第一篇:函數(shù)的單調(diào)性教學(xué)設(shè)計
函數(shù)的單調(diào)性教學(xué)設(shè)計
1.設(shè)計構(gòu)思: 1.1設(shè)計理念:
本設(shè)計基于學(xué)生的認知規(guī)律,在設(shè)計時將盡可能采用探索式教學(xué),讓學(xué)生自己觀察,主動去探索。而教學(xué)時盡可能夠顧及到全體學(xué)生,達到優(yōu)生得到培養(yǎng),后進生也有所收獲的效果。同時在教學(xué)中將理論聯(lián)系實際,讓學(xué)生用所學(xué)的知識去解決問題(練習(xí))。而教師在整個過程中充當引導(dǎo)者、組織者,注重培養(yǎng)學(xué)生的歸納發(fā)現(xiàn)能力、理論證明能力、多位拓展能力等。
1.2教材地位和作用:
函數(shù)單調(diào)性是高中數(shù)學(xué)中相當重要的一個基礎(chǔ)知識點,是研究和討論初等函數(shù)有關(guān)性質(zhì)的基礎(chǔ)。掌握本節(jié)內(nèi)容不僅是前面所學(xué)函數(shù)知識的延伸,更為今后的函數(shù)學(xué)習(xí)打下理論基礎(chǔ),還有利于培養(yǎng)學(xué)生的思維能力,及分析問題和解決問題的能力。
1.3 教學(xué)目標的設(shè)計: 重點:函數(shù)單調(diào)性的概念; 難點:函數(shù)單調(diào)性的判定及證明; 關(guān)鍵:增函數(shù)與減函數(shù)的概念的理解。教學(xué)目標的確定及依據(jù):
依據(jù)教學(xué)目標和教育原則,本節(jié)知識的特點以及學(xué)生已有的知識結(jié)構(gòu)現(xiàn)狀,我制定了如下教育教學(xué)目標。
(1)、知識目標:理解函數(shù)單調(diào)性的概念,掌握判斷函數(shù)單調(diào)性的基本方法(作差比較法,作商比較法。主要是做差比較法);了解函數(shù)單調(diào)區(qū)間的概念。
(2)、能力目標:培養(yǎng)學(xué)生閱讀、自學(xué)、分析、歸納能力;抽象思維能力及推理判斷的能力和勇于探索的精神。
(3)、情感目標:體會用運動變化的觀點去觀察、分析事物的方法。培養(yǎng)學(xué)生對數(shù)學(xué)美的藝術(shù)體驗。在平等的教學(xué)氛圍中,通過學(xué)生之間、師生之間的交流、合作與評價,拉近學(xué)生之間、師生之間的情感距離。培養(yǎng)學(xué)生對數(shù)學(xué)的興趣。
1.4 教學(xué)方法:輔導(dǎo)自學(xué)法、討論探究法、講授法。
教學(xué)手段:根據(jù)本節(jié)內(nèi)容的特點,為了更有效地突出教學(xué)重點,突破教學(xué)難點,展示知識的發(fā)生過程,提高課堂效率,使教學(xué)目標更完美地體現(xiàn)。我將運用現(xiàn)代信息技術(shù)輔助課堂教學(xué)。使用投影儀對學(xué)生探究的成果進行展示。
1.5教學(xué)過程: 課題引入(引入---設(shè)疑----激趣)-------新授概念(自主探究---成果展示---總結(jié)強調(diào))概念應(yīng)用1(總結(jié)探究-------延伸過渡調(diào))概念應(yīng)用2(引導(dǎo)探究----總結(jié)歸納)應(yīng)用探究(實踐-------總結(jié)提高)課后延展(再實踐-------再提高)2.實施方案
設(shè)疑:觀察給出的函數(shù)的圖象,并指出在定義域內(nèi)的上升與下降情況。激趣:如何用x與 f(x)來描述上升的圖象?如何用x與 f(x)來描述下降的圖象?
(意圖:明確目標、引起思考。給出函數(shù)單調(diào)性的圖形語言,調(diào)動學(xué)生的參與意識,通過直觀圖形得出結(jié)論,滲透數(shù)形結(jié)合的數(shù)學(xué)思想。用提問的方式,簡單介紹本節(jié)課的主要內(nèi)容,激發(fā)學(xué)習(xí)興趣要求學(xué)生帶著問題閱讀教材,通過問題的解決掌握基本內(nèi)容。有助于培養(yǎng)學(xué)生的觀察能力、自學(xué)能力和解決問題的能力。)
成果展示 總結(jié)強調(diào):
1、單調(diào)區(qū)間如何理解和劃分?
2、增、減函數(shù)的定義用語言如何描述?(可以結(jié)合初中對函數(shù)的描述進行引導(dǎo))
3、如何從圖形上判斷單調(diào)性?
(意圖: 通過展示自學(xué)成果,加深對概念的多方理解,讓部分學(xué)生體會學(xué)習(xí)的樂趣,從而激發(fā)和帶動其他同學(xué)的學(xué)習(xí)積極性。另外強調(diào)兩點:
1、必須在函數(shù)定義域上來討論函數(shù)增減性;
2、對于定義域內(nèi)的某個區(qū)間的任意兩個自變量成立)
總結(jié)探究:對一次函數(shù)y=kx+b
1、k的正、負對函數(shù)的單調(diào)性有何影響?
2、b的變化對函數(shù)的單調(diào)性有何影響?
(意圖:通過討論使學(xué)生深入理解和掌握概念,培養(yǎng)學(xué)生的抽象思維能力,培養(yǎng)學(xué)生研究數(shù)學(xué)的能力,學(xué)會歸納總結(jié)。)
延伸過渡:一般函數(shù)除從圖形上判斷單調(diào)性,還有其它證明和判斷方法嗎? 引導(dǎo)探究:在例2 的證明中在由x1>x2
時
判斷f(x1),f(x2)大小時 的基本方法是什么?還有其它方法嗎?(作商法)
總結(jié)歸納:
1、作差時的基本變形有那些?(主要用:分解因式、配方等)
2、什么時候可以用作商法?(意圖:學(xué)生難以從例題中歸納出判斷(證明)方法及步驟,所以在詳細講解的過程中,通過分析、引導(dǎo)學(xué)生抽象、概括出方法及步驟,提示學(xué)生注意證明過程的規(guī)范性及嚴謹性。同時說明數(shù)學(xué)題型間的轉(zhuǎn)化關(guān)系,使學(xué)生體驗數(shù)學(xué)中的藝術(shù)美。另外通過探究加深對基本方法的掌握,拓寬解題思路使學(xué)生容易突破本節(jié)的難點,掌握本節(jié)重點)
應(yīng)用探究;
1、函數(shù)f(x)=1的定義域什么? x12、函數(shù)f(x)=在定義域上也是減函數(shù)嗎?
x3、課堂實踐(練習(xí))
(意圖:通過此題的探究、輔導(dǎo)、講解,強化解題步驟,形成并提高解題能力。調(diào)動學(xué)生參與討論,形成生動活潑的學(xué)習(xí)氛圍,從而培養(yǎng)學(xué)生的發(fā)散思維,開闊解題思路,使學(xué)生形成良好的學(xué)習(xí)習(xí)慣)。
課后延展:、作業(yè),思考
1、比較一次函數(shù)y=2x+3和二次函數(shù)y=x2的圖象上有最低點和最高點嗎?
2、通過圖象觀察函數(shù)值有最大或最小值嗎?
