第一篇:人教版高中數(shù)學(xué)必修二 2.3 直線與平面垂直的判定 教學(xué)設(shè)計
《2.3直線與平面垂直的判定》教學(xué)設(shè)計
長順縣民族高級中學(xué)高一數(shù)學(xué)組
一、教學(xué)內(nèi)容和內(nèi)容解析
《直線與平面垂直的判定》是高中新教材人教A版必修2第2章2.3.1的內(nèi)容,本節(jié)課主要學(xué)習(xí)線面垂直的定義、判定定理及定理的初步運用。其中,線面垂直的定義是線面垂直最基本的判定方法和性質(zhì),它是探究線面垂直判定定理的基礎(chǔ);線面垂直的判定定理充分體現(xiàn)了線線垂直與線面垂直之間的轉(zhuǎn)化,它既是后面學(xué)習(xí)面面垂直的基礎(chǔ),又是連接線線垂直和面面垂直的紐帶!學(xué)好這部分內(nèi)容,對于學(xué)生建立空間觀念,實現(xiàn)從認(rèn)識平面圖形到認(rèn)識立體圖形的飛躍,是非常重要的。
直線與平面垂直的判定定理本節(jié)是通過折紙試驗來感悟的,它把原來定義中要求與任意一條(無限)垂直轉(zhuǎn)化為只要與兩條(有限)相交直線垂直就行了,概言之,線不在多,相交就行。直線與平面垂直的判定方法除了定義法、判定定理外,還有如果兩條平行直線中的一條直線垂直于一個平面,那么另一條直線也垂直于這個平面,這是直線與平面垂直判定的一種間接方法,也是十分重要的。
二、教學(xué)重點、難點,以及期望目標(biāo)和目標(biāo)解析
根據(jù)《課程標(biāo)準(zhǔn)》,線面垂直判定定理的嚴(yán)格證明在本節(jié)課中不做要求,這樣降低了難度。
教學(xué)重點:操作確認(rèn)并概括出直線與平面垂直的定義和判定定理。教學(xué)難點:操作確認(rèn)并概括出直線與平面垂直的判定定理及初步運用。期望目標(biāo):理解直線與平面垂直的定義,掌握直線與平面垂直的判定定理.目標(biāo)解析: 1.利用已有知識與生活經(jīng)驗,抽象概括出直線與平面垂直的定義,培養(yǎng)學(xué)生數(shù)學(xué)抽象和直觀想象的數(shù)學(xué)核心素養(yǎng);
2.通過概括、辨析與應(yīng)用,正確理解直線與平面垂直的定義;
3.通過直觀感知、操作確認(rèn),歸納出直線與平面垂直的判定定理,培養(yǎng)學(xué)生直觀想象的數(shù)學(xué)核心素養(yǎng); 4.運用直線與平面垂直的判定定理,證明和直線與平面垂直有關(guān)的簡單命題,培養(yǎng)學(xué)生邏輯推理的數(shù)學(xué)核心素養(yǎng);
5.在探索直線與平面垂直判定定理的過程中發(fā)展合情推理能力,同時感悟和體驗“空間問題轉(zhuǎn)化為平面問題”、“線面垂直轉(zhuǎn)化為線線垂直”、“無限轉(zhuǎn)化為有限”等數(shù)學(xué)思想.三、教學(xué)問題診斷分析
學(xué)生已有的認(rèn)知基礎(chǔ)是熟悉的日常生活中的具體直線與平面垂直的直觀形象(學(xué)生的客觀現(xiàn)實)和直線與直線垂直的定義、直線與平面平行的判定定理等數(shù)學(xué)知識結(jié)構(gòu)(學(xué)生的數(shù)學(xué)現(xiàn)實),這為學(xué)生學(xué)習(xí)直線與平面垂直定義和判定定理等新知識奠定基礎(chǔ)。學(xué)生學(xué)習(xí)的困難在于如何從直線與平面垂直的直觀形象中提煉出直線與平面垂直的定義,感悟直線與平面垂直的意義;以及如何從折紙試驗中探究出直線與平面垂直的判定定理。
四、學(xué)習(xí)行為分析
本節(jié)課安排在立體幾何的初始階段,是學(xué)生空間觀念形成的關(guān)鍵時期,課堂上學(xué)生通過感知、觀察、提煉直線與平面垂直的定義,進而通過辨析討論,深化對定義的理解。進一步,在一個具體的數(shù)學(xué)問題情境中猜想直線與平面垂直的定義及判定定理,并在教師的指導(dǎo)下,通過動手操作、觀察分析、自主探索等活動,切身感受直線與平面垂直及定義判定定理的形成過程,體會蘊涵在其中的思想方法。繼而,通過課本例1的學(xué)習(xí)概括直線與平面垂直的幾種常用判定方法。再通過練習(xí)與課后小結(jié),使學(xué)生進一步加深對直線與平面垂直的判定定理的理解。
五、教學(xué)支持條件分析
為了有效實現(xiàn)教學(xué)目標(biāo),教師準(zhǔn)備:多媒體課件(以PowerPoint為平臺)、三角板、大三角形紙片等教具;學(xué)生自備:三角形紙片(任意形狀)、筆(表直線)、課本(表平面)等學(xué)具。
六、教學(xué)過程設(shè)計
(一)抽象概括直線與平面垂直的定義
探究一:直線與平面垂直的定義? 情景創(chuàng)設(shè)1:(播放視頻)火箭升空時,火箭與地面的位置關(guān)系? 情景創(chuàng)設(shè)2:天安門前的旗桿與地面的位置關(guān)系?
情景創(chuàng)設(shè)3:請列舉生活中直線與平面垂直的例子(學(xué)生回答——板書課題)。思考:我們怎樣定義直線與平面垂直?
問題:(1)如圖,在陽光下觀察直立于地面的旗桿AB及它的影子,旗桿所在直線與影子所在直線位置關(guān)系是什么?
(2)旗桿與地面上任意一條不過旗桿底部B的直線B1C1的位置關(guān)系又是什么?
【意圖】旨在讓學(xué)生發(fā)現(xiàn)AB所在直線始終與地面上任意一條過點B的直線垂直,與地面上任意一條不過點B的直線也垂直。
注意強調(diào):兩條直線垂直有相交垂直和異面垂直兩種,從中概括出:一條直線與一個平面垂直,那么該直線與此平面內(nèi)的任意一條直線都垂直.從而由感性認(rèn)識上升到理性認(rèn)識的過程。
定義:(文字語言)如果直線l與平面?內(nèi)的任意一條直線都垂直,我們就說直線l與平面?互相垂直,記作:l??.直線l叫做平面?的垂線,平面?叫做直線l的垂面.直線與平面垂直時,它們唯一的公共點P叫做垂足.符號語言:學(xué)生在學(xué)案完成; 圖形語言:(如圖1)
判斷題:對定義的辨析,展示幻燈片。
【意圖】使學(xué)生明確平面中直線的“任意性”.通過辨析討論,深化直線與平面垂直的概念。
探究二:除定義外,如何判定一條直線與平面垂直?(教師可提問:定義作為線面垂直判定的方法有何不足?)
