第一篇:(新Ⅰ)2018年高考數(shù)學總復習專題06數(shù)列分項練習理
專題06 數(shù)列
一.基礎題組
1.【2013課標全國Ⅰ,理7】設等差數(shù)列{an}的前n項和為Sn,若Sm-1=-2,Sm=0,Sm+1=3,則m=().
A.3 B.4 C.5 D.6 【答案】C 【解析】∵Sm-1=-2,Sm=0,Sm+1=3,∴am=Sm-Sm-1=0-(-2)=2,am+1=Sm+1-Sm=3-0=3.∴d=am+1-am=3-2=1.∵Sm=ma1+又∵am+1=a1+m×1=3,∴?m?m?1?m?1×1=0,∴a1??.22m?1?m?3.∴m=5.故選C.22.【2012全國,理5】已知{an}為等比數(shù)列,a4+a7=2,a5a6=-8,則a1+a10=()A.7 B.5 C.-5 D.-7 【答案】D
3.【2008全國1,理5】已知等差數(shù)列?an?滿足a2?a4?4,a3?a5?10,則它的前10項的和S10?()A.138 B.135
C.95
D.23 【答案】C.【解析】由a2?a4?4,a3?a5?10?a1??4,d?3,S10?10a1?45d?95.4.【2013課標全國Ⅰ,理14】若數(shù)列{an}的前n項和Sn?=__________.【答案】(-2)n-
121an?,則{an}的通項公式是an33 【解析】∵Sn?①-②,得an?2121an?,①∴當n≥2時,Sn?1?an?1?.② 333322aan?an?1,即n=-2.33an?1∵a1=S1=21a1?,∴a1=1.33n-1∴{an}是以1為首項,-2為公比的等比數(shù)列,an=(-2).5.【2009全國卷Ⅰ,理14】設等差數(shù)列{an}的前n項和為Sn.若S9=72,則a2+a4+a9=___________.【答案】24 【解析】∵S9?72?9(a1?a2),∴a1+a9=16.2∵a1+a9=2a5,∴a5=8.∴a2+a4+a9=a1+a5+a9=3a5=24.6.【2011全國新課標,理17】等比數(shù)列{an}的各項均為正數(shù),且2a1+3a2=1,a32?9a2a3.(1)求數(shù)列{an}的通項公式;
(2)設bn=log3a1+log3a2+…+log3an,求數(shù)列{1}的前n項和. bn(2)bn?log3a1?log3a2??log3an??(1?2??n)??n(n?1)故21211????2(?),bnn(n?1)nn?111??b1b2?1111???2?(1?)?(?)?bn223?11?2n?(?)???.nn?1?n?1?1?2n所以數(shù)列??的前n項和為?.bn?1?n?7.【2010新課標,理17】(12分)設數(shù)列{an}滿足a1=2,an+1-an=3·2(1)求數(shù)列{an}的通項公式;
(2)令bn=nan,求數(shù)列{bn}的前n項和Sn.【解析】(1)由已知,當n≥1時,an+1=(an+1-an)+(an-an-1)+…+(a2-a1)]+a1=3(2
2n-1
2n-1
.+
22n-
3+…+2)+2=2
2(n+1)-1
.而a1=2,所以數(shù)列{an}的通項公式為an=2(2)由bn=nan=n·232n-1
2n-1
.知
2n-1Sn=1·2+2·2+3·2+…+n·223
575
.①
2n+1從而2·Sn=1·2+2·2+3·2+…+n·2①-②,得
(1-2)Sn=2+2+2+…+2即Sn=235
2n-1
.②
-n·2
2n+1,12n+1(3n-1)2+2]. 98.【2005全國1,理19】設等比數(shù)列{an}的公比為q,前n項和Sn>0(n=1,2,…)(1)求q的取值范圍;(2)設bn?an?2?3an?1,記{bn}的前n項和為Tn,試比較Sn和Tn的大小.2