3、再換成函數(shù)y=2x+3(0 函數(shù)單調(diào)性教學(xué)設(shè)計 關(guān)于函數(shù)的單調(diào)性習(xí)題課教學(xué)設(shè)計,本人在聽了專家的講解后感到受益匪淺,結(jié)合平時的教學(xué),有些教學(xué)方面的心得如下,希望專家和同行批評指正。 本節(jié)課是高中數(shù)學(xué)新課程標準必修1的第2章函數(shù)里的函數(shù)基本性質(zhì)中介紹的第一個性質(zhì)。它既是在學(xué)生學(xué)過函數(shù)概念等知識后的延續(xù)和拓展,又是后面研究指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù)各類函數(shù)的單調(diào)性的基礎(chǔ),而且函數(shù)單調(diào)性在解決函數(shù)變化趨勢、值域、最值、不等式等許多問題中有著廣泛的應(yīng)用。對整個高中數(shù)學(xué)教學(xué)起著重要的奠基作用。研究函數(shù)單調(diào)性的過程體現(xiàn)了數(shù)學(xué)的數(shù)形結(jié)合和歸納轉(zhuǎn)化的思想方法,反映了從特殊到一般的數(shù)學(xué)歸納思維形式,這對培養(yǎng)學(xué)生的創(chuàng)新意識、發(fā)展學(xué)生的思維能力,掌握數(shù)學(xué)的思想方法具有重大意義。下面我就這部分內(nèi)容的習(xí)題教學(xué)提出一些不成熟的做法。 教學(xué)目標: (1)在知識方面,通過習(xí)題訓(xùn)練,使學(xué)生能加深對函數(shù)單調(diào)性概念的理解,進一步掌握判斷并證明函數(shù)的單調(diào)性方法、學(xué)會應(yīng)用函數(shù)的單調(diào)性解決相關(guān)問題。 (2)在能力方面,培養(yǎng)學(xué)生歸納、抽象以及推理的能力,提高學(xué)生創(chuàng)新的意識,并滲透數(shù)形結(jié)合的思想。 (3)在價值觀和情感教育方面,讓學(xué)生在解題的過程中體驗數(shù)學(xué)美,培養(yǎng)學(xué)生樂于求索的精神,提高學(xué)生的數(shù)學(xué)修養(yǎng),使其養(yǎng)成科學(xué)、嚴謹?shù)难芯繎B(tài)度。教學(xué)重點和難點: 本節(jié)課的教學(xué)重點是函數(shù)單調(diào)性的判定、證明及應(yīng)用。其中的教學(xué)難點是函數(shù)單調(diào)性的應(yīng)用和復(fù)合函數(shù)單調(diào)性的理解。教法和學(xué)法: 在教法上采用傳統(tǒng)的講練結(jié)合。在具體實施上,將采用計算機輔助教學(xué)的手段,為了貼切地服務(wù)于教學(xué)目標,課件的制作是為了能更好的講練習(xí)題,提高課堂效率,用是PowerPoint軟件。而學(xué)生在學(xué)習(xí)過程中不僅要訓(xùn)練知識技能,還要達到思維的訓(xùn)練,因此這節(jié)課要以學(xué)生為主體,給學(xué)生充足的活動空間。作為教師,我要做好啟發(fā)和規(guī)范地指導(dǎo),引領(lǐng)學(xué)生大膽地探索,并培養(yǎng)其嚴謹?shù)臄?shù)學(xué)品質(zhì)。 教學(xué)過程設(shè)計: 大概分為復(fù)習(xí)回顧、例題講解、規(guī)律小結(jié)、鞏固練習(xí)四個版塊,最后布置作業(yè)。下面為每部分的具體構(gòu)思。 1、復(fù)習(xí)分為概念回顧和基礎(chǔ)練習(xí)兩部分,預(yù)計費時7到8分鐘左右,其中概念為(1)函數(shù)單調(diào)性和單調(diào)區(qū)間的定義以及用定義證明函數(shù)單調(diào)性的步驟,(2)怎么判斷函數(shù)單調(diào)性及單調(diào)區(qū)間——可以用定義法,也可以從圖象上觀察。形式主要由學(xué)生口答?;A(chǔ)練習(xí)部分選擇了5道小題目,課件形式給出,請學(xué)生口答,內(nèi)容涉及單調(diào)性的理解,一次函數(shù)、二次函數(shù)的單調(diào)性,最后一題讓學(xué)生們畫出圖象,觀察圖象的“升降”寫出單調(diào)區(qū)間,滲透數(shù)形結(jié)合的思想,都是小題目,難度小,用時少,但緊扣概念,也讓學(xué)生迅速熱身,無形中抓住了學(xué)生的課堂注意力。 2、例題選擇方面: 關(guān)于例 1、試判斷函數(shù)f(x)?變式:討論函數(shù)f(x)?x(?1?x?1)的單調(diào)性并證明; x2?1ax(?1?x?1)的單調(diào)性。x2?1選擇這個題目是為了讓學(xué)生更好地掌握定義法證明函數(shù)單調(diào)性的方法和基本步驟,變式的選擇是為培養(yǎng)學(xué)生分情況討論的意識和能力,講解過程中要注意證明的規(guī)范性,進一步培養(yǎng)學(xué)生嚴謹、規(guī)范的科學(xué)態(tài)度和品質(zhì)。 關(guān)于例 2、求函數(shù)y?x?2?1的值域。x?2函數(shù)單調(diào)性的一個很重要的應(yīng)用是求函數(shù)的值域或最值,選擇這道題,教會學(xué)生利用單調(diào)性來求函數(shù)值域的方法。讓學(xué)生體會利用單調(diào)性求值域時的簡捷有效。豐富學(xué)生的知識體系。 關(guān)于例 3、已知函數(shù)f(x)是定義在(0,??)上的增函數(shù),且f()?f(x)?f(y) xy(1)求f(1)的值 (2)若f(3)?1,解不等式f(x?5)?2 這是一道抽象函數(shù)的題目,對于求出f(1)、f(9)分別是0和2用的是賦值法,這是抽象函數(shù)中常用的方法,不等式變?yōu)閒(x?5)?f(9),應(yīng)用函數(shù)單調(diào)性,將抽象函數(shù)函數(shù)值的大小關(guān)系,轉(zhuǎn)化為自變量之間的大小關(guān)系,即??x?5?9,提醒學(xué)生注意函數(shù)定義域! ?x?5?0選擇這個抽象函數(shù)的例子,目的就是讓學(xué)生體會并掌握怎么樣利用單調(diào)性轉(zhuǎn)化函數(shù)和自變量的大小關(guān)系。 關(guān)于例 4、已知f(x)是R上的減函數(shù),g(x)??x2?4x,求函數(shù)h(x)?f(g(x))的單調(diào)增區(qū)間。 最終的那個函數(shù)明顯是個復(fù)合函數(shù),函數(shù)g(x)圖象的對稱軸是x?2,開口向下,在[2,??)上遞減,又f(x)也遞減,所以[2,??)是個增區(qū)間。 本題小結(jié):兩個函數(shù)單調(diào)性相同則復(fù)合后是增,相反則復(fù)合后是減。 3、關(guān)于這部分的課堂小結(jié): 我們可以應(yīng)用函數(shù)的單調(diào)性求函數(shù)值域、解不等式,以及證明一些代數(shù)命題。 4、關(guān)于鞏固練習(xí)題目方面的選擇: 這部分選兩題,類型在例題中已出現(xiàn),其中第一個要先證明函數(shù)的單調(diào)性,再求值域。而第二題則先要判斷單調(diào)性,再進行證明,確定了單調(diào)性之后再應(yīng)用到三角形的問題中,使學(xué)生在解題的過程中體會在一些代數(shù)不等式證明中如何應(yīng)用函數(shù)單調(diào)性的。 這部分讓學(xué)生自己做,用投影儀和板書結(jié)合,規(guī)范其書寫和論證。 5、關(guān)于作業(yè)布置方面: 結(jié)合本節(jié)課的講解內(nèi)容,為進一步鞏固教學(xué)成果,在作業(yè)題型選擇上,本人力求做到緊扣和深化上課內(nèi)容。一共有三大題,第一題是求單調(diào)區(qū)間,其中要用圖形,數(shù)形結(jié)合;第二題要利用例4的小結(jié)“兩個函數(shù)單調(diào)性相同則復(fù)合后是增,相反則復(fù)合后是減?!?;第三題是抽象函數(shù)題,與課上的例3類型一樣,讓學(xué)生課后練習(xí)鞏固。 以上是我對這部分習(xí)題教學(xué)方面的一些思考,希望得到專家的指正! 函數(shù)單調(diào)性概念教學(xué)的三個關(guān)鍵點 ──兼談《函數(shù)單調(diào)性》的教學(xué)設(shè)計 北京教育學(xué)院宣武分院 彭 林 函數(shù)單調(diào)性是學(xué)生進入高中后較早接觸到的一個完全形式化的抽象定義,對于仍然處于經(jīng)驗型邏輯思維發(fā)展階段的高一學(xué)生來講,有較大的學(xué)習(xí)難度。