應(yīng)度的個(gè)體,選擇高適應(yīng)度的個(gè)體參加遺傳操作,經(jīng)過遺傳操作后的個(gè)體集合形成下一代新的種群,再對這個(gè)新種群進(jìn)行下一輪進(jìn)化,這就是遺傳算法的基本原理。 遺傳算法的主要步驟如下: 1)隨機(jī)產(chǎn)生一個(gè)由確定長度的特征串組成的初始群體; 2)對串群體迭代地執(zhí)行步驟(1)和(2),直到滿足停止準(zhǔn)則:(1)計(jì)算群體中每個(gè)個(gè)體的適應(yīng)值。(2)應(yīng)用復(fù)制、雜交和變異算子產(chǎn)生下一代群體。3)把在任一代中出現(xiàn)的最好的個(gè)體串指定為遺傳算法的執(zhí)行結(jié)果。這個(gè)結(jié)果可以表示問題的一個(gè)解(或近似解)。基本遺傳算法的流程圖如圖 1-1,其中g(shù)en是當(dāng)前代數(shù),m為每代種群中最大個(gè)體數(shù)。 圖1-1 基本遺傳算法的流程圖 1.2.2 算法特點(diǎn) 遺傳算法的特點(diǎn)如下: 1)遺傳算法中不包含待解決問題所持有的形態(tài)。它是從改變基因的配置來實(shí)現(xiàn)問題的整體優(yōu)化的,因而屬于自下而上的優(yōu)化方法; 2)類似于生物的進(jìn)化過程,遺傳算法處理的是變量集合的編碼而非變量本身。它直接 對結(jié)構(gòu)對象進(jìn)行操作,不存在求導(dǎo)和函數(shù)連續(xù)性的限定; 3)遺傳算法具有內(nèi)在的隱并行性和更好的全局尋優(yōu)能力; 4)遺傳算法采用概率化的尋優(yōu)方法,能自動獲取和指導(dǎo)優(yōu)化的搜索空間,自適應(yīng)地調(diào)整搜索方向,不需要確定的規(guī)則。 遺傳算法的這些特點(diǎn)已被人們廣泛地應(yīng)用于組合優(yōu)化、機(jī)器學(xué)習(xí)、信號處理、自適應(yīng)控制和人工生命等領(lǐng)域。它是現(xiàn)代有關(guān)智能計(jì)算中的關(guān)鍵技術(shù)之一。1.3 基本遺傳算法的步驟 1.3.1 染色體編碼(chromosome coding)與解碼(decode)基本遺傳算法使用固定長度的二進(jìn)制符號串來表示群體中的個(gè)體,其等位基因由二值{0,1}所組成。初始群體中各個(gè)個(gè)體的基因可用均勻分布的隨機(jī)數(shù)來生成。例如:x=***101就可表示一個(gè)個(gè)體,該個(gè)體的染色體長度是n=18。(1)編碼:變量x作為實(shí)數(shù),可以視為遺傳算法的表現(xiàn)型形式。從表現(xiàn)型到基因型的映射稱為編碼。設(shè)某一參數(shù)的取值范圍為[u1,u2],我們用長度為k的二進(jìn)制編碼符號來表示該參數(shù),則它總共產(chǎn)生2k種不同的編碼,可使參數(shù)編碼時(shí)的對應(yīng)關(guān)系為: 000000?0000=0→u1 000000?0001=1→u1+? 000000?0010=2→u1+2? ? 111111?1111=2k-1→u2 u?u其中,?=2 k1。2?1(2)解碼:假設(shè)某一個(gè)體的編碼為bkbk-1bk-2?b2b1,則對應(yīng)的解碼公式為 x?u1?(?bi?2i?1)? i?1ku2?u1 ① k2?1 例如:設(shè)有參數(shù)x∈[2,4],現(xiàn)用5位二進(jìn)制編碼對x進(jìn)行編碼,得25=32個(gè)二進(jìn)制串(染色體): 00000,00001,00010,00011,00100,00101,00110,00111 01000,01001,01010,01011,01100,01101,01110,01111 10000,10001,10010,10011,10100,10101,10110,10111 11000,11001,11010,11011,11100,11101,11110,11111 對于任一個(gè)二進(jìn)制串,只要代入公式①,就可得到相應(yīng)的解碼,如x22=10101,它對應(yīng)的十進(jìn)制為?bi?2i?1=1+0*2+1*22+0*23+1*24=21,則對應(yīng)參數(shù) i?15 x的值為2+21*(4-2)/(25-1)=3.3548。1.3.2 個(gè)體適應(yīng)度的檢測評估 基本遺傳算法按與個(gè)體適應(yīng)度成正比的概率來決定當(dāng)前群體中各個(gè)個(gè)體遺傳到下一代群體中的機(jī)會多少。為了正確估計(jì)這個(gè)概率,要求所有個(gè)體的適應(yīng)度 必須為非負(fù)數(shù)。