1.觀察猜想:某公司要安裝一根8米高的旗桿,兩位工人先從旗桿的頂點掛兩條10米的繩子,然后拉緊繩子 的下端放在地面上(和旗桿的腳不在同一直線上)。如果這兩點都和旗桿腳的距離為6米,那么表明旗桿就和地面垂直了,為什么?
思考1.能不能像判定直線與平面平行那樣,利用直線與平面內(nèi)的一條直線垂直來判定直線與平面垂直呢? 思考2:一條直線不行,那么又能不能像判斷平面與平面平行那樣,利用直線與平面內(nèi)兩條直線都垂直來判定直線與平面垂直呢?
【意圖】通過利用類比思想,尋找線面垂直的判定方法。也進一步讓學(xué)生體會由無限轉(zhuǎn)化為有限、平面化、降維等思想。
(二)動手操作,合作探究直線與平面垂直的判定定理
實驗:請你拿出準(zhǔn)備好的三角形的紙片,我們一起來做一個試驗:如圖2,過△ABC的頂點A翻折紙片,得到折痕AD,將翻折后的紙片豎起放置在桌面上,(BD、DC與桌面接觸)
(1)折痕AD與桌面垂直嗎?
(2)如何翻折才能使AD與桌面所在平面?垂直?
AD【意圖】通過折紙活動讓學(xué)生發(fā)現(xiàn),當(dāng)且僅當(dāng)折痕AD是BC邊上的高時,BDCA 圖2 所在直線與桌面所在的平面?垂直 問題5:在你翻折紙片的過程中,紙片的形狀發(fā)生了變化,這是變的一面,那么不變的一面是什么呢?(可從線與線的關(guān)系考慮)如果我們把折痕抽象為直線l,把BD、CD抽象為直線m,n,把桌面抽象為平面(如圖3),那么你認(rèn)為保證直線與平面如果將圖3中的兩條相交直線
垂直的條件是什么?,、的位置改變一下,仍保證
嗎?(如圖4)你認(rèn)為直線還垂直于平面根據(jù)上面的試驗,結(jié)合兩條相交直線確定一個平面的事實,你能給出直線與平面垂直的判定方法嗎?
定理:一條直線與一個平面內(nèi)的兩條相交直線都垂直,則
l該直線與此平面垂直.(如圖5)
mPn圖
5用符號語言表示為:
(可讓學(xué)生敘寫判定定理,給出文字、圖形、符號這三種語言的相互轉(zhuǎn)化,教師注意引導(dǎo)。)
(三)知識應(yīng)用(典型例題)
(練習(xí))判斷下列命題是否正確?(學(xué)生合作完成學(xué)案)
(1)若一條直線與一個三角形的兩條邊垂直,則這條直線垂直于三角形所在的平面.()(2)若一條直線與一個平行四邊形的兩條邊垂直,則這條直線垂直于平行四邊形所在的平面.()(3)若一條直線與一個梯形的兩腰垂直,則這條直線垂直于梯形所在的平面.()例1:如圖6,已知a∥b,a⊥α,求證:b⊥α.(分別用直線與平面垂直的判定定理、直線與平面垂直的定義證明;并讓學(xué)生用語言敘述:如果兩條平行直
圖6ab線中的一條直線垂直于一個平面,那么另一條直線也垂直于這個平面)
【意圖】能分別用判定定理與定義解決問題,會用證明問題的一般思維策略:由已知想可知(性質(zhì)),由未知想需知(判定),合理選擇輔助線.這個例題給出了判斷直線和平面垂直的一個常用的命題,這個命題體現(xiàn)了平行關(guān)系與垂直關(guān)系之間的聯(lián)系。
【意圖】進一步領(lǐng)會問題解決的一般思維策略,合理選擇輔助平面,體會轉(zhuǎn)化思想在解決問題中的作用.例2:如圖,在三棱錐V-ABC中,VA=VC,AB=BC,K是AC的中點。求證:(1)AC⊥平面VKB(2)AC⊥VB
思考:
(1)在三棱錐V-ABC中,VA=VC,AB=BC,求證:VB⊥AC;
(2)在⑴中,若E、F分別是AB、BC 的中點,試判斷EF與平面VKB的位置關(guān)系;
(3)在⑵的條件下,有人說“VB⊥AC,VB⊥EF,∴VB⊥平面ABC”,對嗎?
【意圖】例2重在對直線與平面垂直判定定理的應(yīng)用.變式(1)在例2的基礎(chǔ)上,應(yīng)用了直線與平面垂直的意義;變式(2)是對例1判定方法的應(yīng)用;變式(3)的判斷在于進一步鞏固直線與平面垂直的判定定理。3個小題環(huán)環(huán)相扣,匯集了本節(jié)課的學(xué)習(xí)內(nèi)容,突出了知識間內(nèi)在聯(lián)系和融會貫通。
(四)總結(jié)反思
(1)通過本節(jié)課的學(xué)習(xí),在知識方面你學(xué)到什么?
(2)上述判斷直線與平面垂直的方法體現(xiàn)了什么數(shù)學(xué)思想?
(3)你還有什么收獲與感想?
【意圖】培養(yǎng)學(xué)生反思的習(xí)慣,鼓勵學(xué)生對研究的問題進行質(zhì)疑和概括.(五)目標(biāo)檢測設(shè)計
1.課本 P66 探究:如圖,直四棱柱A1B1C1D1-ABCD(側(cè)棱與底面垂直的棱柱稱為直棱柱)中,底面四邊形ABCD滿足什么條件時,A1C⊥B1D1.