解①式得q>1;解②,由于n可為奇數(shù)、可為偶數(shù),得-1 試題分析:(Ⅰ)先用數(shù)列第項與前項和的關系求出數(shù)列{an}的遞推公式,可以判斷數(shù)列{an}是等差數(shù)列,利用等差數(shù)列的通項公式即可寫出數(shù)列{an}的通項公式;(Ⅱ)根據(jù)(Ⅰ)數(shù)列{bn}的通項公式,再用拆項消去法求其前項和.【考點定位】數(shù)列前n項和與第n項的關系;等差數(shù)列定義與通項公式;拆項消去法 10.【2016高考新課標理數(shù)3】已知等差數(shù)列{an}前9項的和為27,a10=8,則a100=(A)100(B)99(C)98(D)97 【答案】C 【解析】 試題分析:由已知,?C.?9a1?36d?27,所以a1??1,d?1,a100?a1?99d??1?99?98,故選?a1?9d?8【考點】等差數(shù)列及其運算 【名師點睛】等差、等比數(shù)列各有五個基本量,兩組基本公式,而這兩組公式可看作多元方程,利用這些方程可將等差、等比數(shù)列中的運算問題轉(zhuǎn)化為解關于基本量的方程(組),因此可以說數(shù)列中的絕大部分運算題可看作方程應用題,所以用方程思想解決數(shù)列問題是一種行之有效的方法.二.能力題組 1.【2011全國,理4】設Sn為等差數(shù)列{an}的前n項和,若a1=1,公差d=2,Sk+2-Sk=24,則k=()A.8 B.7 C.6 D.5 【答案】D 2.【2006全國,理10】設{an}是公差為正數(shù)的等差數(shù)列,若a1+a2+a3=15,a1a2a3=80則a11+a12+a13=() (A)120(B)105(C)90(D)75 【答案】B 【解析】 3.【2012全國,理16】數(shù)列{an}滿足an+1+(-1)an=2n-1,則{an}的前60項和為__________. 【答案】1 830 【解析】:∵an+1+(-1)an=2n-1,nn∴a2=1+a1,a3=2-a1,a4=7-a1,a5=a1,a6=9+a1,a7=2-a1,a8=15-a1,a9=a1,a10=17+a1,a11=2-a1,a12=23-a1,…,a57=a1,a58=113+a1,a59=2-a1,a60=119-a1,∴a1+a2+…+a60=(a1+a2+a3+a4)+(a5+a6+a7+a8)+…+(a57+a58+a59+a60)=10+26+42+…+234= 15?(10?234)?1830. 24.【2014課標Ⅰ,理17】 已知數(shù)列?an?的前項和為Sn,a1?1,an?0,anan?1??Sn?1,其中?為常數(shù),(I)證明:an?2?an??; (II)是否存在?,使得?an?為等差數(shù)列?并說明理由.【答案】(I)詳見解析;(II)存在,??4.5.【2009全國卷Ⅰ,理20】 在數(shù)列{an}中,a1=1,an+1=(1?1n?1)an+n.n2(Ⅰ)設bn?an,求數(shù)列{bn}的通項公式; n(Ⅱ)求數(shù)列{an}的前n項和Sn.【解析】(Ⅰ)由已知得b1=a1=1,且 an?1an11??n,即bn?1?bn?n.n?1n22從而b2?b1?2n?11111于是bn?b1??2???n?1?2?n?1(n≥2).2222 bn?bn?1?11,b3?b2?2,…… 221(n≥2).又b1=1.故所求的通項公式bn?2?(Ⅱ)由(Ⅰ)知an?n(2?令Tn?n12n?1.12n)?2n?n?1n2n?1.?2k?1nkk?1,則2Tn??2k?1kk?2.于是Tn=2Tn-Tn= ?2k?0n?11k?1?n2n?1=4?n?2.又n?12?(2k)?n(n?1),k?1所以Sn?n(n?1)?n?2?4.2n?1?an的最大值6.【2016高考新課標理數(shù)1】設等比數(shù)列{an}滿足a1+a3=10,a2+a4=5,則a1a2鬃為.【答案】64 【考點】等比數(shù)列及其應用 【名師點睛】高考中數(shù)列客觀題大多具有小、巧、活的特點,在解答時要注意方程思想及數(shù)列相關性質(zhì)的應用,盡量避免小題大做.7.【2017新課標1,理4】記Sn為等差數(shù)列{an}的前項和.若a4?a5?24,S6?48,則{an}的公差為 A.1 【答案】C 【解析】 試題分析:設公差為d,a4?a5?a1?3d?a1?4d?2a1?7d?24,B.2 C.4 D.8 S6?6a1??2a1?7d?246?5,解得d?4,故選C.d?6a1?15d?48,聯(lián)立?6a?15d?482?1 7 【考點】等差數(shù)列的基本量求解 【名師點睛】求解等差數(shù)列基本量問題時,要多多使用等差數(shù)列的性質(zhì),如{an}為等差數(shù)列,若 m?n?p?q,則am?an?ap?aq.三.拔高題組 1.【2013課標全國Ⅰ,理12】設△AnBnCn的三邊長分別為an,bn,cn,△AnBnCn的面積為Sn,n=1,2,3,….若b1>c1,b1+c1=2a1,an+1=an,bn+1=A.