一直以來,這節(jié)課也都是老師教學(xué)的難點。最近,在我區(qū)“青年教師評優(yōu)課”上,聽了多名教師對這節(jié)課不同風(fēng)格的課堂教學(xué),通過對他們教學(xué)案例的研究和思考,筆者認為,在函數(shù)單調(diào)性概念的教學(xué)中,關(guān)鍵是把握住如下三個關(guān)鍵點。 關(guān)鍵點1。學(xué)生 學(xué)習(xí)函數(shù)單調(diào)性的認知基礎(chǔ)是什么? 在這個內(nèi)容之前,已經(jīng)教學(xué)過一次函數(shù)、二次函數(shù)、反比例函數(shù)等簡單函數(shù),函數(shù)的變量定義和映射定義,以及函數(shù)的表示。對函數(shù)是一個刻畫某些運動變化數(shù)量關(guān)系的數(shù)學(xué)概念,也已經(jīng)形成初步認識。接踵而來的任務(wù)是對函數(shù)應(yīng)該繼續(xù)研究什么。在數(shù)學(xué)研究中,建立一個數(shù)學(xué)概念的意義就是揭示它的本質(zhì)特征,即共同屬性或不變屬性。對各種函數(shù)模型而言,就是研究它們所描述的運動關(guān)系的變化規(guī)律,也就是這些運動關(guān)系在變化之中的共同屬性或不變屬性,即“變中不變”的性質(zhì)。按照這種科學(xué)研究的思維方式,使得當前來討論函數(shù)的一些性質(zhì),就成為順理成章的、必要的和有意義的數(shù)學(xué)活動。至于在多種函數(shù)性質(zhì)中,選擇這個時機來討論函數(shù)的單調(diào)性而不是其他性質(zhì),是因為函數(shù)的單調(diào)性是學(xué)生從已經(jīng)學(xué)習(xí)的函數(shù)中比較容易發(fā)現(xiàn)的一個性質(zhì)。 就中小學(xué)生與單調(diào)性相關(guān)的經(jīng)歷而言,學(xué)生認識函數(shù)單調(diào)性可以分為四個階段: 第一階段,經(jīng)驗感知階段(小學(xué)階段),知道一個量隨另一個量的變化而變化的具體情境,如“隨著年齡的增長,我的個子越來越高”,“我認識的字越多,我的知識就越多”等。 第二階段,形象描述階段(初中階段),能用抽象的語言描述一個量隨另一個量變化的趨勢,如“y隨著x的增大而減少”。 第三階段,抽象概括階段(高中必修1),能進行脫離具體和直觀對象的抽象化、符號化的概括,并通過具體函數(shù),初步體會單調(diào)性在研究函數(shù)變化中的作用。 第四階段,認識提升階段(高中選修系列1、2),要求學(xué)生能初步認識導(dǎo)數(shù)與單調(diào)性的聯(lián)系。 基于上述認識,函數(shù)單調(diào)性教學(xué)的引入應(yīng)該從學(xué)生的已有認知出發(fā),建立在學(xué)生初中已學(xué)的一次函數(shù)、二次函數(shù)以及反比例函數(shù)的基礎(chǔ)上,即從學(xué)生熟悉的常見函數(shù)的圖象出發(fā),直觀感知函數(shù)的單調(diào)性,完成對函數(shù)單調(diào)性定義的第一次認識.。 讓學(xué)生分別作出函數(shù)數(shù)值有什么變化規(guī)律? 的圖象,并且觀察自變量變化時,函在學(xué)生畫圖的基礎(chǔ)上,引導(dǎo)學(xué)生觀察圖象,獲得信息:第一個圖象從左向右逐漸上升,y隨x的增大而增大;第二個圖象從左向右逐漸下降,y隨x的增大而減小.然后讓學(xué)生明確,對于自變量變化時,函數(shù)值具有這兩種變化規(guī)律的函數(shù),我們分別稱為增函數(shù)和減函數(shù).第三個函數(shù)圖象的上升與下降要分段說明,通過討論使學(xué)生明確函數(shù)的單調(diào)性是對定義域內(nèi)某個區(qū)間而言的. 在此基礎(chǔ)上,教師引導(dǎo)學(xué)生用自己的語言描述增函數(shù)的定義: 如果函數(shù)在某個區(qū)間上的圖象從左向右逐漸上升,或者如果函數(shù) 在某個區(qū)間上隨自變量x的增大,y也越來越大,我們說函數(shù)在該區(qū)間上為增函數(shù). 關(guān)鍵點2。為什么要用數(shù)學(xué)的符號語言定義函數(shù)的單調(diào)性概念? 對于函數(shù)單調(diào)性概念的教學(xué)而言,有一個很重要的問題,即為什么要進一步形式化。學(xué)生在初中已經(jīng)接觸過一次函數(shù)、反比例函數(shù)、二次函數(shù),對函數(shù)的增減性已有初步的認識:隨x增大y增大是增函數(shù),隨x增大y 減小是減函數(shù)。這個觀念對他們而言是易于接受的,很形象,他們會覺得這樣的定義很好,為什么還要費神去進行符號化呢?如果教師能通過教學(xué)設(shè)計,讓學(xué)生感受到進一步符號化、形式化的必要性,造成認知沖突,則學(xué)生研究的興趣就會大大提高,主動性也會更強。其實,數(shù)學(xué)概念就是一系列常識不斷精微化的結(jié)果,之所以要進一步形式化,完全是數(shù)學(xué)精確性、嚴密性的要求,因為只有達到這種符號化、形式化的程度,才可以進行準確的計算,進行推理論證。 所以,在教學(xué)中提出類似如下的問題是非常必要的: 右圖是函數(shù)函數(shù)嗎? 的圖象,能說出這個函數(shù)分別在哪個區(qū)間為增函數(shù)和減 對于這個問題,學(xué)生的困難是難以確定分界點的確切位置.通過討論,使學(xué)生感受到用函數(shù)圖象判斷函數(shù)單調(diào)性雖然比較直觀,但有時不夠精確,需要結(jié)合解析式進行嚴密化、精確化的研究,使學(xué)生體會到用數(shù)量大小關(guān)系嚴格表述函數(shù)單調(diào)性的必要性,從而將函數(shù)的單調(diào)性研究從研究函數(shù)圖象過渡到研究函數(shù)的解析式.關(guān)鍵點3:如何用形式化的語言定義函數(shù)的單調(diào)性? 從數(shù)學(xué)學(xué)科這個整體來看,數(shù)學(xué)的高度抽象性造成了數(shù)學(xué)的難懂、難教、難學(xué),解決這一問題的基本途徑是順應(yīng)學(xué)習(xí)者的認知規(guī)律:在需要和可能的情況下,盡量做到從直觀入手,從具體開始,逐步抽象,即數(shù)學(xué)的思考方式。恰當運用圖形語言、自然語言和符號化的形式語言,并進行三者之間必要的轉(zhuǎn)化,可以說,這是學(xué)習(xí)數(shù)學(xué)的基本思考方式。而函數(shù)單調(diào)性這一內(nèi)容正是體現(xiàn)數(shù)學(xué)基本思考方式的一個良好載體,教學(xué)中應(yīng)該充分關(guān)注到這一點。長此以往,便可使學(xué)生在學(xué)習(xí)知識的同時,學(xué)到比知識更重要的東西—學(xué)會如何思考?如何進行數(shù)學(xué)的思考? 一般說,對函數(shù)單調(diào)性的建構(gòu)有兩個重要過程,一是建構(gòu)函數(shù)單調(diào)性的意義,二是通過思維構(gòu)造把這個意義用數(shù)學(xué)的形式化語言加以描述。對函數(shù)單調(diào)性的意義,學(xué)生通過對若干函數(shù)圖象的觀察并不難認識,因此,前一過程的建構(gòu)學(xué)習(xí)相對比較容易進行。后一過程的進行則有相當?shù)碾y度,其難就難在用數(shù)學(xué)的符合語言來描述函數(shù)單調(diào)性的定義時,如何才能最大限度地通過學(xué)生自己的思維活動來完成。這其中有兩個難點: (1)“x增大”如何用符號表示;同樣,“f(x)增大”如何用符號表示。(2)“‘隨著’x增大,函數(shù)f(x)‘也’增大”,如何用符號表示。 用數(shù)學(xué)符號描述這兩種數(shù)學(xué)意義的最大要害之處,在于要用數(shù)學(xué)的符號來描述動態(tài)的數(shù)學(xué)對象。 在初中數(shù)學(xué)中,除了學(xué)習(xí)函數(shù)的初級概念,用y=f(x)表示函數(shù)y隨著自變量x的變化而變化時,接觸到一點動態(tài)數(shù)學(xué)對象的數(shù)學(xué)符號表示以外,絕大多數(shù)都是用數(shù)學(xué)符號表示靜態(tài)的數(shù)學(xué)對象。因此,從用靜態(tài)的數(shù)學(xué)符號描述靜態(tài)的數(shù)學(xué)對象,到用靜態(tài)的符號語言刻畫動態(tài)數(shù)學(xué)對象,在思維能力層次上存在重大差異,對剛剛由初中進入高中學(xué)習(xí)的學(xué)生而言,無疑是一個很大的挑戰(zhàn)! 