BB1C1DA1D1A
C2.如圖,PA⊥平面ABC,BC⊥AC,寫出圖中所有的直角三角形。3.課本P67 練習(xí)2 【意圖】第1題是基礎(chǔ)題,鞏固復(fù)習(xí)線面垂直的判定定理;第2題本節(jié)教材中的一道探究題,主要運用直線與平面垂直的意義與判定定理;第3題也是活用直線與平面垂直的意義與判定定理,前兩題重在檢測本節(jié)課的知識與技能目標(biāo),檢測運用知識解決問題的能力;第3題通過學(xué)生探索,培養(yǎng)學(xué)生觀察——分析——歸納和綜合運用知識的能力。
(六)板書設(shè)計:
2.3.1 直線與平面垂直的判定
一、直線與平面垂直的定義
1、文字語言:
2、圖形語言:
3、符號語言:
二、直線與平面垂直的判定
1、文字語言:
2、圖形語言:
3、符號語言:
三、知識運用 例1:
四、課堂小結(jié):
第二篇:2.3 直線、平面垂直的判定及其性質(zhì) 教學(xué)設(shè)計 教案
教學(xué)準(zhǔn)備
1.教學(xué)目標(biāo)
1、知識與技能
(1)使學(xué)生正確理解和掌握“二面角”、“二面角的平面角”及“直二面角”、“兩個平面互相垂直”的概念;
(2)使學(xué)生掌握兩個平面垂直的判定定理及其簡單的應(yīng)用;(3)使學(xué)生理會“類比歸納”思想在數(shù)學(xué)問題解決上的作用。
2、過程與方法
(1)通過實例讓學(xué)生直觀感知“二面角”概念的形成過程;
(2)類比已學(xué)知識,歸納“二面角”的度量方法及兩個平面垂直的判定定理。
2.教學(xué)重點/難點
通過揭示概念的形成、發(fā)展和應(yīng)用過程,使學(xué)生理會教學(xué)存在于觀實生活周圍,從中激發(fā)學(xué)生積極思維,培養(yǎng)學(xué)生的觀察、分析、解決問題能力。
3.教學(xué)用具
投影儀等.4.標(biāo)簽
數(shù)學(xué),立體幾何
教學(xué)過程
(一)創(chuàng)設(shè)情景,揭示課題
問題1:平面幾何中“角”是怎樣定義的?
問題2:在立體幾何中,“異面直線所成的角”、“直線和平面所成的角”又是怎樣定義的?它們有什么共同的特征?
以上問題讓學(xué)生自由發(fā)言,教師再作小結(jié),并順勢拋出問題:在生產(chǎn)實踐中,有許多問題要涉及到兩個平面相交所成的角的情形,你能舉出這個問題的一些例子嗎?如修水壩、發(fā)射人造衛(wèi)星等,而這樣的角有何特點,該如何表示呢?下面我們共同來觀察,研探。
(二)研探新知
1、二面角的有關(guān)概念
老師展示一張紙面,并對折讓學(xué)生觀察其狀,然后引導(dǎo)學(xué)生用數(shù)學(xué)思維思考,并對以上問題類比,歸納出二面角的概念及記法表示(如下表所示)
2、二面角的度量
二面角定理地反映了兩個平面相交的位置關(guān)系,如我們常說“把門開大一些”,是指二面角大一些,那我們應(yīng)如何度量二兩角的大小呢?師生活動:師生共同做一個小實驗(預(yù)先準(zhǔn)備好的二面角的模型)在其棱上位取一點為頂點,在兩個半平面內(nèi)各作一射線(如圖2.3-3),通過實驗操作,研探二面角大小的度量方法——二面角的平面角。教師特別指出:
(1)在表示二面角的平面角時,要求“OA⊥L”,OB⊥L;(2)∠AOB的大小與點O在L上位置無關(guān);(3)當(dāng)二面角的平面角是直角時,這兩個平做法:教師引導(dǎo)學(xué)生分析題意,先讓學(xué)生自己動手推理證明,然后抽檢學(xué)生掌握情況,教師最后講評并板書證明過程。
(四)運用反饋,深化鞏固 問題:課本P.73的探究問題
做法:學(xué)生思考(或分組討論),老師與學(xué)生對話完成。
(五)小結(jié)歸納,整體認(rèn)識
(1)二面角以及平面角的有關(guān)概念;
(2)兩個平面垂直的判定定理的內(nèi)容,它與直線與平面垂直的判定定理有何關(guān)系?
(六)課后鞏固,拓展思維
1、課后作業(yè):自二面角內(nèi)一點分別向兩個面引垂線,求證:它們所成的角與二兩角的平面角互補。
2、課后思考問題:在表示二面角的平面角時,為何要求“OA⊥L、OB⊥L”?為什么∠AOB 的大小與點O在L上的位置無關(guān)?
課堂小結(jié)
(1)二面角以及平面角的有關(guān)概念;(2)兩個平面垂直的判定定理的內(nèi)容,它與直線與平面垂直的判定定理有何關(guān)系?
課后習(xí)題
1、課后作業(yè):自二面角內(nèi)一點分別向兩個面引垂線,求證:它們所成的角與二兩角的平面角互補。
2、課后思考問題:在表示二面角的平面角時,為何要求“OA⊥L、OB⊥L”?為什么∠AOB 的大小與點O在L上的位置無關(guān)?
板書 略
第三篇:《直線與平面垂直的判定》教學(xué)設(shè)計
《直線與平面垂直的判定》教學(xué)設(shè)計
一、背景分析:
直線與平面垂直是直線和平面相交中的一種特殊情況,它是空間中線線垂直位臵關(guān)系的拓展,又是面面垂直的基礎(chǔ),是空間中垂直位臵關(guān)系間轉(zhuǎn)化的重心,同時它又是直線和平面所成的角等內(nèi)容的基礎(chǔ),因而它是點、直線、平面間位臵關(guān)系中的核心概念之一.
對直線與平面垂直的定義的研究遵循“直觀感知、抽象概括”的認(rèn)知過程展開,而對直線與平面垂直的判定定理的研究則遵循“直觀感知、操作確認(rèn)、歸納總結(jié)、初步運用”的認(rèn)知過程展開,通過該內(nèi)容的學(xué)習(xí),能進一步培養(yǎng)學(xué)生空間想象能力,發(fā)展學(xué)生的合情推理能力和一定的推理論證能力,同時體會“平面化”思想和“降維”思想.
教學(xué)重點:直觀感知、操作確認(rèn),概括出直線與平面垂直的定義和判定定理.
二、學(xué)情分析:
學(xué)生已經(jīng)學(xué)習(xí)了直線、平面平行的判定及性質(zhì),學(xué)習(xí)了兩直線(共面或異面)互相垂直的位臵關(guān)系,有了“通過觀察、操作并抽象概括等活動獲得數(shù)學(xué)結(jié)論”的體會,有了一定的空間想象能力、幾何直觀能力和推理論證能力.
在直線與平面垂直的判定定理中,為什么至少要兩條直線,并且是兩條相交直線,學(xué)生的理解有一定的困難,因為定義中“任一條直線”指的是“所有直線”,這種用“有限”代替“無限”的過程導(dǎo)致學(xué)生形成理解上的思維障礙.同時,由于學(xué)生的空間想象能力、推理論證能力有待進一步加強,在直線與平面垂直判定定理的運用中,不知如何選擇平面內(nèi)的兩條相交直線證線面垂直(抑或選擇平面證線面垂直從而得到線線垂直)導(dǎo)致證明過程中無從著手或發(fā)生錯誤. 教學(xué)難點:操作確認(rèn)并概括出直線與平面垂直的判定定理及初步運用.