{Sn}為遞減數(shù)列 B.{Sn}為遞增數(shù)列 C.{S2n-1}為遞增數(shù)列,{S2n}為遞減數(shù)列 D.{S2n-1}為遞減數(shù)列,{S2n}為遞增數(shù)列 【答案】B 【解析】 cn?anb?an,cn+1=n,則(). 22 8 2.【2011全國,理20】設數(shù)列{an}滿足a1=0且(1)求{an}的通項公式;(2)設bn?11??1.1?an?11?an1?an?1n,記Sn??bk?1nk,證明:Sn<1.【解析】(1)由題設11??1,1?an?11?an即{1}是公差為1的等差數(shù)列. 1?an又11?1,故?n.1?an1?an1.n所以an?1?(2)由(1)得bn?nn1?an?1n?n?1?n11,??n?1?nnn?1Sn??bk??(k?1k?1111?)?1??1.kk?1n?13.【2006全國,理22】(本小題滿分12分) 設數(shù)列{an}的前n項和 S43an?13?2n?1?2n?3,n?1,2,3,…。(Ⅰ)求首項a1與通項an; nn(Ⅱ)設T?2s,n?1,2,3,…,證明:?T3ni?.ni?12整理得 an?1n?2n?4(an?1?2),n?2,3,…,因而數(shù)列{an?2n}是首項為a1?2?4,公比為4的等比數(shù)列,即 a?1n?2n?4?4n?4n,n=1,2,3…,因而 an?4n?2n,n=1,2,3,…,(II)將ann?4?2n代入①得 S43?(4n?2n)?12n?3?2n?1?3 ?1?(2n?1?1)(2n?1?2)3 ?2?(2n?1?1)(2n3?1).2nTn?S n 32n??n?12(2?1)?(2n?1) 311??(n?n?1,)22?12?13n11所以,?Ti??(i?i?1) 2i?12?12?1i?1311?(i?i?1)22?12?1 3?.2?4.【2017新課標1,理12】幾位大學生響應國家的創(chuàng)業(yè)號召,開發(fā)了一款應用軟件.為激發(fā)大家學習數(shù)學的 興趣,他們推出了“解數(shù)學題獲取軟件激活碼”的活動.這款軟件的激活碼為下面數(shù)學問題的答案:已知數(shù)列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一項是2,接下來的兩項是2,2,再接下來 的三項是2,2,2,依此類推.求滿足如下條件的最小整數(shù)N:N>100且該數(shù)列的前N項和為2的整數(shù)冪.那么 該款軟件的激活碼是 A.440 【答案】A 【解析】 試題分析:由題意得,數(shù)列如下: B.330 C.220 D.110 01 0 1n1,1,2,1,2,4,1,2,4,2k?1k(k?1)項和為 2 則該數(shù)列的前1?2??k??k(k?1)?S???1?(1?2)?2???(1?2??2k?1)?2k?1?k?2,【考點】等差數(shù)列、等比數(shù)列 【名師點睛】本題非常巧妙地將實際問題和數(shù)列融合在一起,首先需要讀懂題目所表達的具體含義,以及觀察所給定數(shù)列的特征,進而判斷出該數(shù)列的通項和求和.另外,本題的難點在于數(shù)列里面套數(shù)列,第一個數(shù)列的和又作為下一個數(shù)列的通項,而且最后幾項并不能放在一個數(shù)列中,需要進行判斷.12 專題06 數(shù)列 一.基礎題組 1.【2013課標全國Ⅱ,理3】等比數(shù)列{an}的前n項和為Sn.已知S3=a2+10a1,a5=9,則a1=(). A.1111 B.? C. D.? 3399【答案】:C 2.【2012全國,理5】已知等差數(shù)列{an}的前n項和為Sn,a5=5,S5=15,則數(shù)列{和為()A. 1}的前100項anan?11009999101 B. C. D. 1011001001015(a1?a5)5(a1?5)??15,∴a1=1.22【答案】 A 【解析】S5?∴d?a5?a15?1??1.5?15?1∴an=1+(n-1)×1=n.∴11.?anan?1n(n?1)?1?設??的前n項和為Tn,aa?nn?1?則T100?=1?=1?111??…? 1?22?3100?10111111???…?? 2231001011100?.1011013.【2010全國2,理4】如果等差數(shù)列{an}中,a3+a4+a5=12,那么a1+a2+?