所以,根據(jù)不同種類的問題,需要預(yù)先確定好由目標(biāo)函數(shù)值到個(gè)體適應(yīng)度之間的轉(zhuǎn)換規(guī)律,特別是要預(yù)先確定好當(dāng)目標(biāo)函數(shù)值為負(fù)數(shù)時(shí)的處理方法。例如,可選取一個(gè)適當(dāng)大的正數(shù)c,使個(gè)體的適應(yīng)度為目標(biāo)函數(shù)值加上正數(shù)c。1.3.3 遺傳算子 基本遺傳算法使用下列三種遺傳算子: (1)選擇運(yùn)算使用比例選擇算子。比例選擇因子是利用比例于各個(gè)個(gè)體適應(yīng)度的概率決定其子孫的遺傳可能性。若設(shè)種群數(shù)為m,個(gè)體i的適應(yīng)度為fi,則個(gè)體i被選取的概率為 pi?fi/?fk k?1m 當(dāng)個(gè)體選擇的概率給定后,產(chǎn)生[0,1]之間的均勻隨機(jī)數(shù)來決定哪個(gè)個(gè)體參加交配。若個(gè)體的選擇概率大,則能被多次選中,它的遺傳基因就會在種群中擴(kuò)大;若個(gè)體的選擇概率小,則被淘汰。 我們經(jīng)常采用的是輪盤賭的原理,個(gè)體的選擇概率是基于它們的性能進(jìn)行的一些計(jì)算。實(shí)值范圍——總和是所有個(gè)體期望的選擇概率的總和或當(dāng)前種群中所有個(gè)體原始適應(yīng)度值的總和。個(gè)體采用一對一方式 映像到范圍[0,sum]的一連續(xù)區(qū)間,每一個(gè)體區(qū)間的 大小與對應(yīng)個(gè)體的適應(yīng)度值相匹配。如圖1所示,輪 盤賭輪的周長是6個(gè)個(gè)體適應(yīng)度值的總和,個(gè)體5 是最大適應(yīng)度個(gè)體,它占有最大的區(qū)間。選擇一個(gè)個(gè) 體,用在[0,sum]間產(chǎn)生隨機(jī)數(shù),看此隨機(jī)數(shù)在哪個(gè) 個(gè)體的區(qū)間上,則此個(gè)體被選中。重復(fù)此過程,直到 所需數(shù)量個(gè)體被選中為止。 (2)交叉運(yùn)算使用單點(diǎn)交叉算子。只有一個(gè)交叉點(diǎn)位置,任意挑選經(jīng)過選擇操作后種群中兩個(gè)個(gè)體作為交叉對象,隨機(jī)產(chǎn)生一個(gè)交叉點(diǎn)位置,兩個(gè)個(gè)體在交叉點(diǎn)位置互換部分基因碼,形成兩個(gè)子個(gè)體,如圖2所示。 父個(gè)體1 父個(gè)體2 110 11 011 00 單點(diǎn)交叉 子個(gè)體1 子個(gè)體2 圖2 單點(diǎn)交叉示意圖 (3)變異運(yùn)算使用基本位變異算子或均勻變異算子。為了避免問題 過早收斂,對于二進(jìn)制的基因碼組成的個(gè)體種群,實(shí)現(xiàn)基因碼的小概率翻轉(zhuǎn),即0變?yōu)?,而1變?yōu)?,如圖3所示。 變異 圖3 變異操作示意圖 1.3.4 基本遺傳算法的運(yùn)行參數(shù) 基本遺傳算法有下列4個(gè)運(yùn)行參數(shù)需要預(yù)先設(shè)定,即m,t,pc,pm。m為群體大小,即群體中所含個(gè)體的數(shù)量,一般取為20~100; t為遺傳算法的終止進(jìn)化代數(shù),一般取為100~500; pc為交叉概率,一般取為0.4~0.99;pm為變異概率,一般取為0.0001~0.1。1.4遺傳算法的應(yīng)用 進(jìn)入90年代后,遺傳算法迎來了興盛發(fā)展時(shí)期,無論是理論研究還是應(yīng)用研究都成了十分熱門的課題。尤其是遺傳算法的應(yīng)用研究顯得格外活躍,不但它的應(yīng)用領(lǐng)域擴(kuò)大,而且利用遺傳進(jìn)行優(yōu)化和規(guī)則學(xué)習(xí)的能力也顯著提高,同時(shí)產(chǎn)業(yè)應(yīng)用方面的研究也在摸索之中。 遺傳算法提供了一種求解復(fù)雜系統(tǒng)問題的通用框架,它不依賴于問題的具體領(lǐng)域,對問題的種類有很強(qiáng)的魯棒性,所以廣泛應(yīng)用于很多學(xué)科。如工程結(jié)構(gòu)優(yōu)化、計(jì)算數(shù)學(xué)、制造系統(tǒng)、航空航天、交通、計(jì)算機(jī)科學(xué)、通信、電子學(xué)、材料科學(xué)等。1)ga在數(shù)值優(yōu)化上的應(yīng)用 最優(yōu)化問題是遺傳算法經(jīng)典應(yīng)用領(lǐng)域,但采用常規(guī)方法對于大規(guī)模、多峰態(tài)函數(shù)、含離散變量等問題的有效解決往往存在許多障礙。對全局變化問題,目前存在確定性和非確定性兩類方法。前者以brianin的下降軌線法、levy的隧道法和r.ge的填充函數(shù)為代表。該類方法雖然收斂快、計(jì)算效率高,但算法復(fù)雜,求得全局極值的概率不大。