因此,在教學(xué)中可以提出如下問題2: 如何從解析式的角度說明 在上為增函數(shù)? 這個問題是形成函數(shù)單調(diào)性概念的關(guān)鍵。在教學(xué)中,教師可以組織學(xué)生先分組探究,然后全班交流,相互補充,并及時對學(xué)生的發(fā)言進行反饋、評價,對普遍出現(xiàn)的問題組織學(xué)生討論,在辨析中達成共識.對于問題2,學(xué)生錯誤的回答主要有兩種: ①在給定區(qū)間內(nèi)取兩個數(shù),例如1和2,因為函數(shù). ,所以 在上為增②可以用0,1,2,3,4,5驗證: 在所以函數(shù)上是增函數(shù)。 對于這兩種錯誤,教師要引導(dǎo)學(xué)生進一步展開思考。例如,指出回答②試圖用自然數(shù)列來驗證結(jié)論,而且引入了不等式表示不等關(guān)系,但是,只是對有限幾個自然數(shù)驗證不行,只有當所有的比較結(jié)果都是一樣的:自變量大時,函數(shù)值也大,才可以證明它是增函數(shù),那么怎么辦?如果有的學(xué)生提出:引入非負實數(shù)a,只要證明 就可以了,這就把驗證的范圍由有限擴大到了無限。教師應(yīng)適時指出這種驗證也有局限性,然后再讓學(xué)生思考怎樣做才能實現(xiàn)“任意性”就有堅實的基礎(chǔ)了。也就是,從給定的區(qū)間內(nèi)任意取兩個自變量,然后求差比較函數(shù)值的大小,從而得到正確的回答: 任意取在,有為增函數(shù). ,即,所以這種回答既揭示了單調(diào)性的本質(zhì),也讓學(xué)生領(lǐng)悟到兩點:(1)兩自變量的取值具有任意性;(2)求差比較它們函數(shù)值的大小。至此,學(xué)生對函數(shù)單調(diào)性有了理性的認識.在前面研究的基礎(chǔ)上,引導(dǎo)學(xué)生歸納、抽象出函數(shù)單調(diào)性的定義,使學(xué)生經(jīng)歷從特殊到一般,從具體到抽象的認知過程。 教學(xué)中,教師引導(dǎo)學(xué)生用嚴格的數(shù)學(xué)符號語言歸納、抽象增函數(shù)的定義,并讓學(xué)生類比得到減函數(shù)的定義.然后指導(dǎo)學(xué)生認真閱讀教材中有關(guān)單調(diào)性的概念,對定義中關(guān)鍵的地方進行強調(diào).同時設(shè)計了一組判斷題: 判斷題: ①②若函數(shù)③若函數(shù)滿足f(2) 和(2,3)上均為增函數(shù),則函數(shù)在(1,3)上為增函數(shù).④因為函數(shù)減函數(shù).在上都是減函數(shù),所以在上是通過對判斷題的討論,強調(diào)三點: ①單調(diào)性是對定義域內(nèi)某個區(qū)間而言的,離開了定義域和相應(yīng)區(qū)間就談不上單調(diào)性. ②有的函數(shù)在整個定義域內(nèi)單調(diào)(如一次函數(shù)),有的函數(shù)只在定義域內(nèi)的某些區(qū)間單調(diào)(如二次函數(shù)),有的函數(shù)根本沒有單調(diào)區(qū)間(如常函數(shù)). ③函數(shù)在定義域內(nèi)的兩個區(qū)間A,B上都是增(或減)函數(shù),一般不能認為函數(shù)在上是增(或減)函數(shù). 從而加深學(xué)生對定義的理解 北京4中常規(guī)備課 【教學(xué)目標】 1.使學(xué)生從形與數(shù)兩方面理解函數(shù)單調(diào)性的概念,初步掌握利用函數(shù)圖象和單調(diào)性定義判斷、證明函數(shù)單調(diào)性的方法. 2.通過對函數(shù)單調(diào)性定義的探究,滲透數(shù)形結(jié)合數(shù)學(xué)思想方法,培養(yǎng)學(xué)生觀察、歸納、抽象的能力和語言表達能力;通過對函數(shù)單調(diào)性的證明,提高學(xué)生的推理論證能力. 3.通過知識的探究過程培養(yǎng)學(xué)生細心觀察、認真分析、嚴謹論證的良好思維習(xí)慣,讓學(xué)生經(jīng)歷從具體到抽象,從特殊到一般,從感性到理性的認知過程. 【教學(xué)重點】 函數(shù)單調(diào)性的概念、判斷及證明. 【教學(xué)難點】 歸納抽象函數(shù)單調(diào)性的定義以及根據(jù)定義證明函數(shù)的單調(diào)性. 【教學(xué)方法】 教師啟發(fā)講授,學(xué)生探究學(xué)習(xí). 【教學(xué)手段】 計算機、投影儀. 【教學(xué)過程】 一、創(chuàng)設(shè)情境,引入課題 課前布置任務(wù): (1)由于某種原因,2008年北京奧運會開幕式時間由原定的7月25日推遲到8月8日,請查閱資料說明做出這個決定的主要原因.(2)通過查閱歷史資料研究北京奧運會開幕式當天氣溫變化情況.課上通過交流,可以了解到開幕式推遲主要是天氣的原因,北京的天氣到8月中旬,平均氣溫、平均降雨量和平均降雨天數(shù)等均開始下降,比較適宜大型國際體育賽事.下圖是北京市今年8月8日一天24小時內(nèi)氣溫隨時間變化的曲線圖.引導(dǎo)學(xué)生識圖,捕捉信息,啟發(fā)學(xué)生思考. 問題:觀察圖形,能得到什么信息? 預(yù)案:(1)當天的最高溫度、最低溫度以及何時達到;(2)在某時刻的溫度; (3)某些時段溫度升高,某些時段溫度降低.在生活中,我們關(guān)心很多數(shù)據(jù)的變化規(guī)律,了解這些數(shù)據(jù)的變化規(guī)律,對我們的生活是很有幫助的. 問題:還能舉出生活中其他的數(shù)據(jù)變化情況嗎? 預(yù)案:水位高低、燃油價格、股票價格等. 歸納:用函數(shù)觀點看,其實就是隨著自變量的變化,函數(shù)值是變大還是變?。?〖設(shè)計意圖〗由生活情境引入新課,激發(fā)興趣. 二、歸納探索,形成概念 對于自變量變化時,函數(shù)值是變大還是變小,初中同學(xué)們就有了一定的認識,但是沒有嚴格的定義,今天我們的任務(wù)首先就是建立函數(shù)單調(diào)性的嚴格定義.1.借助圖象,直觀感知 問題1: 分別作出函數(shù)數(shù)值有什么變化規(guī)律? 的圖象,并且觀察自變量變化時,函 預(yù)案:(1)函數(shù) 在整個定義域內(nèi) y隨x的增大而增大;函數(shù) 在整個定義域內(nèi) y隨x的增大而減?。?/p> (2)函數(shù)在上 y隨x的增大而增大,在上y隨x的增大而減?。?/p> (3)函數(shù) 在上 y隨x的增大而減小,在上y隨x的增大而減?。?/p> 引導(dǎo)學(xué)生進行分類描述(增函數(shù)、減函數(shù)).同時明確函數(shù)的單調(diào)性是對定義域內(nèi)某個區(qū)間而言的,是函數(shù)的局部性質(zhì). 問題2:能不能根據(jù)自己的理解說說什么是增函數(shù)、減函數(shù)? 預(yù)案:如果函數(shù) 在某個區(qū)間上隨自變量x的增大,y也越來越大,我們說函數(shù) 在某個區(qū)間上隨自變量x的增大,y越來越小,我們在該區(qū)間上為增函數(shù);如果函數(shù)說函數(shù)在該區(qū)間上為減函數(shù). 教師指出:這種認識是從圖象的角度得到的,是對函數(shù)單調(diào)性的直觀,描述性的認識. 【設(shè)計意圖】從圖象直觀感知函數(shù)單調(diào)性,完成對函數(shù)單調(diào)性的第一次認識. 2.探究規(guī)律,理性認識 問題1:下圖是函數(shù)和減函數(shù)嗎? 的圖象,能說出這個函數(shù)分別在哪個區(qū)間為增函數(shù) 學(xué)生的困難是難以確定分界點的確切位置. 通過討論,使學(xué)生感受到用函數(shù)圖象判斷函數(shù)單調(diào)性雖然比較直觀,但有時不夠精確,需要結(jié)合解析式進行嚴密化、精確化的研究. 〖設(shè)計意圖〗使學(xué)生體會到用數(shù)量大小關(guān)系嚴格表述函數(shù)單調(diào)性的必要性. 問題2:如何從解析式的角度說明 在為增函數(shù)? 22預(yù)案:(1)在給定區(qū)間內(nèi)取兩個數(shù),例如1和2,因為1<2,所以為增函數(shù). (2)仿(1),取很多組驗證均滿足,所以(3)任取,所以 在,因為 為增函數(shù). 在為增函數(shù). 在,即對于學(xué)生錯誤的回答,引導(dǎo)學(xué)生分別用圖形語言和文字語言進行辨析,使學(xué)生認識到問題的根源在于自變量不可能被窮舉,從而引導(dǎo)學(xué)生在給定的區(qū)間內(nèi)任意取兩個自變量. 