+a7等于()A.14 B.21 C.28 D.35 【答案】:C 【解析】∵{an}為等差數(shù)列,a3+a4+a5=12,∴a4=4.∴a1+a2+?+a7=7(a1?a7)=7a4=28.24.【2006全國2,理14】已知△ABC的三個內(nèi)角A,B,C成等差數(shù)列,且AB=1,BC=4,則邊BC上的中線AD的長為.【答案】:3 5.【2014新課標,理17】(本小題滿分12分)已知數(shù)列?an?滿足a1=1,an?1?3an?1.(Ⅰ)證明an?1是等比數(shù)列,并求?an?的通項公式; ?2?(Ⅱ)證明:1?1?…+1?3.a1a2an21112?3,所以?a?1?是等比【解析】:(Ⅰ)證明:由an?1?3an?1得an?1??3(an?),所以?n?1222??an?2an?1?1313n?13n?1數(shù)列,首項為a1??,公比為3,所以an???3,解得an?.222223n?112(Ⅱ)由(Ⅰ)知:an?,所以,?n2an3?1因為當n?1時,3n??1?n?12,3所以 11?3n?12?3n?1,于是11313111?1??L?n?1=(1?n)?,??L33232a1a2an所以3111?.??La1a2an26.【2011新課標,理17】等比數(shù)列{an}的各項均為正數(shù),且2a1+3a2=1,a32?9a2a3.(1)求數(shù)列{an}的通項公式; (2)設bn=log3a1+log3a2+?+log3an,求數(shù)列{ 1}的前n項和. bn2 7.【2015高考新課標2,理16】設Sn是數(shù)列?an?的前n項和,且a1??1,則Sn?________. an?1?SnSn?1,【答案】?1 n【解析】由已知得an?1?Sn?1?Sn?Sn?1?Sn,兩邊同時除以Sn?1?Sn,得 ?1?11???1,故數(shù)列??是Sn?1Sn?Sn?以?1為首項,?1為公差的等差數(shù)列,則 11??1?(n?1)??n,所以Sn??. nSn【考點定位】等差數(shù)列和遞推關系. 8.【2017課標II,理3】我國古代數(shù)學名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈 A.1盞 【答案】B B.3盞 C.5盞 D.9盞 【考點】 等比數(shù)列的應用、等比數(shù)列的求和公式 【名師點睛】用數(shù)列知識解相關的實際問題,關鍵是列出相關信息,合理建立數(shù)學模型——數(shù)列模型,判斷是等差數(shù)列還是等比數(shù)列模型;求解時要明確目標,即搞清是求和、求通項、還是解遞推關系問題,所求結(jié)論對應的是解方程問題、解不等式問題、還是最值問題,然后將經(jīng)過數(shù)學推理與計算得出的結(jié)果放回到實際問題中,進行檢驗,最終得出結(jié)論. 二.能力題組 1.【2013課標全國Ⅱ,理16】等差數(shù)列{an}的前n項和為Sn,已知S10=0,S15=25,則nSn的最小值為__________. 【答案】:-49 【解析】:設數(shù)列{an}的首項為a1,公差為d,則S10=10a1+10?9d=10a1+45d=0,① 2S15=15a1?15?14d=15a1+105d=25.② 22,3聯(lián)立①②,得a1=-3,d?所以Sn=?3n?n(n?1)21210??n?n.23331310220n?n,f'(n)?n2?n.33320.3令f(n)=nSn,則f(n)?令f′(n)=0,得n=0或n?當n?202020時,f′(n)>0,0 【名師點睛】等差數(shù)列的通項公式及前n項和公式,共涉及五個量a1,an,d,n,Sn,知其中三個就能求另外兩個,體現(xiàn)了用方程的思想解決問題.數(shù)列的通項公式和前n項和公式在解題中起到變量代換作用,而a1和d是等差數(shù)列的兩個基本量,用它們表示已知和未知是常用得方法.使用裂項法求和時,要注意正、負項相消時消去了哪些項,保留了哪些項,切不可漏寫未被消去的項,未被消去的項有前后對稱的特點. 3.【2005全國3,理20】(本小題滿分12分)在等差數(shù)列{an}中,公差d?0,a2是a1與a4的等差中項.已知數(shù)列a1,a3,ak1,ak2,?,akn,?成等比數(shù)列,求數(shù)列{kn}的通項kn.【解析】:依題設得a2n?a1?