遺傳算法作為現(xiàn)代最優(yōu)化的手段,實(shí)踐證明,它應(yīng)用于大規(guī)模、多峰多態(tài)函數(shù)、含離散變量等情況下的全局優(yōu)化問題是合適的,在求解速度和質(zhì)量上遠(yuǎn)遠(yuǎn)超過常規(guī)方法。2)ga 在組合優(yōu)化中的應(yīng)用 3)遺傳算法在機(jī)器學(xué)習(xí)中的應(yīng)用 機(jī)器學(xué)習(xí)系統(tǒng)實(shí)際上是對人的學(xué)習(xí)機(jī)制的一種抽象和模擬,是一種理想的學(xué)習(xí)模型?;诜枌W(xué)習(xí)的機(jī)器學(xué)習(xí)系統(tǒng)如監(jiān)督型學(xué)習(xí)系統(tǒng)、條件反射學(xué)習(xí)系統(tǒng)、類比式學(xué)習(xí)系統(tǒng)、推理學(xué)習(xí)系統(tǒng)等,只具備一些較初級的學(xué)習(xí)能力。近年來,由于遺傳算法的發(fā)展,基于進(jìn)化機(jī)制遺傳學(xué)習(xí)成為一種新的機(jī)器學(xué)習(xí)方法,它將知識表達(dá)為另一種符號形式—遺傳基因型,通過模擬生物的進(jìn)化過程,實(shí)現(xiàn)專門領(lǐng)域知識的合理增長型學(xué)習(xí)。4)遺傳算法在并行處理中的應(yīng)用 遺傳算法固有的并行性和大規(guī)模并行機(jī)的快速發(fā)展,促使許多研究者開始研究遺傳算法的并行化問題,研究數(shù)量更加接近自然界的軟件群體將成為可能。遺傳算法與并行計(jì)算的結(jié)合,能把并行機(jī)的高速性和遺傳算法固有的并行性兩者的長處彼此結(jié)合起來,從而也促進(jìn)了并行遺傳算法的研究與發(fā)展。 司法體制改革動向及問題研究講座報(bào)告 學(xué)號:2014120007 姓名:趙金銘 夏明權(quán)教授結(jié)合自身多年的從業(yè)經(jīng)驗(yàn)對于我國司法體制改革動向及問題就八個(gè)方面給我們進(jìn)行了深入講解,我感到受益頗深。 首先,第一方面,夏明權(quán)教授就我國司法改革恢復(fù)法院的審判工作后的進(jìn)程所遇到的問題作為開篇,讓我們了解到了在司法改革的過程中我國司法體制不斷進(jìn)化的過程。 他談到了在司法改革初期,我國司法工作人員并不足夠?qū)I(yè),大多數(shù)都是從其他領(lǐng)域轉(zhuǎn)入司法機(jī)構(gòu),其中大概只有30%的工作人員是真正的法律專業(yè)出身而絕大部分都是經(jīng)過成人教育直接上崗的,所以相對比較缺乏專業(yè)知識和實(shí)戰(zhàn)經(jīng)驗(yàn)。其次談到的是第一個(gè)五年綱要,1999年—2003年,在此期間地方保護(hù)主義比較嚴(yán)重,很難保證司法公正的程度,但同時(shí)增設(shè)了一些部門,從司法理念和部門分工上都更加詳細(xì)。第二個(gè)五年綱要,2004年—2008年,這段時(shí)期主張嚴(yán)打,導(dǎo)致很多的冤假錯案,并且死刑復(fù)核權(quán)收回到了最高人民法院。第三個(gè)五年綱要,2009年—2013年,主要在法院內(nèi)部調(diào)整,各個(gè)職能部門有所改變,對于一些不必要的部門進(jìn)行清理。同時(shí)提出法院審理案件既要保證實(shí)體公正也要保證程序公正,強(qiáng)調(diào)了程序公正的重要性。 重點(diǎn)在第四個(gè)五年綱要,2014年—2018年,黨的十八大四中全會明確再次強(qiáng)調(diào)了依法治國的重要性,首先應(yīng)該注重法院的自身建設(shè),探索設(shè)立跨行政區(qū)劃的人民法院和人民檢察院。因?yàn)殡S著社會主義市場經(jīng)濟(jì)深入發(fā)展和行政訴訟出現(xiàn),跨行政區(qū)劃乃至跨境案件越來越多,涉案金額越來越大,導(dǎo)致法院所在地有關(guān)部門和領(lǐng)導(dǎo)越來越關(guān)注案件處理,甚至利用職權(quán)和關(guān)系插手案件處理,造成相關(guān)訴訟出現(xiàn)“主客場”現(xiàn)象,不利于平等保護(hù)外地當(dāng)事人合法權(quán)益、保障法院獨(dú)立審判、監(jiān)督政府依法行政、維護(hù)法律公正實(shí)施。設(shè)立跨行政區(qū)劃的人民法院和人民檢察院,有利于排除對審判工作和檢察工作的干擾、保障法院和檢察院依法獨(dú)立公正行使審判權(quán)和檢察權(quán),有利于構(gòu)建普通案件在行政區(qū)劃法院審理、特殊案件在跨行政區(qū)劃法院審理的訴訟格局。 第二方面,他強(qiáng)調(diào)了要建立以審判為中心的訴訟制度改革。