三、教學(xué)目標(biāo):
1.借助對圖片、實例的觀察,抽象概括出直線與平面垂直的定義.
2.通過直觀感知、操作確認(rèn),歸納、概括出直線與平面垂直的判定定理.
3.能運用直線與平面垂直的判定定理,證明與直線和平面垂直有關(guān)的簡單命題。
四、教學(xué)過程:
環(huán)節(jié)一:(復(fù)習(xí)引入)
1.直線和平面的位臵關(guān)系是什么?
(1)直線在平面內(nèi)(無數(shù)個公共點)(2)直線和平面相交(有且只有一個公共點)(3)直線和平面平行(沒有公共點)2.線面平行的判定定理的內(nèi)容是什么?
如果平面外的一條直線和平面內(nèi)的一條直線平行,那么這條直線和這個平面平行.3.線面平行的性質(zhì)定理的內(nèi)容是什么?
如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行
設(shè)計意圖:通過對所學(xué)知識的提問與回答能使學(xué)生較快的進入到課堂情景 環(huán)節(jié)二:觀察歸納直線與平面垂直的定義 1.直觀感知
問題1:請同學(xué)們觀察圖片,說出旗桿與地面、大橋橋柱與水面是什么位臵關(guān)系?你能舉出一些類似的例子嗎?
設(shè)計意圖:從實際背景出發(fā),直觀感知直線和平面垂直的位臵關(guān)系,使學(xué)生在頭腦中產(chǎn)生直線與地面垂直的初步印象,為下一步的數(shù)學(xué)抽象做準(zhǔn)備.
師生活動:觀察圖片,引導(dǎo)學(xué)生舉出更多直線與平面垂直的例子,如教室內(nèi)直立的墻角線和地面位臵關(guān)系,桌子腿與地面的位臵關(guān)系,直立書的書脊與桌面的位臵關(guān)系等,由此引出課題.
2.探究:什么叫做直線和平面垂直呢?當(dāng)直線與平面垂直時,此直線與平面內(nèi)的所有直線的關(guān)系又怎樣呢?
我們已經(jīng)學(xué)過直線和平面平行的判定和性質(zhì),知道直線和平面平行的問題可轉(zhuǎn)化為考察直線和平面內(nèi)直線平行的關(guān)系, 直線和平面垂直的問題同樣可以轉(zhuǎn)化為考察一條直線和一個平面內(nèi)直線的關(guān)系,然后加以解決.
問題2:(1)如圖1,在陽光下觀察直立于地面旗桿AB及它在地面的影子BC,旗桿所在的直線與影子所在直線位臵關(guān)系是什么?
(2)旗桿AB與地面上任意一條不過旗桿底部B的直線B1C1的位臵關(guān)系又是什么?
隨著時間的變化,盡管影子的位臵在移動,但是旗桿所在的直線始終與影子所在的直線垂直(如圖),事實上,旗桿AB所在直線與地面內(nèi)任意一條不過點B的直線也是垂直的。設(shè)計意圖:引導(dǎo)學(xué)生用“平面化”的思想來思考問題,通過觀察,感知直線與平面垂直的本質(zhì)屬性.
師生活動:教師用多媒體課件演示旗桿在地面上的影子隨著時間的變化而移動的過程,引導(dǎo)學(xué)生得出旗桿所在直線與地面內(nèi)的直線都垂直.
3.抽象概括
問題
3、通過上述觀察分析,你認(rèn)為應(yīng)該如何定義一條直線與一個平面垂直?
設(shè)計意圖:讓學(xué)生歸納、概括出直線與平面垂直的定義.
師生活動:學(xué)生思考作答,教師補充完善,指出定義中的“任意一條直線”與“所有直線”是同意詞,定義是說這條直線和平面內(nèi)所有直線垂直.同時給出線面垂直的記法與畫法.
定義:如果直線l與平面α內(nèi)的任意一條直線都垂直,我們就說直線 l與平面α互相垂直,記作: l⊥α.直線l叫做平面α的垂線,平面α叫做直線l的垂面.直線與平面垂直時,它們唯一的公共點P叫做垂足.
畫法:畫直線與平面垂直時,通常把直線畫成與表示平面的平行四邊形的一邊垂直,4.辯析舉例
辨析:下列命題是否正確,為什么?
(1)如果一條直線垂直于一個平面內(nèi)的無數(shù)條直線,那么這條直線與這個平面垂直.
(2)如果一條直線垂直一個平面,那么這條直線就垂直于這個平面內(nèi)的任一直線.
設(shè)計意圖:通過問題辨析,加深概念的理解,掌握概念的本質(zhì)屬性.由(1)使學(xué)生明確定義中的“任意一條直線”是“所有直線”的意思,定義的實質(zhì)就是直線與平面內(nèi)所有直線都垂直.由(2)使學(xué)生明確,線面垂直的定義既是線面垂直的判定又是性質(zhì),線線垂直與線面垂直可以相互轉(zhuǎn)化.
師生活動:命題(1)判斷中引導(dǎo)學(xué)生用三角板兩直角邊表兩垂直直線,桌面表平面舉出反例.教師利用三角板和教鞭進行演示,將一塊大直角三角板的一條直角邊AC放在講臺上演示,這時另一 條直角邊BC就和講臺上的一條直線(即三角板與桌面的交線AC)垂直,但它不一定和講臺桌面垂直.在此基礎(chǔ)上在講臺上放一根和AC平行的教鞭EF并平行移動,那么BC始終和EF垂直,但它不一定和講臺桌面垂直,如圖3.
對命題(2)的判斷 歸納常用命題。
利用定義,我們得到了判定線面垂直的最基本方法,同時也得到了線面垂直的最基本的性質(zhì)
環(huán)節(jié)三:探究發(fā)現(xiàn)直線與平面垂直的判定定理
1.觀察猜想
雖然可以根據(jù)定義判定直線與平面垂直,但這種方法實際上難以實施.有沒有比較方便可行的方法來判斷直線和平面垂直呢?
問題
4、(1)如果直線與平面內(nèi)一條直線垂直,則直線和平面是否垂直?
(2)如果直線 與平面內(nèi)兩條直線垂直,則直線與平面是否垂直?
如果兩條直線平行 如果兩條直線相交?
設(shè)計意圖:采用類比思想將線面關(guān)系引導(dǎo)到線線關(guān)系。
問題5:觀察跨欄、簡易木架等實物,你能猜想出判斷一條直線與一個平面垂直的方法嗎?
設(shè)計意圖:通過問題思考與實例分析,尋找具有可操作性的判定方法,體驗有限與無限之間的辯證關(guān)系.
師生活動:引導(dǎo)學(xué)生觀察思考,給出猜想:一條直線與一個平面內(nèi)兩相交直線都垂直,則該直線與此平面垂直.