(n?1)d, a2?a1a4 ∴(a21?d)2?a1(a1?3d),整理得d=a1d,∵d?0, ?d?a1,得an?nd, 所以,由已知得d,3d,k1d,k2d,?,kndn?是等比數(shù)列.由d?0,所以數(shù)列 1,3,k1,k2,?,kn,? 也是等比數(shù)列,首項為1,公比為q?31?3,由此得k1?9.等比數(shù)列{kn}的首項k1?9,公比q?3,所以kn?9?qn?1?3n?1(n?1,2,3,?),即得到數(shù)列{kn}的通項kn?3n?1.4.【2005全國2,理18】(本小題滿分12分)已知?an?是各項為不同的正數(shù)的等差數(shù)列,lga11、lga2、lga4成等差數(shù)列.又bn?a,n?1,2,3,?.2n(Ⅰ)證明?bn?為等比數(shù)列; (Ⅱ)如果無窮等比數(shù)列?b1n?各項的和S?3,求數(shù)列?an?的首項a1和公差d. (注:無窮數(shù)列各項的和即當n??時數(shù)列前n項和的極限)5 1[1?(1則S=limSn?lim2d2)n]n???n???1?1?1d 2由S?13,得公差d=3,首項a1=d=3 三.拔高題組 1.【2006全國2,理11】設SSn是等差數(shù)列{an}的前n項和,若 3=1,則S6S等于() 63S12A.3110 B.3 C.1 D.9 【答案】:A 【解析】:由已知設a1+a2+a3=T,a4+a5+a6=2T,a7+a8+a9=3T, a10+a11+a12=4T. ∴S6t+2t3S=?.12t?2t?3t?4t10∴選A. 2.【2005全國2,理11】如果a1,a2,?,a8為各項都大于零的等差數(shù)列,公差d?0,則() (A)a1a8?a4a5 【答案】B(B)a1a8?a4a5(C)a1?a8?a4?a5(D)a1a8?a4a5 3.【2012全國,理22】函數(shù)f(x)=x-2x-3,定義數(shù)列{xn}如下:x1=2,xn+1是過兩點P(4,5),Qn(xn,2f(xn))的直線PQn與x軸交點的橫坐標. (1)證明:2≤xn<xn+1<3;(2)求數(shù)列{xn}的通項公式. (2)由(1)及題意得xn?1?3?4xn.2?xn7 設bn=xn-3,則15??1,bn?1bn1111??5(?),bn?14bn4數(shù)列{311?}是首項為?,公比為5的等比數(shù)列. 4bn4因此 4113,????5n?1,即bn??n?13?5?1bn4443?5n?1?1.2所以數(shù)列{xn}的通項公式為xn=3?4.【2006全國2,理22】設數(shù)列{an}的前n項和為Sn,且方程x-anx-an=0有一根為Sn-1,n= 1,2,3,?.(1)求a1,a2;(2)求{an}的通項公式.【解析】:(1)當n=1時,x-a1x-a1=0有一根為S1-1=a1-1, 21. 212當n=2時,x-a2x-a2=0有一根為S2-1=a2-, 21211于是(a2-)-a2(a2-)-a2=0,解得a2=. 226于是(a1-1)-a1(a1-1)-a1=0,解得a1=2(2)由題設(Sn-1)-an(Sn-1)-an=0,即Sn-2Sn+1-anSn=0. 當n≥2時,an=Sn-Sn-1,代入上式得 22Sn-1Sn-2Sn+1=0.由(1)知S1=a1=由①可得S3= ① 1112,S2=a1+a2=+=.22633. 4n由此猜想Sn=,n=1,2,3,?. n?1下面用數(shù)學歸納法證明這個結(jié)論. 5.【2016高考新課標2理數(shù)】Sn為等差數(shù)列?an?的前n項和,且a1=1,S7?28.記bn=?lgan?,其中?x?表示不超過x的最大整數(shù),如?0.9?=0,?lg99?=1.(Ⅰ)求b1,b11,b101;(Ⅱ)求數(shù)列?bn?的前1 000項和.【答案】(Ⅰ)b1?0,b11?1,b101?2;(Ⅱ)1 893.【解析】 【考點】等差數(shù)列的通項公式、前n項和公式,對數(shù)的運算 【名師點睛】解答新穎的數(shù)學題時,一是通過轉(zhuǎn)化,化“新”為“舊”;二是通過深入分析,多方聯(lián)想,以“舊”攻“新”;三是創(chuàng)造性地運用數(shù)學思想方法,以“新”制“新”,應特別關注創(chuàng)新題型的切入點和生長點. 小學數(shù)學畢業(yè)總復習:數(shù)列求和考點 基礎教育一直是最受學校和家長關注的,最為基礎教育重中之重的初等教育,更是得到更多的重視。