在司法實(shí)踐中,存在辦案人員對法庭審判重視不夠,常常出現(xiàn)一些關(guān)鍵證據(jù)沒有收集或者沒有依法收集,進(jìn)入庭審的案件沒有達(dá)到“案件事實(shí)清楚、證據(jù)確實(shí)充分”的法定要求,使審判無法順利進(jìn)行。推進(jìn)以審判為中心的訴訟制度改革,目的是促使辦案人員樹立辦案必須經(jīng)得起法律檢驗(yàn)的理念,確保偵查、審查起訴的案件事實(shí)證據(jù)經(jīng)得起法律檢驗(yàn),保證庭審在查明事實(shí)、認(rèn)定證據(jù)、保護(hù)訴權(quán)、公正裁判中發(fā)揮決定性作用。這項(xiàng)改革有利于促使辦案人員增強(qiáng)責(zé)任意識,通過法庭審判的程序公正實(shí)現(xiàn)案件裁判的實(shí)體公正,有效防范冤假錯案產(chǎn)生。 第三方面,他談到了立案登記制在實(shí)踐中的好處與不足,立案登記制是指法院接到當(dāng)事人提交的民事起訴狀時(shí),對符合法定條件的起訴,應(yīng)當(dāng)?shù)怯浟福粚?/p> 當(dāng)場不能判定是否符合起訴條件的,應(yīng)當(dāng)接收起訴材料,并出具注明收到日期的書面憑證。需要補(bǔ)充必要相關(guān)材料的,人民法院應(yīng)當(dāng)及時(shí)告知當(dāng)事人。在補(bǔ)齊相關(guān)材料后,應(yīng)當(dāng)在七日內(nèi)決定是否立案,對依法應(yīng)該受理的案件,做到有案必立、有訴必理,保障當(dāng)事人訴權(quán)。自從五月一日實(shí)施以后,全國各地法院接受案件數(shù)量迅速增多,其中行政案件翻了一倍,沿海地區(qū)案件翻了多倍,從某種程度上也降低了法院審理案件的效率,夏教授提出,其中不歸法院管的案件,可以不管或者移送管轄,這樣可以相對節(jié)約成本,提高有效案件的數(shù)量,但不可否認(rèn)的是,立案登記制雖然增加了工作量,但確實(shí)保證了老百姓的訴訟權(quán)利,更體現(xiàn)了全心全意為人民服務(wù)的宗旨。 第四方面,他提到了審判責(zé)任制,也是當(dāng)前法院改革的中心。在現(xiàn)實(shí)審判中,不是每個(gè)法官都能達(dá)到收放自如的程度,有些法官不愿擔(dān)責(zé),一味將責(zé)任推脫給合議庭或者審判委員會,這樣很難達(dá)到預(yù)期的審判效果,而審判責(zé)任制在全面賦予法官獨(dú)立審判權(quán)力的同時(shí),明確了對法官行使審判權(quán)的監(jiān)督程序,實(shí)現(xiàn)了司法效率和公平的進(jìn)一步提升。把審判權(quán)真正還給主審法官,讓法官敢擔(dān)責(zé)。夏教授說“過去,我們審理案件確實(shí)受到各方面因素影響,現(xiàn)在,我們的審判流程很清晰,自己審理的案子自己判,審判結(jié)果自行負(fù)責(zé)!”在實(shí)踐中的確有了實(shí)實(shí)在在的改善。 第五方面,關(guān)于法院審理案件的三公開制度,首先審判流程公開,做到及時(shí)立案程序合法條理清晰。其次是裁判文書公開,這一規(guī)定對法官書寫法律文書的水平提出了更高的要求,夏教授指出,在很多基層法院工作的法官,職業(yè)技能不足的現(xiàn)象很普遍,法律文書很難達(dá)到專業(yè)水平,在要求裁判文書公開以后,無疑對他們專業(yè)技能方面是一個(gè)有效的督促。最后是執(zhí)行信息公開,他特別指出同案不同判的問題,尤其是鐵路,民航還有稅務(wù)部門,要建立完善的誠信系統(tǒng),保證所有執(zhí)行信息公開。 第六方面,在實(shí)戰(zhàn)中,司法系統(tǒng)每年招收新人面臨這樣的現(xiàn)狀,要進(jìn)的人進(jìn)不來,該走的人走不了??茖W(xué)合理的法官員額制,可確保優(yōu)秀法官留在審判一線,但是以什么標(biāo)準(zhǔn)把最優(yōu)秀的法官選出來就成為我們討論的內(nèi)容。法官遴選委員會應(yīng)設(shè)在省一級,省級法官遴選委員會應(yīng)細(xì)化每一審級法官準(zhǔn)入條件,由法官管理部門根據(jù)條件提出名單,由法官遴選委員會按程序遴選;法官入額條件應(yīng)分三項(xiàng):專業(yè)素質(zhì)、經(jīng)驗(yàn)、職業(yè)操守。其中夏教授提出,最讓人擔(dān)心的問題是男女比例嚴(yán)重失衡,因?yàn)楹芏嗯膽?yīng)試能力強(qiáng)于男生,自然通過考試的女性多于男性,法院為了盡量保持平衡,只能通過招法警的方法來改善男女失衡問題。 