2.操作確認(rèn)
問題6:如圖4,請同學(xué)們拿出準(zhǔn)備好的一塊(任意)三角形的紙片,我們一起來做一個實驗:過△ABC的頂點A翻折紙片,得到折痕AD,將翻折后的紙片豎起放臵在桌面上,(BD、DC與桌面接觸).觀察并思考:
(1)折痕AD與桌面垂直嗎?如何翻折才能使折痕AD與桌面所在的平面垂直?
(2)由折痕AD⊥BC,翻折之后垂直關(guān)系,即AD⊥CD,AD⊥BD發(fā)生變化嗎?由此你能得到什么結(jié)論? 設(shè)計意圖:通過實驗,引導(dǎo)學(xué)生獨立發(fā)現(xiàn)直線與平面垂直的條件,培養(yǎng)學(xué)生的動手操作能力和幾何直觀能力.
師生活動:在折紙試驗中,學(xué)生會出現(xiàn)“垂直”與“不垂直”兩種情況,引導(dǎo)學(xué)生進行交流,根據(jù)直線與平面垂直的定義分析“不垂直”的原因.學(xué)生再次折紙,進而探究直線與平面垂直的條件,經(jīng)過討論交流,使學(xué)生發(fā)現(xiàn)只要保證折痕AD是BC邊上的高,即AD⊥BC,翻折后折痕AD就與桌面垂直,再利用多媒體演示翻折過程,增強幾何直觀性.
3.合情推理
問題7:根據(jù)上面的試驗,結(jié)合兩條相交直線確定一個平面的事實,你能給出直線與平面垂直的判定方法嗎?
設(shè)計意圖:引導(dǎo)學(xué)生根據(jù)直觀感知及已有知識經(jīng)驗,進行合情推理,獲得判定定理.
師生活動:教師引導(dǎo)學(xué)生回憶出“兩條相交直線確定一個平面”,以及直觀過程中獲得的感知,將“與平面內(nèi)所有直線垂直”逐步歸結(jié)到“與平面內(nèi)兩條相交直線垂直”,進而歸納出直線與平面垂直的判定定理.同時指出要判斷一條直線與一個平面是否垂直,取決于在這個平面內(nèi)能否找到兩條相交直線和已知直線垂直,至于這兩條相交直線是否和已知直線有公共點是無關(guān)緊要的.定理充分體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”相互轉(zhuǎn)化的數(shù)學(xué)思想.
定理:一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直.
用符號語言表示為:
環(huán)節(jié)四:例題示范,鞏固新知
例
1、如圖,已知a∥b,a⊥α 求證:b⊥α
師生活動:教師引導(dǎo)學(xué)生分析思路,可利用線面垂直的定義證,也可用判定定理證,提示輔助線的添法,將思路集中在如何在平面內(nèi)α內(nèi)找到兩條與直線b垂直的相交直線上.另外,再引導(dǎo)學(xué)生將已知條件具體化的過程中,逐步明確根據(jù)異面直線所成角的概念解決問題.學(xué)生練習(xí)本上完成,對照課本完善自己的解題步驟.同時指出:本例結(jié)果可以作為直線和平面垂直的又一個判定定理.這樣判定一條直線與已知平面垂直,可以用這條直線垂直于平面兩條相交直線來證明,也可以用這條直線的平行直線垂直于平面來證明.設(shè)計意圖:初步感受如何運用直線與平面垂直的判定定理與定義解決問題,明確運用線面垂直判定定理的條件.
環(huán)節(jié)五:鞏固練習(xí),強化新知
鞏固練習(xí)1:如圖,在正方體ABCD-A1B1C1D1中,(1)請找出與平面ABCD垂直的棱所在的直線 ;(2)請列舉與直線A1A垂直的平面 ;
(3)你能找出一條與平面D1DBB1垂直的直線嗎?
設(shè)計意圖:進一步感受如何運用直線與平面垂直的判定定理證明線面垂直,體會轉(zhuǎn)化思想在證題中的作用,發(fā)展學(xué)生的幾何直觀能力與一定的推理論證能力,同時教師板書證明格式。
鞏固練習(xí)2:若把正方體切成四棱錐(1)
嗎?
嗎?
嗎?
(2)若在PC的中點為E,則(3)若AD中點為M,PB的中點為N,則設(shè)計意圖:圍繞正方體的切割,通過一系列有梯度問題的設(shè)計,給學(xué)生一種既熟悉又陌生的感覺,讓學(xué)生動腦,進一步圍繞判定定理來解決問題,使知識升華。
環(huán)節(jié)六:小結(jié)升華: 小結(jié):
1、思路引領(lǐng):要證明線面垂直的問題,可以通過證明線線垂直來實現(xiàn).2、友情提示:平面內(nèi)的這兩條直線必須相交;
3、學(xué)習(xí)重點:直線與平面垂直的定義及判定定理
4、數(shù)學(xué)思想及方法:
空間問題轉(zhuǎn)化為平面問題”、“線面垂直轉(zhuǎn)化為線線垂直”、“無限轉(zhuǎn)化為有限
第四篇:直線與平面垂直的判定的教學(xué)設(shè)計
直線與平面垂直的判定的教學(xué)設(shè)計
阜陽市城郊中學(xué)
吳桃李
一、內(nèi)容和內(nèi)容解析
本節(jié)課是在學(xué)生學(xué)習(xí)了空間點、直線、平面之間的位置關(guān)系和直線、平面平行的判定及其性質(zhì)之后進行的,其主要內(nèi)容是直線與平面垂直的定義、直線與平面垂直的判定定理及其應(yīng)用.直線與平面垂直是通過直線和平面內(nèi)的任意一條直線(無一例外)都垂直來定義的,定義本身也表明了直線與平面垂直的意義,即如果一條直線垂直于一個平面,那么這條直線就垂直于這個平面內(nèi)的所有直線,這也可以看成是線線垂直的一個判定方法;直線與平面垂直的判定定理本節(jié)是通過折紙試驗來感悟的,即一條直線只要與平面內(nèi)的兩條相交直線垂直就可以判定直線與平面垂直了,它把原來定義中要求與任意一條(無限)垂直轉(zhuǎn)化為只要與兩條(有限)相交直線垂直就行了,概言之,線不在多,相交就行.直線與平面垂直的判定方法除了定義法、判定定理外,還有如果兩條平行直線中的一條直線垂直于一個平面,那么另一條直線也垂直于這個平面,這是直線與平面垂直判定的一種間接方法,也是十分重要的.本節(jié)學(xué)習(xí)內(nèi)容蘊含豐富的數(shù)學(xué)思想,即“空間問題轉(zhuǎn)化為平面問題”,“無限轉(zhuǎn)化為有限”“線線垂直與線面垂直互相轉(zhuǎn)化”等數(shù)學(xué)思想.直線與平面垂直是研究空間中的線線關(guān)系和線面關(guān)系的橋梁,為后繼面面垂直的學(xué)習(xí)、距離的學(xué)習(xí)奠定基礎(chǔ).