查字典數(shù)學網(wǎng)小升初頻道為大家準備了小學數(shù)學畢業(yè)總復習,希望能幫助大家做好小升初的復習備考,考入重點初中院校!小學數(shù)學畢業(yè)總復習:數(shù)列求和考點 數(shù)列求和 等差數(shù)列:在一列數(shù)中,任意相鄰兩個數(shù)的差是一定的,這樣的一列數(shù),就叫做等差數(shù)列。 基本概念:首項:等差數(shù)列的第一個數(shù),一般用a1表示;項數(shù):等差數(shù)列的所有數(shù)的個數(shù),一般用n表示;公差:數(shù)列中任意相鄰兩個數(shù)的差,一般用d表示;通項:表示數(shù)列中每一個數(shù)的公式,一般用an表示;數(shù)列的和:這一數(shù)列全部數(shù)字的和,一般用Sn表示.基本思路:等差數(shù)列中涉及五個量:a1 ,an, d, n, sn,通項公式中涉及四個量,如果己知其中三個,就可求出第四個;求和公式中涉及四個量,如果己知其中三個,就可以求這第四個。 基本公式:通項公式:an = a1+(n-1)d;通項=首項+(項數(shù)一1)公差;數(shù)列和公式:sn,=(a1+ an)n 數(shù)列和=(首項+末項)項數(shù) 第 1 頁 項數(shù)公式:n=(an+ a1)項數(shù)=(末項-首項)公差+1;公差公式:d =(an-a1))(n-1);公差=(末項-首項)(項數(shù)-1);關鍵問題:確定已知量和未知量,確定使用的公式;小升初考試是小學生進入初等重點初中院校的一次重要考試,希望大家都能夠認真復習,同時也希望我們準備的小學數(shù)學畢業(yè)總復習能讓大家在小升初的備考過程助大家一臂之力! 第 2 頁 數(shù)列(理) 考查內(nèi)容:本小題主要考查等差數(shù)列與等比數(shù)列的通項公式及其前n項和公式、不等式證明等基礎知識,考查分類討論的思想方法,考查運算能力、推理論證能力及綜合分析、解決問題的能力。 1、在數(shù)列?an?中,a1?1,an?1?2an?2n。(1)設bn?an。證明:數(shù)列?bn?是等差數(shù)列; n?12(2)求數(shù)列?an?的前n項和Sn。 2、設數(shù)列?an?的前n項和為Sn,已知ban?2n??b?1?Sn(1)證明:當b?2時,?an?n?2n?1?是等比數(shù)列;(2)求?an?的通項公式 3、已知數(shù)列{an}的首項a1?22an,an?1?,n?1,2,3,…。3an?1?1?(1)證明:數(shù)列??1?是等比數(shù)列; ?an??n?(2)數(shù)列??的前n項和Sn。 ?an? 4、已知數(shù)列?an?滿足:an??1,a1?22?cn?an?1?an,n?N。 1222,31?an?1?21?an,記數(shù)列bn?1?an,2????(1)證明數(shù)列?bn?是等比數(shù)列;(2)求數(shù)列{cn}的通項公式; (3)是否存在數(shù)列{cn}的不同項ci,cj,ck,i?j?k,使之成為等差數(shù)列?若存在請求出這樣的不同項ci,cj,ck,i?j?k;若不存在,請說明理由。 5、已知數(shù)列{an}、{bn}中,對任何正整數(shù)n都有: a1bn?a2bn?1?a3bn?2??an?1b2?anb1?2n?1?n?2。 (1)若數(shù)列{an}是首項和公差都是1的等差數(shù)列,求證:數(shù)列{bn}是等比數(shù)列;(2)若數(shù)列{bn}是等比數(shù)列,數(shù)列{an}是否是等差數(shù)列,若是請求出通項公式,若不是請說明理由; (3)若數(shù)列{an}是等差數(shù)列,數(shù)列{bn}是等比數(shù)列,求證:?i?1n13?。aibi2)。數(shù)列{bn} 16、設數(shù)列{an}滿足a1?1,a2?2,an?(an?1?2an?2),(n?3,4,3滿足b1?1,bn(n?2,3,)是非零整數(shù),且對任意的正整數(shù)m和自然數(shù)k,都有?1?bm?bm?1??bm?k?1。 (1)求數(shù)列{an}和{bn}的通項公式;(2)記cn?nanbn(n?1,2,),求數(shù)列{cn}的前n項和Sn。 