第七方面,夏教授提到了省級以下法院人財(cái)物統(tǒng)一管理問題,之前在基層法院和在省級法院上班,同樣的工作時(shí)間和工作內(nèi)容,甚至在基層法院有更繁瑣的任務(wù)更艱苦的工作環(huán)境,而二者的工資卻相差甚遠(yuǎn),夏教授曾經(jīng)在隨州中院做法官,工資不到5000,后來調(diào)到武漢中院,工資至少10000,明顯感受到基層法院得不到更多的財(cái)政的支持,這樣也不利于鼓勵基層法院綜合方面的發(fā)展,所以如果能做到省級以下法院的人財(cái)物統(tǒng)一管理,能幫助基層法院擺脫原有經(jīng)費(fèi)問題,并且吸引更多的年輕人投入到基層工作當(dāng)中。 第八方面,他補(bǔ)充了一個(gè)問題,有很多人指出領(lǐng)導(dǎo)干部會對司法裁判進(jìn)行干預(yù),這一現(xiàn)象其實(shí)在現(xiàn)實(shí)生活中是比較少見的,領(lǐng)導(dǎo)也不愿意去冒風(fēng)險(xiǎn)而破壞司法公正。同時(shí),有些地方出臺了領(lǐng)導(dǎo)干部插手司法案件的條例,很有效的規(guī)避這一現(xiàn)象,便于法官更加公平公正的裁決。 最后,夏教授強(qiáng)調(diào),全面推進(jìn)司法改革是一個(gè)系統(tǒng)工程,是國家治理領(lǐng)域一場廣泛而深刻的革命。鼓勵大家要全面理解和正確對待重大改革舉措,深刻領(lǐng)會其重大現(xiàn)實(shí)意義和深遠(yuǎn)歷史意義,自覺支持改革、擁護(hù)改革。作為新時(shí)代法律人,為司法改革貢獻(xiàn)自己的綿薄之力! 分析:二次函數(shù)y=x2-bx+1可化為,可知拋物線的頂點(diǎn)坐標(biāo)為(),當(dāng)b從-1逐漸變化到1的過程中,頂點(diǎn)橫坐標(biāo)的值逐漸增大,表示拋物線往右方移動;而當(dāng)b從-1逐漸變化到1的過程中,頂點(diǎn)縱坐標(biāo)的值先逐漸增大后逐漸減小,表示拋物線先往上方移動再往下方移動,故選答案D。 解:(1)y=x2-4x+1 配方,得y=(x-2)2-3,向左平移4個(gè)單位,得平移后得拋物線的解析式為y=x2+4x+1(2)由(1)知,兩拋物線的頂點(diǎn)坐標(biāo)為(2,3),(-2,-3)解,得 ∴兩拋物線的交點(diǎn)為(0,1) 由圖象知,若直線y=m與兩條拋物線有且只有四個(gè)交點(diǎn)時(shí),m>-3且m≠1(3)由y=ax2+bx+c配方得,向左平移-個(gè)單位長度得到拋物線的解析式為 ∴兩拋物線的頂點(diǎn)坐標(biāo)分別為,解 得 ∴兩拋物線的交點(diǎn)為(0,c)由圖象知滿足(2)中條件的m的取值范圍是:m>且m≠c 評析:圖形與變換是《初中數(shù)學(xué)新課程標(biāo)準(zhǔn)》中新增加的內(nèi)容,把它與二次函數(shù)相結(jié)合,既考查了學(xué)生幾何建模以及探究活動的能力,又考查了學(xué)生對幾何與代數(shù)之間的聯(lián)系、多角度、多層次綜合運(yùn)用數(shù)學(xué)知識、數(shù)學(xué)思想方法分析和解決問題的能力,是今后命題的重點(diǎn)。 略解:(1)S=24(km); (2)當(dāng)0≤t≤10時(shí), ; 當(dāng)10<t≤20時(shí),s=30t-150; 當(dāng)20<t≤35時(shí),s=-(t-35)2+675.(3)沙塵暴發(fā)生后30h將侵襲到N城。 評析:分段函數(shù)是高中數(shù)學(xué)的一塊重要內(nèi)容,本題以動直線l運(yùn)動的不同位置來確定面積S關(guān)于時(shí)間t的函數(shù)關(guān)系式,學(xué)生在充分理解了S的涵義后,求出函數(shù)關(guān)系式并不困難。像這類運(yùn)動變化問題是中考命題的熱點(diǎn)。 2、求閉區(qū)間上二次函數(shù)的最值。 解:(1)通過描點(diǎn),畫圖或分析表一中數(shù)據(jù)可知y1是t的二次函數(shù)。設(shè)y1=a(t-20)2+60,把t1=0,y1=0.代入得a=,故y1=t2+6t(0≤t≤40且t為整數(shù))。經(jīng)驗(yàn)證,表一中的所有數(shù)據(jù)都符合此解析式。 (2)通過描點(diǎn),畫圖或分析表二中數(shù)據(jù)可知當(dāng)0≤t≤30時(shí)y2是t的正比例函數(shù);當(dāng)30≤t≤40時(shí)y2是t的一次函數(shù)??汕蟮?/p> 經(jīng)驗(yàn)證,表二中的所有數(shù)據(jù)都符合此解析式。,(3)由y=y1+y2得時(shí)y有最大值為106.65萬件。,經(jīng)比較可知第7天評析:二次函數(shù)問題是近幾年高考的熱點(diǎn),倍受命題者的青睞,二次函數(shù)在閉區(qū)間上的最值問題是高考的重要題型之一。