二、教學(xué)目標(biāo)和解析
1.借助對實例、圖片的觀察,提煉直線與平面垂直的定義,并能正確理解直線與平面垂直的定義;
2.通過直觀感知,操作確認(rèn),歸納直線與平面垂直的判定定理,并能運用判定定理證明一些空間位置關(guān)系的簡單命題;
3.在探索直線與平面垂直判定定理的過程中發(fā)展合情推理能力,同時感悟和體驗“空間問題轉(zhuǎn)化為平面問題”、“線面垂直轉(zhuǎn)化為線線垂直”、“無限轉(zhuǎn)化為有限”等數(shù)學(xué)思想.三、教學(xué)問題診斷分析
學(xué)生已有的認(rèn)知基礎(chǔ)是熟悉的日常生活中的具體直線與平面垂直的直觀形象(學(xué)生的客觀現(xiàn)實)和直線與直線垂直的定義、直線與平面平行的判定定理等數(shù)學(xué)知識結(jié)構(gòu)(學(xué)生的數(shù)學(xué)現(xiàn)實),這為學(xué)生學(xué)習(xí)直線與平面垂直定義和判定定理等新知識奠定基礎(chǔ).學(xué)生學(xué)習(xí)的困難在于如何從直線與平面垂直的直觀形象中提煉出直線與平面垂直的定義,感悟直線與平面垂直的意義;以及如何從折紙試驗中探究出直線與平面垂直的判定定理.
教學(xué)的重點是直線與平面垂直的定義和直線與平面垂直判定定理的探究; 教學(xué)的難點是操作確認(rèn)并概括出直線與平面垂直的判定定理及初步運用.
四、學(xué)習(xí)行為分析
本節(jié)課安排在立體幾何的初始階段,是學(xué)生空間觀念形成的關(guān)鍵時期,課堂上學(xué)生通過感知、觀察、提煉直線與平面垂直的定義,進而通過辨析討論,深化對定義的理解.進一步,在一個具體的數(shù)學(xué)問題情境中猜想直線與平面垂直的判定定理,并在教師的指導(dǎo)下,通過動手操作、觀察分析、自主探索等活動,切身感受直線與平面垂直判定定理的形成過程,體會蘊涵在其中的思想方法.繼而,通過例1的學(xué)習(xí)概括直線與平面垂直的幾種常用判定方法.再通過練習(xí)與課后小結(jié),使學(xué)生進一步加深對直線與平面垂直的判定定理的理解.
五、教學(xué)支持條件分析
觀察和展示現(xiàn)實生活中的實例與圖片,以直觀感知直線與平面垂直的形象;準(zhǔn)備三角形紙片,用于探究直線與平面垂直的判定定理;制作多媒體課件動態(tài)演示,以加深對直線與平面垂直定義及判定定理的感知與理解.
六、教學(xué)過程設(shè)計
1.從實際背景中感知直線與平面垂直的形象
問題1:空間一條直線和一個平面有哪幾種位置關(guān)系?
設(shè)計意圖:此問基于學(xué)生已有的數(shù)學(xué)現(xiàn)實,通過對已學(xué)相關(guān)知識的追憶,尋找新知識學(xué)習(xí)的“固著點”. 問題2:在日常生活中你見得最多的直線與平面相交的情形是什么?請舉例說明.
設(shè)計意圖:此問基于學(xué)生的客觀現(xiàn)實,通過對生活事例的觀察,讓學(xué)生直觀感知直線與平面相交中一種特例:直線與平面垂直的初步形象,激起進一步探究直線與平面垂直的意義.
2.提煉直線與平面垂直的定義
問題3:你能給出直線和平面垂直的定義嗎?回憶一下直線與直線垂直是如何定義的?
設(shè)計意圖:兩直線垂直有相交垂直和異面垂直,而異面直線垂直是轉(zhuǎn)化為兩直線相交垂直,實質(zhì)上是將空間問題轉(zhuǎn)化為平面問題,讓學(xué)生回憶直線與直線垂直的定義,旨在由此得到啟發(fā):用“平面化”的思想來思考問題,即能否用一條直線垂直于一個平面內(nèi)的直線,來定義這條直線與這個平面垂直?
問題4:結(jié)合對下列問題的思考,試著給出直線和平面垂直的定義.(1)陽光下,旗桿AB與它在地面上的影子BC所成的角度是多少?
(2)隨著太陽的移動,影子BC的位置也會移動,而旗桿AB與影子BC所成的角度是否會發(fā)生改變?
(3)旗桿AB與地面上任意一條不過點B的直線B1C1的位置關(guān)系如何?依據(jù)是什么?
設(shè)計意圖:第(1)與(2)兩問旨在讓學(xué)生發(fā)現(xiàn)旗桿AB所在直線始終與地面上任意一條過點B的直線垂直,第(3)問進一步讓學(xué)生發(fā)現(xiàn)旗桿AB所在直線始終與地面上任意一條不過點B的直線也垂直,在這里,主要引導(dǎo)學(xué)生通過觀察直立于地面的旗桿與它在地面的影子的位置關(guān)系來分析、歸納直線與平面垂直這一概念.
(學(xué)生敘寫定義,并建立文字、圖形、符號這三種語言的相互轉(zhuǎn)化)思考:(1)如果一條直線垂直于一個平面內(nèi)的無數(shù)條直線,那么這條直線是否與這個平面垂直?
(2)如果一條直線垂直于一個平面,那么這條直線是否垂直于這個平面內(nèi)的所有直線?(對問(1),在學(xué)生回答的基礎(chǔ)上用直角三角板在黑板上直觀演示;對問(2)可引導(dǎo)學(xué)生給出符號語言表述:若,則)
設(shè)計意圖:通過對問題(1)的辨析討論,深化直線與平面垂直的概念.通過對問題(2)的辨析討論旨在讓學(xué)生掌握線線垂直的一種判定方法. 通常定義可以作為判定依據(jù),但由于利用直線與平面垂直的定義直接判定直線與平面垂直需要考察平面內(nèi)的每一條直線與已知直線是否垂直,這給我們的判定帶來困難,因為我們無法去一一檢驗.這就有必要去尋找比定義法更簡捷、可行的直線與平面垂直的判定方法. 3.探究直線與平面垂直的判定定理 創(chuàng)設(shè)情境 猜想定理:某公司要安裝一根8米高的旗桿,兩位工人先從旗桿的頂點掛兩條長10米的繩子,然后拉緊繩子并把繩子的下端放在地面上兩點(和旗桿腳不在同一直線上).如果這兩點都和旗桿腳距離6米,那么表明旗桿就和地面垂直了,你知道這是為什么嗎?