7、有n個首項都是1的等差數(shù)列,設第m個數(shù)列的第k項為amk,(m,k?1,2,3,n, n≥3),公差為dm,并且a1n,a2n,a3n,ann成等差數(shù)列。 (1)證明dm?p1d1?p2d2,3?m?n,p1,p2是m的多項式,并求p1?p2的值;(2)當d1?1, d2?3時,將數(shù)列{dm}分組如下:(d1),(d2,d3,d4),(d5,d6,d7,d8,d9),(每組數(shù)的個數(shù)構(gòu)成等差數(shù)列),設前m組中所有數(shù)之和為(cm)4(cm?0),求數(shù)列{2cmdm}的前n項和Sn。 (3)設N是不超過20的正整數(shù),當n?N時,對于(2)中的Sn,求使得不等式1(Sn?6)?dn成立的所有N的值。50 n?n??? 8、數(shù)列{an}的通項公式為an?n2?cos2?sin2?,其前n項和為Sn。 33??(1)求Sn; S3n,求數(shù)列{bn}的前n項和Tn。n?4nn?n?滿足a1?1,a2?2,an?2?(1?cos2)an?sin2,n?1,2,3,9、數(shù)列{an}?滿足 22(2)設bn?.。 (1)求a3,a4,并求數(shù)列?an?的通項公式;(2)設bn?a2n?1,Sn?b1?b2?a2n1?bn.。證明:當n?n6?時,6時,Sn?2?。.n10、已知數(shù)列{an}和{bn}的通項公式分別為an?3n?6,bn?2n?7,n?N*,若將**集合{x|x?an,n?N}{x|x?bn,n?N}中的元素從小到大依次排列,構(gòu)成一個新的數(shù)列{cn}。(1)求c1,c2,c3,c4; (2)求證:在數(shù)列{cn}中,但不在數(shù)列{bn}中的項恰為a2,a4,(3)求數(shù)列{cn}的通項公式。 11、在數(shù)列?an?中,a1?2,an?1??an??n?1?(2??)2n(n?N?),其中??0。(1)求數(shù)列?an?的通項公式;(2)求數(shù)列?an?的前n項和Sn。,a2n,; an?1ak?1?(3)證明:存在k?N,使得對任意n?N*均成立。anak* 12、在數(shù)列?an?與?bn?中,a1?1,b1?4,數(shù)列?an?的前n項和Sn滿足nSn?1?(n?3)Sn?0,且2an?1為bn與bn?1的等比中項,n?N*。 (1)求a2,b2的值; (2)求數(shù)列?an?與?bn?的通項公式; *2n?N(3)設Tn?(?1)1b1?(?1)2b2?…?(?1)nbn,證明n≥?3。NT?2n,nn,aaa* 13、已知等差數(shù)列?an?的公差為d?d?0?,等比數(shù)列?bn?的公比為q,且q?1。設Sn?a1b1?a2b2??anbn,Tn?a1b1?a2b2??(?1)n?1anbn,n?N*。 (1)若a1?b1?1,d?2,q?3求S3的值; 2dq(1?q2n)*n?N(2)若b1?1,證明?1?q?S2n??1?q?T2n?,; 21?q(3)若正整數(shù)n滿足2?n?q,設k1,k2,kn和l1,l2,,2,,n ,ln是1的兩個不同的排列,c1?ak1b1?ak2b2?...?aknbn,c2?al1b1?al2b2?...?alnbn,證明c1?c2。 14、在數(shù)列?an?中,a1?0,且對任意k?N*,a2k?1,a2k,a2k?1成等差數(shù)列,其公差為dk。 (1)若dk?2k,證明a2k,a2k?1,a2k?2成等比數(shù)列; (2)若對任意k?N*,a2k,a2k?1,a2k?2成等比數(shù)列,其公比為qk。 ?1? ①設q1?1,證明??是等差數(shù)列; q?1?k?n3k2?2?n?2?。 ②若a2?2,證明?2n??2k?2ak15、已知數(shù)列{an}與{bn}滿足:bnan?an?1?bn?1an?2且a1?2,a2?4。(1)求a3,a4,a5的值; 3?(?1)n,n?N*,?0,bn?2(2)設cn?a2n?1?a2n?1,n?N*,證明?cn?是等比數(shù)列; Sk7?(n?N*)。(3)設Sk?a2?a4?????a2k,k?N,證明?6k?1ak*4n Unit 1 Women of achievement A級:基礎鞏固 Ⅰ.語境填詞 1.I felt a great sense of (achieve)when I reached the top of the mountain.