解決這類問題的策略是:畫出函數(shù)在給定范圍內(nèi)的圖象,找出圖象的最高(低)點(diǎn)和坐標(biāo)得出結(jié)果。另外,本題也體現(xiàn)了二次函數(shù)解析式考查方式的新變化:讓學(xué)生從函數(shù)對應(yīng)值表分析猜想出函數(shù)類別,進(jìn)而用待定系數(shù)法確定函數(shù)關(guān)系式。 解:(1)設(shè)y=kx+b,由圖象可知,解得 ∴y=-20x+1000(30≤x≤50). (2)p=(x-20)y=(x-20)(-20x+1000)=-20x2+1400x-20000. ∵a=-20<0,∴p有最大值.當(dāng)時(shí),p最大值=4500. 即當(dāng)銷售單價(jià)為35元/千克時(shí),每天可獲得最大利潤4500元. 解:(1)根據(jù)圖象可知c<0 且拋物線y1=x2-2x+c與x軸有兩個(gè)交點(diǎn),故一元二次方程x2-2x+c=0有兩個(gè)不等的實(shí)數(shù)根,∴△=(-2)2-4c=4-4c>0,且c<0∴c<1(2)因?yàn)閽佄锞€經(jīng)過點(diǎn)(0,-1)代入y1=x2-2x+c 得c=-1故所求拋物線的解析式為y1=x2-2x-1(3)因?yàn)榉幢壤瘮?shù)的圖象經(jīng)過拋物線y1=x2-2x-1上的點(diǎn)(1,a)把x=1,y=a代入y1=x2-2x-1,得a=-2 把x=1,a=-2代入,得 所以 畫出的圖象如圖6所示。 觀察圖象,y1與y2除交點(diǎn)(1,-2)外,還有 兩個(gè)交點(diǎn)大致為(-1,2)和(2,-1) 把x=-1,y2=2和x=2,y2=-1分別代入y1=x2-2x-1和是y1與y2的兩個(gè)交點(diǎn)。 根據(jù)圖象可知: 可知,(-1,2)和(2,-1)當(dāng)x<-1或0 評析:例五第3問的求解借助了二次函數(shù)的圖象,通過解一元二次方程求出利潤為4480元與4180元時(shí)銷售單價(jià)x的值,應(yīng)用函數(shù)性質(zhì)分析得出結(jié)果。它較好地考查了學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想方法。 解:(1)80的新數(shù)為802÷100=64,26的新數(shù)為262÷100=6.76(2)這一說法不對。設(shè)舊數(shù)為x,則相應(yīng)的新數(shù)為,列方程x =,解得x =0或x =100,所以不符合這一說法的舊數(shù)是0和100(3)設(shè)舊數(shù)為x,舊數(shù)與新數(shù)之差為y,則 當(dāng)x = 50時(shí),y的值最大,因此,減小了最多的舊數(shù)是50。 解:(1)50只 (2)當(dāng)l0 由二次函數(shù)圖象可知,x≤45,最低售價(jià)為20-0.1(45-10)=16.5元 數(shù)學(xué)建模是培養(yǎng)學(xué)生實(shí)際應(yīng)用能力的重要途徑,是數(shù)學(xué)教育改革發(fā)展的方向。在新課標(biāo)高中教材中還將學(xué)習(xí)數(shù)學(xué)模型、建模方法以及用數(shù)學(xué)建模來解決實(shí)際問題的步驟。這就要求教師在平時(shí)教學(xué)中要引導(dǎo)學(xué)生逐步養(yǎng)成用數(shù)學(xué)的眼光看待周圍事物和現(xiàn)象的習(xí)慣,激勵學(xué)生將所學(xué)數(shù)學(xué)知識和方法應(yīng)用于現(xiàn)實(shí)生活,體會數(shù)學(xué)應(yīng)用的價(jià)值,進(jìn)而形成數(shù)學(xué)建模意識,促進(jìn)數(shù)學(xué)素質(zhì)提高。 人工智能實(shí)驗(yàn)報(bào)告 實(shí)驗(yàn)六 遺傳算法實(shí)驗(yàn)II 一、實(shí)驗(yàn)?zāi)康模?/p> 熟悉和掌握遺傳算法的原理、流程和編碼策略,并利用遺傳求解函數(shù)優(yōu)化問題,理解求解TSP問題的流程并測試主要參數(shù)對結(jié)果的影響。 二、實(shí)驗(yàn)原理: 旅行商問題,即TSP問題(Traveling Salesman Problem)是數(shù)學(xué)領(lǐng)域中著名問題之一。假設(shè)有一個(gè)旅行商人要拜訪n個(gè)城市,他必須選擇所要走的路徑,路經(jīng)的限制是每個(gè)城市只能拜訪一次,而且最后要回到原來出發(fā)的城市。路徑的選擇目標(biāo)是要求得的路徑路程為所有路徑之中的最小值。TSP問題是一個(gè)組合優(yōu)化問題。該問題可以被證明具有NPC計(jì)算復(fù)雜性。因此,任何能使該問題的求解得以簡化的方法,都將受到高度的評價(jià)和關(guān)注。 