【設(shè)計意圖】把對單調(diào)性的認識由感性上升到理性認識的高度,完成對概念的第二次認識.事實上也給出了證明單調(diào)性的方法,為證明單調(diào)性做好鋪墊.3.抽象思維,形成概念 問題:你能用準確的數(shù)學(xué)符號語言表述出增函數(shù)的定義嗎? 師生共同探究,得出增函數(shù)嚴格的定義,然后學(xué)生類比得出減函數(shù)的定義.(1)板書定義(2)鞏固概念 判斷題: ①. ②若函數(shù) ③若函數(shù) 在區(qū)間 和(2,3)上均為增函數(shù),則函數(shù) 在區(qū)間(1,3)上為增函 . ④因為函數(shù)在區(qū)間上是減函數(shù).上都是減函數(shù),所以在 通過判斷題,強調(diào)三點: ①單調(diào)性是對定義域內(nèi)某個區(qū)間而言的,離開了定義域和相應(yīng)區(qū)間就談不上單調(diào)性. ②對于某個具體函數(shù)的單調(diào)區(qū)間,可以是整個定義域(如一次函數(shù)),可以是定義域內(nèi)某個區(qū)間(如二次函數(shù)),也可以根本不單調(diào)(如常函數(shù)). ③函數(shù)在定義域內(nèi)的兩個區(qū)間A,B上都是增(或減)函數(shù),一般不能認為函數(shù)在上是增(或減)函數(shù). 思考:如何說明一個函數(shù)在某個區(qū)間上不是單調(diào)函數(shù)? 【設(shè)計意圖】讓學(xué)生由特殊到一般,從具體到抽象歸納出單調(diào)性的定義,通過對判斷題的辨析,加深學(xué)生對定義的理解,完成對概念的第三次認識.三、掌握證法,適當延展 例 證明函數(shù) 在上是增函數(shù). 1.分析解決問題 針對學(xué)生可能出現(xiàn)的問題,組織學(xué)生討論、交流. 證明:任取 ,設(shè)元 求差 變形,斷號 ∴ ∴ 即 ∴函數(shù) 2.歸納解題步驟 在上是增函數(shù). 定論 引導(dǎo)學(xué)生歸納證明函數(shù)單調(diào)性的步驟:設(shè)元、作差、變形、斷號、定論. 練習(xí):證明函數(shù) 問題:要證明函數(shù) 在區(qū)間 上是增函數(shù),除了用定義來證,如果可以證得對 在上是增函數(shù). 任意的,且有可以嗎? 引導(dǎo)學(xué)生分析這種敘述與定義的等價性.讓學(xué)生嘗試用這種等價形式證明函數(shù)在 〖設(shè)計意圖〗初步掌握根據(jù)定義證明函數(shù)單調(diào)性的方法和步驟.等價形式進一步發(fā)展可以得到導(dǎo)數(shù)法,為用導(dǎo)數(shù)方法研究函數(shù)單調(diào)性埋下伏筆. 四、歸納小結(jié),提高認識 學(xué)生交流在本節(jié)課學(xué)習(xí)中的體會、收獲,交流學(xué)習(xí)過程中的體驗和感受,師生合作共同完成小結(jié). 1.小結(jié) (1)概念探究過程:直觀到抽象、特殊到一般、感性到理性.(2)證明方法和步驟:設(shè)元、作差、變形、斷號、定論.(3)數(shù)學(xué)思想方法和思維方法:數(shù)形結(jié)合,等價轉(zhuǎn)化,類比等. 2.作業(yè) 書面作業(yè):課本第60頁習(xí)題2.3 第4,5,6題. 課后探究:(1)證明:函數(shù) 在區(qū)間 上是增函數(shù)的充要條件是對任意的上是增函數(shù).,且 有. (2)研究函數(shù)的單調(diào)性,并結(jié)合描點法畫出函數(shù)的草圖. 《函數(shù)的單調(diào)性》教學(xué)設(shè)計說明 一、教學(xué)內(nèi)容的分析 函數(shù)的單調(diào)性是學(xué)生在了解函數(shù)概念后學(xué)習(xí)的函數(shù)的第一個性質(zhì),是函數(shù)學(xué)習(xí)中第一個用數(shù)學(xué)符號語言刻畫的概念,為進一步學(xué)習(xí)函數(shù)其它性質(zhì)提供了方法依據(jù). 對于函數(shù)單調(diào)性,學(xué)生的認知困難主要在兩個方面:(1)要求用準確的數(shù)學(xué)符號語言去刻畫圖象的上升與下降,這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對高一的學(xué)生是比較困難的;(2)單調(diào)性的證明是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,而學(xué)生在代數(shù)方面的推理論證能力是比較薄弱的.根據(jù)以上的分析和教學(xué)大綱的要求,確定了本節(jié)課的重點和難點. 二、教學(xué)目標的確定 根據(jù)本課教材的特點、教學(xué)大綱對本節(jié)課的教學(xué)要求以及學(xué)生的認知水平,從三個不同的方面確定了教學(xué)目標,重視單調(diào)性概念的形成過程和對概念本質(zhì)的認識;強調(diào)判斷、證明函數(shù)單調(diào)性的方法的落實以及數(shù)形結(jié)合思想的滲透;突出語言表達能力、推理論證能力的培養(yǎng)和良好思維習(xí)慣的養(yǎng)成. 三、教學(xué)過程的設(shè)計 為達到本節(jié)課的教學(xué)目標,突出重點,突破難點,教學(xué)上采取了以下的措施:(1)在探索概念階段, 讓學(xué)生經(jīng)歷從直觀到抽象、從特殊到一般、從感性到理性的認知過程,完成對單調(diào)性定義的三次認識,使得學(xué)生對概念的認識不斷深入. (2)在應(yīng)用概念階段,通過對證明過程的分析,幫助學(xué)生掌握用定義證明函數(shù)單調(diào)性的方法和步驟. (3)考慮到我校學(xué)生數(shù)學(xué)基礎(chǔ)較好、思維較為活躍的特點,對判斷方法進行適當?shù)难诱梗由顚Χx的理解,同時也為用導(dǎo)數(shù)研究單調(diào)性埋下伏筆. 《函數(shù)的單調(diào)性》教學(xué)設(shè)計 設(shè)計理念 新課程背景下的數(shù)學(xué)教學(xué)既要注重邏輯推理,又要關(guān)注直覺思維的啟迪,不僅要讓學(xué)生學(xué)會,更要讓學(xué)生會學(xué),要讓學(xué)生學(xué)習(xí)的過程成為其心靈愉悅的主動認知的過程.基于以上設(shè)計理念,對于本節(jié)課,我從背景分析、教學(xué)目標設(shè)計、課堂結(jié)構(gòu)設(shè)計、教學(xué)媒體設(shè)計、教學(xué)過程設(shè)計及教學(xué)評價等六個方面進行簡單說明。 一、教材分析 函數(shù)的單調(diào)性是在研究函數(shù)的概念之后的第一個函數(shù)的性質(zhì),既是函數(shù)概念的延續(xù)和拓展,又為后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù)的單調(diào)性等內(nèi)容奠定了基礎(chǔ),同時為初高中知識的銜接起著承上啟下的作用。函數(shù)單調(diào)性概念的建立過程中蘊涵諸多數(shù)學(xué)思想方法,對于進一步探索、研究函數(shù)的其他性質(zhì)有很強的啟發(fā)與示范作用。根據(jù)函數(shù)單調(diào)性在教材中的地位和作用及課程標準的要求,本節(jié)課教學(xué)目標如下: 知識與技能 使學(xué)生理解函數(shù)單調(diào)性的概念,初步掌握判定函數(shù)單調(diào)性的方法; 過程與方法 通過探究活動滲透“ 數(shù)形結(jié)合”思想,使學(xué)生明白考慮問題要細致縝密,說理要嚴密明確。 情感態(tài)度與價值觀 感受數(shù)形結(jié)合的數(shù)學(xué)之美,使學(xué)生認識到事物在一定條件下可以相互轉(zhuǎn)化的辨證觀點 根據(jù)上述教學(xué)目標,本節(jié)課的教學(xué)重點是函數(shù)單調(diào)性的概念形成. 雖然高一學(xué)生對函數(shù)單調(diào)性有一定的感性認識,但抽象思維能力還有待加強.因此,本節(jié)課的學(xué)習(xí)難點是函數(shù)單調(diào)性的概念形成與應(yīng)用. 二、教法學(xué)法 1.在教法上采取了:通過學(xué)生熟悉的實際生活問題引入課題,創(chuàng)設(shè)情境,拉近數(shù)學(xué)與現(xiàn)實的距離,激發(fā)學(xué)生求知欲,調(diào)動學(xué)生主體參與的積極性,從而正確形成概念 . 2.