設(shè)計意圖:引導(dǎo)學(xué)生根據(jù)直觀感知以及已有經(jīng)驗,進行合情推理,猜想判定定理. 師生活動:(折紙試驗)請同學(xué)們拿出一塊三角形紙片,我們一起做一個試驗:過三角形的頂點A翻折紙片,得到折痕AD(如圖1),將翻折后的紙片豎起放置在桌面上(BD、DC與桌面接觸)
問題5:(1)折痕AD與桌面垂直嗎?
(2)如何翻折才能使折痕AD與桌面所在的平面垂直?(組織學(xué)生動手操作、探究、確認(rèn))
設(shè)計意圖:通過折紙讓學(xué)生發(fā)現(xiàn)當(dāng)且僅當(dāng)折痕AD是BC邊上的高時,且B、D、C不在同一直線上的翻折之后豎起的折痕AD才不偏不倚地站立著,即AD與桌面垂直(如圖2),其它位置都不能使AD與桌面垂直.
問題6:在你翻折紙片的過程中,紙片的形狀發(fā)生了變化,這是變的一面,那么不變的一面是什么呢?(可從線與線的關(guān)系考慮)如果我們把折痕抽象為直線,把BD、CD抽象為直線,把桌面抽象為平面(如圖3),那么你認(rèn)為保證直線與平面垂直的條件是什么?
對于兩條相交直線必須在平面內(nèi)這一點,教師可引導(dǎo)學(xué)生操作:將紙片繞直線AD(點D始終在桌面內(nèi))轉(zhuǎn)動,使得直線CD、BD不在桌面所在平面內(nèi).問:直線AD現(xiàn)在還垂直于桌面所在平面嗎?(此處引導(dǎo)學(xué)生認(rèn)識到直線CD、BD都必須是平面內(nèi)的直線)
設(shè)計意圖:通過操作讓學(xué)生認(rèn)識到兩條相交直線必須在平面內(nèi),從而更凸現(xiàn)出直線與平面垂直判定定理的核心詞:平面內(nèi)兩條相交直線.
問題7:如果將圖3中的兩條相交直線、的位置改變一下,仍保證,(如圖4)你認(rèn)為直線還垂直于平面嗎?
設(shè)計意圖:讓學(xué)生明白要判定一條已知直線和一個平面是否垂直,取決于在這個平面內(nèi)能否找出兩條相交直線和已知直線垂直,至于這兩條相交直線是否和已知直線有公共點,這是無關(guān)緊要的.
根據(jù)試驗,請你給出直線與平面垂直的判定方法.
(學(xué)生敘寫判定定理,給出文字、圖形、符號這三種語言的相互轉(zhuǎn)化)問題8:(1)與直線與平面垂直的定義相比,你覺得這個判定定理的優(yōu)越性體現(xiàn)在哪里?(2)你覺得定義與判定定理的共同點是什么? 設(shè)計意圖:通過和直線與平面垂直定義的比較,讓學(xué)生體會“無限轉(zhuǎn)化為有限”的數(shù)學(xué)思想,通過尋找定義與判定定理的共同點,感悟和體會“空間問題轉(zhuǎn)化為平面問題”、“線面垂直轉(zhuǎn)化為線線垂直”的數(shù)學(xué)思想.思考:現(xiàn)在,你知道兩位工人是根據(jù)什么原理安裝旗桿的嗎?為什么要求繩子在地面上兩點和旗桿腳不在同一直線上?
如果安裝完了,請你去檢驗旗桿與地面是否垂直,你有什么好方法?
設(shè)計意圖:用學(xué)到手的知識解釋實際生活中的問題,增強學(xué)生用數(shù)學(xué)的意識,同時通過提出 “為什么要求繩子在地面上兩點和旗桿腳不在同一直線上?”(對該問題可引導(dǎo)學(xué)生用三角形紙片來驗證),從而來深化對直線與平面垂直判定定理的理解.
4.直線與平面垂直判定定理的應(yīng)用
如圖5,在長方體ABCD-A1B1C1D1中,請列舉與平面ABCD垂直的直線.并說明這些直線有怎樣的位置關(guān)系?
思考:如圖6,已知,則嗎?請說明理由.
(分別用直線與平面垂直的判定定理、直線與平面垂直的定義證明;并讓學(xué)生用語言敘述:如果兩條平行直線中的一條直線垂直于一個平面,那么另一條直線也垂直于這個平面)設(shè)計意圖:這個例題給出了判斷直線和平面垂直的一個常用的命題,這個命題體現(xiàn)了平行關(guān)系與垂直關(guān)系之間的聯(lián)系.
練習(xí):如圖7,在三棱錐V-ABC中,VA=VC,AB=BC,K是AC的中點. 求證:AC⊥平面VKB
思考:
(1)在三棱錐V-ABC中,VA=VC,AB=BC,求證:VB⊥AC;
(2)在⑴中,若E、F分別是AB、BC 的中點,試判斷EF與平面VKB的位置關(guān)系;
(3)在⑵的條件下,有人說“VB⊥AC,VB⊥EF,∴VB⊥平面ABC”,對嗎? 設(shè)計意圖:例2重在對直線與平面垂直判定定理的應(yīng)用.變式(1)在例2的基礎(chǔ)上,應(yīng)用了直線與平面垂直的意義;變式(2)是對例1判定方法的應(yīng)用;變式(3)的判斷在于進一步鞏固直線與平面垂直的判定定理.3個小題環(huán)環(huán)相扣,匯集了本節(jié)課的學(xué)習(xí)內(nèi)容,突出了知識間內(nèi)在聯(lián)系和融會貫通.
5.小結(jié)回授
(1)本節(jié)課你學(xué)會了哪些判斷直線與平面垂直的方法?試用自己理解的語言敘述.(2)直線與平面垂直的判定定理中體現(xiàn)了哪些數(shù)學(xué)思想方法?
設(shè)計意圖:以問題討論的方式進行小結(jié),培養(yǎng)學(xué)生反思的習(xí)慣,鼓勵學(xué)生運用自己理解的語言對問題進行質(zhì)疑和概括.
七、目標(biāo)檢測設(shè)計
1.PA⊥平面ABC,BC⊥AC,寫出圖中所有的直角三角形.
第五篇:人教B版高中數(shù)學(xué)必修2第一章1.2.3直線與平面垂直的判定
全國中小學(xué)“教學(xué)中的互聯(lián)網(wǎng)搜索”優(yōu)秀教學(xué)案例評選
教案設(shè)計(1.2.3直線與平面垂直的判定)
②觀察實例:學(xué)生將書打開直立于桌面,觀察書脊與桌面的位置關(guān)系。
③提出思考問題:如何定義一條直線與一個平面垂直?