遺傳算法的基本思想正是基于模仿生物界遺傳學(xué)的遺傳過程。它把問題的參數(shù)用基因代表,把問題的解用染色體代表(在計(jì)算機(jī)里用二進(jìn)制碼表示),從而得到一個(gè)由具有不同染色體的個(gè)體組成的群體。這個(gè)群體在問題特定的環(huán)境里生存競爭,適者有最好的機(jī)會生存和產(chǎn)生后代。后代隨機(jī)化地繼承了父代的最好特征,并也在生存環(huán)境的控制支配下繼續(xù)這一過程。群體的染色體都將逐漸適應(yīng)環(huán)境,不斷進(jìn)化,最后收斂到一族最適應(yīng)環(huán)境的類似個(gè)體,即得到問題最優(yōu)的解。要求利用遺傳算法求解TSP問題的最短路徑。 三、實(shí)驗(yàn)內(nèi)容: 1、參考實(shí)驗(yàn)系統(tǒng)給出的遺傳算法核心代碼,用遺傳算法求解TSP的優(yōu)化問題,分析遺傳算法求解不同規(guī)模TSP問題的算法性能。 2、對于同一個(gè)TSP問題,分析種群規(guī)模、交叉概率和變異概率對算法結(jié)果的影響。 3、增加1種變異策略和1種個(gè)體選擇概率分配策略,比較求解同一TSP問題時(shí)不同變異策略及不同個(gè)體選擇分配策略對算法結(jié)果的影響。 4、上交源代碼。 四、實(shí)驗(yàn)報(bào)告要求: 1、畫出遺傳算法求解TSP問題的流程圖。 2、分析遺傳算法求解不同規(guī)模的TSP問題的算法性能。 規(guī)模越大,算法的性能越差,所用時(shí)間越長。 3、對于同一個(gè)TSP問題,分析種群規(guī)模、交叉概率和變異概率對算法結(jié)果的影響。 (1) 種群規(guī)模對算法結(jié)果的影響 x 0 1.1 3.5 4.5 y 1.1 5.1 4.5 實(shí)驗(yàn)次數(shù):10 最大迭代步數(shù):100 交叉概率:0.85 變異概率:0.15 種群規(guī)模 平均適應(yīng)度值 最優(yōu)路徑 25.264 4-5-8-7-6-3-1-0-9-2 26.3428 2-9-1-0-3-6-7-5-8-4 25.1652 1-3-6-7-5-8-4-2-9-0 25.1652 0-1-3-6-7-5-8-4-2-9 25.1652 9-0-1-3-6-7-5-8-4-2 25.1652 1-0-9-2-4-8-5-7-6-3 150 25.1652 5-8-4-2-9-0-1-3-6-7 200 25.1652 1-3-6-7-5-8-4-2-9-0 250 25.1652 3-1-0-9-2-4-8-5-7-6 300 25.1652 5-8-4-2-9-0-1-3-6-7 如表所示,顯然最短路徑為25.1652m,最優(yōu)路徑為1-0-9-1-3-6-7-5-8-4-2或3-1-0-9-2-4-8-5-7-6,注意到這是一圈,順時(shí)針或者逆時(shí)針都可以。當(dāng)種群規(guī)模為10,20時(shí),并沒有找到最優(yōu)解。因此并不是種群規(guī)模越小越好。 (2) 交叉概率對算法結(jié)果的影響 x 1.1 3.5 3.5 4.5 y 1.1 5.1 8.5 實(shí)驗(yàn)次數(shù):15 種群規(guī)模:25 最大迭代步數(shù):100 變異概率:0.15 實(shí)驗(yàn)結(jié)果: 交叉概率 最好適應(yīng)度 最差適應(yīng)度 平均適應(yīng)度 最優(yōu)解 0.001 28.0447 36.6567 32.6002 9-2-6-0-5-4-8-7-3-1 0.01 27.0935 34.9943 32.1495 7-8-3-1-9-2-6-0-5-4 0.1 28.0447 35.3033 31.9372 7-3-1-9-2-6-0-5-4-8 0.15 28.0447 34.1175 31.2183 0-5-4-8-7-3-1-9-2-6 0.2 28.7108 33.9512 30.9035 3-1-9-2-6-5-0-4-7-8 0.25 28.0447 35.1623 30.7456 1-3-7-8-4-5-0-6-2-9 0.3 27.0935 31.9941 29.9428 8-3-1-9-2-6-0-5-4-7 0.35 27.0935 32.8085 30.9945 9-1-3-8-7-4-5-0-6-2 0.4 27.0935 32.5313 30.1534 1-3-8-7-4-5-0-6-2-9 0.45 27.0935 33.2014 30.1757 8-3-1-9-2-6-0-5-4-7 0.5 28.0934 33.6307 30.9026 5-0-2-6-9-1-3-8-7-4 0.55 27.0935 33.5233 29.1304 1-9-2-6-0-5-4-7-8-3 0.6 