在學(xué)法上重視了:讓學(xué)生利用圖形直觀啟迪思維,通過正、反例的構(gòu)造,來完成從感性認識到理性思維的質(zhì)的飛躍;讓學(xué)生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運用,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和分析解決問題的能力. 3.教學(xué)手段:借助信息技術(shù)輔助教學(xué),提供直觀感性材料,他不僅可以激發(fā)學(xué)生的學(xué)習(xí)興趣,提高課堂效率,促進師生交流,提高課堂的交互性。 三、教學(xué)過程 下面我們來重點探討本節(jié)課的教學(xué)設(shè)計和整合點分析。 以課前學(xué)案的形式,布置個學(xué)習(xí)小組利用幾何畫板作出下列函數(shù)的圖象。意在健全學(xué)生的基礎(chǔ)認知結(jié)構(gòu),熟練幾何畫板的操作,同時可以感受函數(shù)圖象變化趨勢,為教學(xué)做好準備。 教學(xué)情境引入,采用天氣預(yù)報聲音文件和幻燈片同步播放的方式。在傳統(tǒng)教學(xué)模式中,恰當?shù)貏?chuàng)設(shè)情境往往受很多條件的限制,而幻燈片展示圖片資料方便快捷,天氣預(yù)報聲音文件的使用激發(fā)學(xué)生的學(xué)習(xí)興趣。 教師趁勢展開定義生成的探究活動。要生成定義就要由描述性語言過渡到數(shù)學(xué)語言,這是認知過程中一個質(zhì)的飛躍。也是本節(jié)教學(xué)的一個難點。我借助幾何畫板的同步直觀演示,幫助學(xué)生探究增函數(shù)的一大重大特征:因變量隨著自變量的增大而增大。進一步引導(dǎo)學(xué)生探究發(fā)現(xiàn),在某些區(qū)間因變量隨著自變量的增大而減小。自變量在給定區(qū)間變化的重要性。從而生成了增函數(shù)的概念。利用信息技術(shù)突破了本節(jié)課的教學(xué)難點。在定義生成的規(guī)程中,我們發(fā)現(xiàn)有大容量的板書,借助幻燈片展示文本信息,方便快捷。教師可以借助多媒體幫助學(xué)生分析圖象,進一步理解函數(shù)概念。 組織學(xué)生小組探究函數(shù)的單調(diào)性,并請小組代表展示探究成果。 學(xué)生剛接觸定義,運用并判斷函數(shù)單調(diào)性的能力有待提高.而小組合作可提高學(xué)習(xí)熱情,畫圖觀察便于學(xué)生先根據(jù)“形”判斷單調(diào)性;實物展示平臺展示繪圖成果便于繪圖經(jīng)驗的示范與推廣. 在交流與練習(xí)中,觀察函數(shù)圖象規(guī)律是“數(shù)形”結(jié)合解題的關(guān)鍵,但手繪圖象往往耗時較長.學(xué)生借助幾何畫板軟件分析函數(shù)的單調(diào)性,信息技術(shù)的介入幫助學(xué)生“數(shù)形”結(jié)合解題,使其體會到手腦并用、成功解決問題的快樂.教師運用數(shù)學(xué)實驗室無線局域網(wǎng)絡(luò)的輔助教學(xué),可將主機切換到各小組的操作界面。不僅實現(xiàn)了小組實驗表現(xiàn)和結(jié)論的展示,又實現(xiàn)了實驗資源的共享。解決了在傳統(tǒng)教學(xué)模式中,各小組間的交流與比較非常困難.作業(yè)布置,引導(dǎo)學(xué)生運用所學(xué)的知識解決生活中的常見問題“糖水加糖甜更甜”的生活現(xiàn)象。通過數(shù)學(xué)建模,構(gòu)造以糖的份量為自變量的xy?濃度函數(shù),通過操作幾何畫板,學(xué)生可以輕松地發(fā)現(xiàn)隨著糖x?1份量的增加,糖水的濃度也增大,從而運用數(shù)學(xué)知識解決了化學(xué)問題。也讓學(xué)生意識到知識來源于生活,更能應(yīng)用于生活。 教學(xué)反思,本節(jié)課的教學(xué)是以實驗活動為中心,以探索數(shù)學(xué)規(guī)律為出發(fā)點,以學(xué)生的可持續(xù)發(fā)展探究能力為培養(yǎng)目標。是將信息技術(shù)與課堂教學(xué)整合的一次新的嘗試。在教學(xué)過程中,大量加工處理并使用了聲音、圖片、動畫、幾何畫板、實物展示平臺等多種信息技術(shù),進而突出重點,突破難點。不僅把信息技術(shù)作為教學(xué)的輔助手段,也作為促進學(xué)生自主學(xué)習(xí)數(shù)學(xué)知識的認知工具和情感激勵工具。 教學(xué)評價。參與程度、合作意識、思考習(xí)慣、發(fā)現(xiàn)能力。尤其是在分小組實驗中,基礎(chǔ)薄弱的同學(xué)容易產(chǎn)生厭怠的情緒,而且承擔的任務(wù)量較小。針對這種現(xiàn)象,采用分層教學(xué)。 總之,這節(jié)課達到了預(yù)設(shè)與生成的辯證統(tǒng)一。從課后反饋的效果來看,我的教學(xué)是成功的。最后,是我的板書設(shè)計。謝謝大家! (一)創(chuàng)設(shè)情境 提出問題 問題是數(shù)學(xué)的心臟,問題是學(xué)生思維的開始,問題是學(xué)生興趣的開始.首先創(chuàng)設(shè)情景,通過兩個問題,引發(fā)學(xué)生學(xué)習(xí)的好奇心. (問題情境)(播放中央電視臺天氣預(yù)報的音樂).如圖為某地區(qū)2009年元旦這一天24小時內(nèi)的氣溫變化圖,觀察這張氣溫變化圖: [教師活動]引導(dǎo)學(xué)生觀察圖象,提出問題: 問題1:說出氣溫在哪些時段內(nèi)是逐步升高的或下降的? 問題2:怎樣用數(shù)學(xué)語言刻畫上述時段內(nèi)“隨著時間的增大氣溫逐漸升高”這一特征? (二)探究發(fā)現(xiàn) 建構(gòu)概念 [學(xué)生活動]對于問題1,學(xué)生容易給出答案.問題2對學(xué)生來說較為抽象,不易回答. [教師活動]為了引導(dǎo)學(xué)生解決問題2,先讓學(xué)生觀察圖象,通過具體情形,例如,“t1=8時,f(t1)=1,t2=10時,f(t2)= 4”這一情形進行描述.引導(dǎo)學(xué)生回答:對于自變量8<10,對應(yīng)的函數(shù)值有1<4.舉幾個例子表述一下.然后給出一個鋪墊性的問題:結(jié)合圖象,請你用自己的語言,描述“在區(qū)間[4,14]上,氣溫隨時間增大而升高”這一特征. 在學(xué)生對于單調(diào)增函數(shù)的特征有一定直觀認識時,進一步提出: 問題3:對于任意的t1、t2∈[4,16]時,當t1< t2時,是否都有f(t1) [學(xué)生活動]通過觀察圖象、進行實驗(計算機)、正反對比,發(fā)現(xiàn)數(shù)量關(guān)系,由具體到抽象,由模糊到清晰逐步歸納、概括、抽象出單調(diào)增函數(shù)概念的本質(zhì)屬性,并嘗試用符號語言進行初步的表述。 [教師活動]為了獲得單調(diào)增函數(shù)概念,對于不同學(xué)生的表述進行分析、歸類,引導(dǎo)學(xué)生得出關(guān)鍵詞“區(qū)間內(nèi)”、“任意”、“當家集體給出單調(diào)增函數(shù)概念的數(shù)學(xué)表述.提出: 問題4: 類比單調(diào)增函數(shù)概念,你能給出單調(diào)減函數(shù)的概念嗎? 最后完成單調(diào)性和單調(diào)區(qū)間概念的整體表述. [設(shè)計意圖]數(shù)學(xué)概念的形成來自解決實際問題和數(shù)學(xué)自身發(fā)展的需要.但概念的高度抽象,造成了難懂、難教和難學(xué),這就需要讓學(xué)生置身于符合自身實際的學(xué)習(xí)活動中去,從自己的經(jīng)驗和已有的知識基礎(chǔ)出發(fā),經(jīng)歷“數(shù)學(xué)化”、“再創(chuàng)造”的活動過程.剛升入高一的學(xué)生已經(jīng)具備了一定的幾何形象思維能力,但抽象思維能力不強.從日常的描述性語言概念升華到用數(shù)學(xué)符號語言精確刻畫概念是本節(jié)課的難點. 時,都有 ”,最后由大 (三)自我嘗試 運用概念 1.為了理解函數(shù)單調(diào)性的概念,及時地進行運用是十分必要的. [教師活動]問題5:(1)你能找出氣溫圖中的單調(diào)區(qū)間嗎? (2)你能說出你學(xué)過的函數(shù)的單調(diào)區(qū)間嗎?請舉例說明. [學(xué)生活動]對于(1),學(xué)生容易看出:氣溫圖中分別有兩個單調(diào)減區(qū)間和一個單調(diào)增區(qū)間.