(2)觀察歸納—形成概念
①學(xué)生畫圖:將旗桿與地面的位置關(guān)系畫出相應(yīng)的幾何圖形。
②提出問題:能否用一條直線垂直于一個平面內(nèi)的直線,來定義這條直線與這個平面垂直呢?(學(xué)生討論并交流)
③動畫演示:旗桿與它在地面上影子的位置變化,重點讓學(xué)生體會直線與平面內(nèi)不過垂足的直線也垂直。
④歸納直線與平面垂直的定義、介紹相關(guān)概念,并要求學(xué)生用符號語言表示。
(3)辨析討論—深化概念
判斷正誤:
①如果一條直線垂直于一個平面內(nèi)的無數(shù)條直線,那么這條直線就與這個平面垂直。②若a⊥α,bα,則a⊥b。(學(xué)生利用鐵絲和三角板進行演示,討論交流。)
這一環(huán)節(jié)是本節(jié)課的基礎(chǔ)。線面垂直定義比較抽象,若直接給出,學(xué)生只能死記硬背,這樣,不利于學(xué)生思維能力的發(fā)展。如何使學(xué)生從“線面垂直的直觀感知”中抽象出“直線與平面內(nèi)所有直線垂直”是本環(huán)節(jié)的關(guān)鍵,因此,在教學(xué)中,充分發(fā)揮學(xué)生的主觀能動性,先安排學(xué)生課前收集大量圖片,多感知,然后,通過學(xué)生動手畫圖、討論交流和多媒體課件演示,使其經(jīng)歷從實際背景中抽象出幾何概念的全過程,從而形成完整和正確的概念,最后,通過辨析討論加深學(xué)生對概念的理解。這種立足于感性認(rèn)識的歸納過程,即由特殊到一般,由具體到抽象,既有助于學(xué)生對概念本質(zhì)的理解,又使學(xué)生的抽象思維得到發(fā)展,培養(yǎng)學(xué)生的幾何直觀能力。
2、直線與平面垂直的判定定理的探究
這個探究活動是本節(jié)課的關(guān)鍵所在,分三步進行:
(1)分析實例—猜想定理
問題①在長方體ABCD-A1B1C1D1中,棱BB1與底面ABCD垂直,觀察BB1與底面ABCD內(nèi)直線AB、BC有怎樣的位置關(guān)系?由此你認(rèn)為保證BB1⊥底面ABCD的條件是什么?
問題②如何將一張長方形賀卡直立于桌面?
問題③由上述兩個實例,你能猜想出判斷一條直線與一個平面垂直的方法嗎?
學(xué)生提出猜想:
如果一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直。
(2)動手實驗—確認(rèn)定理
折紙實驗:過△ABC的頂點A翻折紙片,得到折痕AD,再將翻折后的紙片豎起放置在桌面上(BD、DC與桌面接觸),進行觀察并思考:
問題④折痕AD與桌面垂直嗎?如何翻折才能使折痕AD與桌面所在的平面垂直?
問題⑤由折痕AD⊥BC,翻折之后垂直關(guān)系發(fā)生變化嗎?(即AD⊥CD,AD⊥BD還成立嗎?)由此你能得到什么結(jié)論?
學(xué)生折紙可能會出現(xiàn)“垂直”與“不垂直”兩種情況,引導(dǎo)這兩類學(xué)生進行交流,分析“不垂直”的原因,從而發(fā)現(xiàn)垂直的條件—折痕AD是BC邊上的高,進而引導(dǎo)學(xué)生觀察動態(tài)演示模擬試驗,根據(jù)“兩條相交直線確定一個平面”的事實和實驗中的感知進行合情推理,歸納出線面垂直的判定定理,并要求學(xué)生畫圖,用符號語言表示。
(3)質(zhì)疑反思—深化定理
問題⑥如果一條直線與平面內(nèi)的兩條平行直線都垂直,那么該直線與此平面垂直嗎?由于兩條平行直線也確定一個平面,這個問題是學(xué)生會問到的??梢砸龑?dǎo)學(xué)生通過操作模型(三角板)來確認(rèn),消除學(xué)生心中的疑惑,進一步明確線面垂直的判定定理中的“兩條”、“相交”缺一不可!
在本環(huán)節(jié)中,借助學(xué)生最熟悉的長方體模型和生活中最簡單的經(jīng)驗,引導(dǎo)學(xué)生分析,將“與平面內(nèi)所有直線垂直”逐步轉(zhuǎn)化為“與平面內(nèi)兩條相交直線垂直”,并以此為基礎(chǔ),進行合情推理,提出猜想,使學(xué)生的思維順暢,為進一步的探究做準(zhǔn)備。
由于《課程標(biāo)準(zhǔn)》中不要求嚴(yán)格證明線面垂直的判定定理,只要求直觀感知、操作確認(rèn),注重合情推理。因而,安排學(xué)生動手實驗,討論交流、為便于學(xué)生對實驗現(xiàn)象進行觀察和分析,自己發(fā)現(xiàn)結(jié)論,還增設(shè)了動態(tài)演示模擬試驗,讓學(xué)生更加清楚地看到“平面化”的過程。學(xué)生在已有數(shù)學(xué)知識的基礎(chǔ)上,加之以公理的支撐,便可以確認(rèn)定理。
教學(xué)中,讓學(xué)生真正體會到知識產(chǎn)生的過程,有利于發(fā)展學(xué)生的合情推理能力和空間想象能力。與此同時,鼓勵學(xué)生大膽嘗試,不怕失敗,教訓(xùn)有時比經(jīng)驗更深刻,使學(xué)生在自己的實踐中感受數(shù)學(xué)探索的樂趣,獲得成功的體驗,增強學(xué)習(xí)數(shù)學(xué)的興趣。在討論交流中激發(fā)學(xué)生的積極性和創(chuàng)造性,為今后自主學(xué)習(xí)打下基礎(chǔ)。
3、直線與平面垂直的判定定理的初步應(yīng)用
考慮到學(xué)生處于初學(xué)階段,補充利用練習(xí)(1)和練習(xí)(2)做鋪墊。學(xué)生先嘗試去做并板演,師生共同評析,幫助學(xué)生明確運用定理時的具體步驟,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)倪壿嬐评怼>毩?xí)(3)使學(xué)生對線面垂直認(rèn)識由感性上升到理性;同時,展示了平行與垂直之間的聯(lián)系,給出判斷線面垂直的一種間接方法,為今后多角度研究問題提供思路。根據(jù)學(xué)生的實際情況,本題可機動處理。
4、布置作業(yè)—自主探究
(1)如圖,點P是平行四邊形ABCD所在平面外一點,O是對角線AC與BD的交點,且PA=PC,PB=PD.求證:PO⊥平面ABCD