27.0935 33.2512 30.7836 3-1-9-2-6-0-5-4-7-8 0.65 28.0447 33.7003 30.9371 5-4-8-7-3-1-9-2-6-0 0.7 27.0935 32.0927 29.9502 9-1-3-8-7-4-5-0-6-2 0.75 28.0447 32.4488 30.3699 0-5-4-8-7-3-1-9-2-6 0.8 27.0935 32.1551 29.9382 7-4-5-0-6-2-9-1-3-8 0.85 27.0935 34.5399 30.3594 5-0-6-2-9-1-3-8-7-4 0.9 27.0935 32.6273 30.69 6-0-5-4-7-8-3-1-9-2 0.95 27.0935 32.4672 29.919 6-2-9-1-3-8-7-4-5-0 (注:紅色表示非最優(yōu)解) 在該情況下,交叉概率過低將使搜索陷入遲鈍狀態(tài),得不到最優(yōu)解。 (3) 變異概率對算法結(jié)果的影響 x 1.1 3.5 3.5 4.5 y 1.1 5.1 8.5 實(shí)驗(yàn)次數(shù):10 種群規(guī)模:25 最大迭代步數(shù):100 交叉概率:0.85 實(shí)驗(yàn)結(jié)果: 變異概率 最好適應(yīng)度 最差適應(yīng)度 平均適應(yīng)度 最優(yōu)解 0.001 29.4717 34.732 32.4911 0-6-2-1-9-3-8-7-4-5 0.01 29.0446 34.6591 32.3714 8-4-5-0-2-6-9-1-3-7 0.1 28.0934 34.011 30.9417 5-0-2-6-9-1-3-8-7-4 0.15 27.0935 32.093 30.2568 6-0-5-4-7-8-3-1-9-2 0.2 27.0935 32.2349 30.3144 8-7-4-5-0-6-2-9-1-3 0.25 27.0935 32.718 30.1572 4-5-0-6-2-9-1-3-8-7 0.3 27.0935 32.4488 30.2854 0-5-4-7-8-3-1-9-2-6 0.35 27.0935 33.3167 30.7748 1-3-8-7-4-5-0-6-2-9 0.4 29.0446 34.3705 31.3041 2-0-5-4-8-7-3-1-9-6 0.45 27.0935 31.374 29.6816 2-6-0-5-4-7-8-3-1-9 0.5 27.0935 32.3752 30.2211 2-9-1-3-8-7-4-5-0-6 0.55 27.0935 33.3819 30.6623 1-3-8-7-4-5-0-6-2-9 0.6 28.0934 33.2512 30.36 1-3-8-7-4-5-0-2-6-9 0.65 27.0935 32.7491 30.0201 3-1-9-2-6-0-5-4-7-8 0.7 28.7108 32.4238 30.785 1-3-8-7-4-0-5-6-2-9 0.75 27.0935 31.8928 30.2451 1-9-2-6-0-5-4-7-8-3 0.8 28.0934 31.6135 30.3471 9-1-3-8-7-4-5-0-2-6 0.85 29.662 33.2392 31.1585 2-9-1-3-7-8-4-0-5-6 0.9 28.0447 32.0387 30.4152 0-5-4-8-7-3-1-9-2-6 0.95 28.0447 31.3036 30.0067 9-1-3-7-8-4-5-0-6-2 從該表可知,當(dāng)變異概率過大或過低都將導(dǎo)致無法得到最優(yōu)解。 4、增加1種變異策略和1種個(gè)體選擇概率分配策略,比較求解同一TSP問題時(shí)不同變異策略及不同個(gè)體選擇分配策略對算法結(jié)果的影響。 不同變異策略和不同個(gè)體選擇分配策略幾乎不影響算法運(yùn)行的時(shí)間,但會影響適應(yīng)度。 五、實(shí)驗(yàn)心得與體會 通過本實(shí)驗(yàn),更加深入體會了參數(shù)設(shè)置對算法結(jié)果的影響。同一個(gè)算法,參數(shù)值不同,獲得的結(jié)果可能會完全不同。 同時(shí)通過本次實(shí)驗(yàn),使自己對遺傳算法有了更進(jìn)一步的了解。遺傳算法是一種智能優(yōu)化算法,它能較好的近似求解TSP問題,在問題規(guī)模比較大的時(shí)候,遺傳算法的優(yōu)勢就明顯體現(xiàn)出來,當(dāng)然不能完全保證能得到最優(yōu)解。第三篇:司法體制改革動向及問題研究講座報(bào)告
第四篇:研究中考命題動向_加強(qiáng)二次函數(shù)教學(xué) 3
第五篇:遺傳算法求解TSP問題實(shí)驗(yàn)報(bào)告