對于(2),學(xué)生容易舉出具體函數(shù)如:,,并畫出函數(shù)的草圖,根據(jù)函數(shù)的圖象說出函數(shù)的單調(diào)區(qū)間. [教師活動]利用實物投影儀,投影出學(xué)生畫的草圖和標出的單調(diào)區(qū)間,并指出學(xué)生回答時可能出現(xiàn)的錯誤,如:在敘述函數(shù)的單調(diào)區(qū)間時寫成并集. [設(shè)計意圖]在學(xué)生已有認知結(jié)構(gòu)的基礎(chǔ)上提出新問題,使學(xué)生明了,過去所研究的函數(shù)的相關(guān)特征,就是現(xiàn)在所學(xué)的函數(shù)的單調(diào)性,從而加深對函數(shù)單調(diào)性概念的理解. 2.對于給定圖象的函數(shù),借助于圖象,我們可以直觀地判定函數(shù)的單調(diào)性,也能找到單調(diào)區(qū)間.而對于一般的函數(shù),我們怎樣去判定函數(shù)的單調(diào)性呢? [教師活動]問題6:證明在區(qū)間(0,+ ∞)上是單調(diào)減函數(shù). [學(xué)生活動]學(xué)生相互討論,嘗試自主進行函數(shù)單調(diào)性的證明,可能會出現(xiàn)不知如何比較與的大小、不會正確表述、變形不到位或根本不會變形等困難. [教師活動]教師深入學(xué)生中,與學(xué)生交流,了解學(xué)生思考問題的進展過程,投影學(xué)生的證明過程,糾正出現(xiàn)的錯誤,規(guī)范書寫的格式. [學(xué)生活動]學(xué)生自我歸納證明函數(shù)單調(diào)性的一般方法和步驟:取值、作差變形、定號、判斷. [設(shè)計意圖]有效的數(shù)學(xué)學(xué)習(xí)過程,不能單純的模仿與記憶,數(shù)學(xué)思想的領(lǐng)悟和學(xué)習(xí)過程更是如此.利用學(xué)生自己提出的問題,讓學(xué)生在解題過程中親身經(jīng)歷和實踐體驗,師生互動學(xué)習(xí),生生合作交流,共同探究. (四)回顧反思 深化概念 [教師活動]給出一組題: 1、定義在R上的單調(diào)函數(shù)函數(shù)還是單調(diào)減函數(shù)? 2、若定義在R上的單調(diào)減函數(shù)取值范圍嗎? [學(xué)生活動]學(xué)生,并通過問題,歸納總結(jié)本節(jié)課的內(nèi)容和方法.[設(shè)計意圖]通過學(xué)生的互相討論,使學(xué)生在探求問題的解答和問題的解決過程中,深切體會本節(jié)課的主要內(nèi)容和思想方法,從而實現(xiàn)對函數(shù)單調(diào)性認識的再次深化.[教師活動]作業(yè)布置: (1)閱讀教材 (2)書面作業(yè): 必做:教材 P43 1、7、11 選做:二次函數(shù)一嗎? 在[0,+∞)是增函數(shù),滿足條件的實數(shù)的值唯 滿足,你能確定實數(shù)的滿足,那么函數(shù) 是R上的單調(diào)增探究:函數(shù)在定義域內(nèi)是增函數(shù),函數(shù)有兩個單調(diào)減區(qū)間,由這兩個基本函數(shù)構(gòu)成的函數(shù)的單調(diào)性如何?請證明你得到的結(jié)論. [設(shè)計意圖]通過兩方面的作業(yè),使學(xué)生養(yǎng)成先看書,后做作業(yè)的習(xí)慣.基于函數(shù)單調(diào)性內(nèi)容的特點及學(xué)生實際,對課后書面作業(yè)實施分層設(shè)置,安排基本練習(xí)題、鞏固理解題和深化探究題三層.學(xué)生完成作業(yè)的形式為必做、選做和探究三種,使學(xué)生在完成必修教材基本學(xué)習(xí)任務(wù)的同時,拓展自主發(fā)展的空間,讓每一個學(xué)生都得到符合自身實踐的感悟,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿的學(xué)習(xí)興趣,促進學(xué)生自主發(fā)展、合作探究的學(xué)習(xí)氛圍的形成. 四、教學(xué)評價 學(xué)生學(xué)習(xí)的結(jié)果評價當然重要,但是更重要的是學(xué)生學(xué)習(xí)的過程評價.教師應(yīng)當高度重視學(xué)生學(xué)習(xí)過程中的參與度、自信心、團隊精神、合作意識、獨立思考習(xí)慣的養(yǎng)成、數(shù)學(xué)發(fā)現(xiàn)的能力,以及學(xué)習(xí)的興趣和成就感.學(xué)生熟悉的問題情境可以激發(fā)學(xué)生的學(xué)習(xí)興趣,問題串的設(shè)計可以讓更多的學(xué)生主動參與,師生對話可以實現(xiàn)師生合作,適度的研討可以促進生生交流以及團隊精神,知識的生成和問題的解決可以讓學(xué)生感受到成功的喜悅,縝密的思考可以培養(yǎng)學(xué)生獨立思考的習(xí)慣.讓學(xué)生在教師評價、學(xué)生評價以及自我評價的過程中體驗知識的積累、探索能力的長進和思維品質(zhì)的提高,為學(xué)生的可持續(xù)發(fā)展打下基礎(chǔ). 我相信赫爾巴特的名言:使教育過程成為一種藝術(shù)的事業(yè)! 函數(shù)的單調(diào)性教學(xué)設(shè)計 戴氏教育高中數(shù)學(xué)組 杜劍 【教材分析】 《函數(shù)單調(diào)性》是高中數(shù)學(xué)新教材必修一第二章第三節(jié)的內(nèi)容。在此之前,學(xué)生已學(xué)習(xí)了函數(shù)的概念、定義域、值域及表示法,這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。本節(jié)內(nèi)容是高中數(shù)學(xué)中相當重要的一個基礎(chǔ)知識點,是研究和討論初等函數(shù)有關(guān)性質(zhì)的基礎(chǔ)。掌握本節(jié)內(nèi)容不僅為今后的函數(shù)學(xué)習(xí)打下理論基礎(chǔ),還有利于培養(yǎng)學(xué)生的抽象思維能力,及分析問題和解決問題的能力?!窘虒W(xué)目標】 知識與技能: 1.通過生活中的例子幫助學(xué)生理解增函數(shù)、減函數(shù)及其幾何意義。2.學(xué)會應(yīng)用函數(shù)的圖象理解和研究函數(shù)的單調(diào)性及其幾何意義。過程與方法: 1.通過本節(jié)課的教學(xué),滲透數(shù)形結(jié)合的數(shù)學(xué)思想,對學(xué)生進行辨證唯物主義的教育。2.通過探究與活動,使學(xué)生明白考慮問題要細致,說理要明確。情感與態(tài)度: 1.通過本節(jié)課的教學(xué),使學(xué)生能理性的描述生活中的增長、遞減的現(xiàn)象。 2.通過生活實例感受函數(shù)單調(diào)性的意義,培養(yǎng)學(xué)生的識圖能力和數(shù)形語言轉(zhuǎn)化的能力。【重點難點】 重點:函數(shù)單調(diào)性概念的理解及應(yīng)用。難點:函數(shù)單調(diào)性的判定及證明。關(guān)鍵:增函數(shù)與減函數(shù)的概念的理解?!窘谭ǚ治觥?/p> 為了實現(xiàn)本節(jié)課的教學(xué)目標,在教法上我采取了: 1.通過學(xué)生熟悉的實際生活問題引入課題,為概念學(xué)習(xí)創(chuàng)設(shè)情境,拉近數(shù)學(xué)與現(xiàn)實的距離,激發(fā)學(xué)生求知欲,調(diào)動學(xué)生主體參與的積極性。 2.在形成概念的過程中,緊扣概念中的關(guān)鍵語句,通過學(xué)生的主體參與,正確地形成概念。3.在鼓勵學(xué)生主體參與的同時,不可忽視教師的主導(dǎo)作用,要教會學(xué)生清晰的思維、嚴謹?shù)耐评?,并順利地完成書面表達?!緦W(xué)法分析】 在教學(xué)過程中,教師設(shè)置問題情景讓學(xué)生想辦法解決;通過教師的啟發(fā)點撥,學(xué)生的不斷探索,最終把解決問題的核心歸結(jié)到判斷函數(shù)的單調(diào)性。然后通過對函數(shù)單調(diào)性的概念的學(xué)習(xí)理解,最終把問題解決。整個過程學(xué)生主動參與、積極思考、探索嘗試的動態(tài)活動之中;同時讓學(xué)生體驗到了學(xué)習(xí)數(shù)學(xué)的快樂,培養(yǎng)了學(xué)生自主學(xué)習(xí)的能力和以嚴謹?shù)目茖W(xué)態(tài)度研究問題的習(xí)慣?!窘虒W(xué)過程設(shè)計】 (一)問題情境 遵義一天的天氣 設(shè)計意圖:用天氣的變化,讓學(xué)生用樸素的生活語言描述他們對變化規(guī)律的理解,并請學(xué)生將文字語言轉(zhuǎn)化為圖形語言,這樣做可使教學(xué)過程富有情趣,可激發(fā)學(xué)生的學(xué)習(xí)熱情,教學(xué)起點的設(shè)定也比較恰當,學(xué)生的參與度較高。 (二)溫故知新 1.問題1:觀察學(xué)生繪制的函數(shù)的圖象(實際教學(xué)中可根據(jù)學(xué)生回答的情況而定),指出圖象的變化的趨勢。 觀察得到:隨著x值的增大,函數(shù)圖象有的呈上升趨勢,有的呈下降趨勢,有的在一個區(qū)間內(nèi)呈上升趨勢,在另一區(qū)間內(nèi)呈下降趨勢。 2.問題2:對“圖象呈逐漸上升趨勢”這句話初中是怎樣描述的? 例如:初中研究y?x2時,我們知道,當x<0時,函數(shù)值y隨x的增大而減小,當x>0時,函數(shù)值y隨x的增大而增大。 回憶初中對函數(shù)單調(diào)性的解釋: 圖象呈逐漸上升趨勢?數(shù)值y隨x的增大而增大;圖象呈逐漸下降趨勢?數(shù)值y隨x的增大而減小。 函數(shù)這種性質(zhì)稱為函數(shù)的單調(diào)性。 設(shè)計意圖:學(xué)生在函數(shù)單調(diào)性這一概念的學(xué)習(xí)上有三個認知基礎(chǔ):一是生活體驗,二是函數(shù)圖象,三是初中對函數(shù)單調(diào)性的認識。對照繪制的函數(shù)圖象,讓學(xué)生回憶初中對函數(shù)單調(diào)性的描述的定義,并在此基礎(chǔ)上進行概念的符號化建構(gòu),與學(xué)生的認知起點銜接緊密,符合學(xué)生的認知規(guī)律。 (三)建構(gòu)概念 問題3:如何用符號化的數(shù)學(xué)語言來準確地表述函數(shù)的單調(diào)性呢? 對于區(qū)間I內(nèi)的任意兩個值x1,x2,當x1?x2時,都有f(x1)?f(x2)。 單調(diào)增函數(shù)的定義: 問題4:如何定義單調(diào)減函數(shù)呢? 可以通過類比的方法由學(xué)生給出。 設(shè)計意圖:通過師生雙邊活動及學(xué)生討論,可以讓學(xué)生充分參與用嚴格的數(shù)學(xué)符號語言定義函數(shù)單調(diào)性的全過程,讓他們親身體驗數(shù)學(xué)概念如何從直觀到抽象,從文字到符號,從粗疏到嚴密。讓他們充分感悟數(shù)學(xué)概念符號化的建構(gòu)原則。問題4則要求學(xué)生結(jié)合圖象化單調(diào)增函數(shù)的定義,通過類比的方法,由學(xué)生自己得到單調(diào)減函數(shù)的概念,在這個過程中,學(xué)生可以體會數(shù)學(xué)概念是如何擴充完善的。 (四)理解概念 1.顧名思義,對“單調(diào)”兩字加深理解 漢語大詞典對“單調(diào)”的解釋是:簡單、重復(fù)而沒有變化。2.呼應(yīng)引入,解決問題情境中的問題 如:y?2x?1的單調(diào)增區(qū)間是(??,??);y?3.單調(diào)性是函數(shù)的“局部”性質(zhì) 如:函數(shù)y?上減函數(shù)? 引導(dǎo)學(xué)生討論,從圖象上觀察或用特殊值代入驗證否定結(jié)論(如取x1??1,x2? 1在(0,??)上是減函數(shù)。x11在(0,??)和(??,0)上都是減函數(shù),能否說y?在定義域(??,0)(0,??)上xx1)。 2設(shè)計意圖:學(xué)生對一個概念的認識不可能一次完成,教師要善于從多個角度,通過概念變式教學(xué)和構(gòu)造反例幫助學(xué)生理解概念的內(nèi)涵與外延。在學(xué)習(xí)如何證明一個函數(shù)的單調(diào)性之前,先與學(xué)生 一起探討怎樣才能否定一個函數(shù)的單調(diào)性對幫助學(xué)生理解函數(shù)單調(diào)性的概念尤為重要,可以加深學(xué)生對“任意”兩字的理解。 (五)運用概念 通過兩例,教師要向?qū)W生說明: 1.判斷函數(shù)單調(diào)性的主要方法:①觀察法:畫出函數(shù)圖象來觀察;②定義法:嚴格按照定義進行驗證;③分解法:對函數(shù)進行恰當?shù)淖冃危怪兂晌覀兯煜さ那乙阎鋯握{(diào)性的較簡單函數(shù)的組合。 2.概括出證明函數(shù)單調(diào)性的一般步驟:取值→作差→變形→定號。練習(xí):作出函數(shù)y?|x?1|? 1、y?|x2?1|的圖象,寫出他們的單調(diào)區(qū)間。 設(shè)計意圖:單調(diào)性證明是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證問題,通過本例,要讓學(xué)生理解判斷函數(shù)單調(diào)性與證明函數(shù)單調(diào)性的差別,掌握證明函數(shù)單調(diào)性的程序,并深入理解什么是代數(shù)證明,代數(shù)證明要做什么事。 (六)回顧總結(jié) 本節(jié)課主要學(xué)習(xí)了函數(shù)單調(diào)性的定義,單調(diào)區(qū)間的概念,能利用(1)圖象法;(2)定義法來判定函數(shù)的單調(diào)性,從中體會了數(shù)形結(jié)合的思想,學(xué)會從“特殊到一般再到特殊”的思維方法來研究問題。【教學(xué)反思】 1.給出生活實例和函數(shù)單調(diào)性的圖形語言,調(diào)動學(xué)生的參與意識,通過直觀圖形得出結(jié)論,滲透數(shù)形結(jié)合的數(shù)學(xué)思想。問題是數(shù)學(xué)的心臟,問題是學(xué)生思維的開始,問題是學(xué)生興趣的開始。這里,通過問題,引發(fā)學(xué)生的進一步學(xué)習(xí)的好奇心。 2.給出函數(shù)單調(diào)性的數(shù)學(xué)語言。通過教師指圖說明,分析定義,提問等辦法,使學(xué)生把定義與直觀圖象結(jié)合起來,加深對概念的理解,滲透數(shù)形結(jié)合分析問題的數(shù)學(xué)思想方法。 3.有效的數(shù)學(xué)學(xué)習(xí)過程,不能單純的模仿與記憶,數(shù)學(xué)思想的領(lǐng)悟和學(xué)習(xí)過程更是如此.利用學(xué)生自己提出的問題,讓學(xué)生在解題過程中親身經(jīng)歷和實踐體驗,師生互動學(xué)習(xí),生生合作交流,共同探究。 4.通過安排基本練習(xí)題,使學(xué)生在完成必修教材基本學(xué)習(xí)任務(wù)的同時,拓展自主發(fā)展的空間,讓每一個學(xué)生都得到符合自身實踐的感悟,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿的學(xué)習(xí)興趣,促進學(xué)生自主發(fā)展、合作探究的學(xué)習(xí)氛圍的形成。 5.讓學(xué)生體驗數(shù)學(xué)知識的發(fā)生發(fā)展過程應(yīng)該成為這節(jié)課的一個重要教學(xué)目標。函數(shù)的單調(diào)性的定義是對函數(shù)圖象特征的一種數(shù)學(xué)描述,它經(jīng)歷了由圖象直觀感知到自然語言描述,再到數(shù)學(xué)符號語言描述的進化過程,這個過程充分反映了數(shù)學(xué)的理性精神,是一個很有價值的數(shù)學(xué)教育載體。 6.教學(xué)設(shè)計最根本的著力點是“為學(xué)習(xí)設(shè)計教學(xué)”,而不是“為教學(xué)設(shè)計學(xué)習(xí)”。通過對“函數(shù)單調(diào)性”教學(xué)設(shè)計,我對“為學(xué)習(xí)設(shè)計教學(xué)”有了更深的理解。如果把教學(xué)看作是教師帶領(lǐng)學(xué)生一起去遠足,那么學(xué)情分析的目的是要分析學(xué)生的認知基礎(chǔ),確定一個合情合理的教學(xué)起點;目標導(dǎo)向這是要教師分析預(yù)期達到的教學(xué)效果,即遠足所期望到達的目的地,這是教學(xué)的根本和核心任務(wù),是教學(xué)設(shè) 計的關(guān)鍵;知識定位則好比是教師要預(yù)先分析通往目的地的道路狀況,從而決定前進的方法和策略;問題設(shè)計則好比是設(shè)計行程,恰當安排可以指引師生高效地向著目的地前行。本節(jié)課就是通過這樣的設(shè)計思想來安排教學(xué)設(shè)計的。第二篇:函數(shù)單調(diào)性教學(xué)設(shè)計
第三篇:函數(shù)單調(diào)性
第四篇:函數(shù)的單調(diào)性教學(xué)設(shè)計
第五篇:函數(shù)的單調(diào)性教學(xué)設(shè)計