答案:achievement 2.A good student must (connection)what he reads with what he sees around him.答案:connect 3.The (organize)of such a large-scale party takes a lot of time and energy.答案:organization 4.I like her attitude very much,and the (behave)of the other students shows that they like her,too.答案:behaviour 5.She (observation)a man breaking into the bank and she reported it to the police at once.答案:observed 6.After a long time of discussion they accepted the agreement without (argue).答案:argument 7.Rough seas caused much (sick)among the passengers.答案:sickness 8.Books offered an excellent (entertain)for idle hours.答案:entertainment 9.It is (consider)of you to call on me from time to time.答案:considerate 10.I think it would be a (kind)to tell him the bad news straight away.答案:kindness Ⅱ.單句改錯 1.I am writing in respect to the complaint you made last week.答案:to→of 2.A crowd of children was passing my house,singing and laughing.答案:was→were 3.No matter how low you consider yourself,there is always someone looking up you wishing they were that high.答案:up后加on 4.Tom came late for the meeting.That was why he was ill.答案:why→because 5.How did it come across that humans speak so many different languages? 答案:across→about B級:能力提升 Ⅲ.完形填空 閱讀下面短文,從短文后各題所給的四個選項(A、B、C和D)中,選出可以填入空白處的最佳選項。 A Young Man Learns What’s the Most Important in Life In his busy life,Jack had little time to think about the past and little to spend with his wife and son.教育資料 One day,his mother phoned him and told him that his old 1 ,Mr.Belser,had died.She asked if Jack would attend the funeral.Jack remembered 2 some of his childhood days with his old neighbor.It had been so long since Jack had thought of him.He 3 thought Mr.Belser had died years before.Jack’s mother said,“He didn’t forget you.When I saw him,he’d ask 4 you were doing.He’d remember the many days you spent at his home.After your father died,Mr.Belser stepped in to make sure you had a man’s 5 in your life.” “He taught me carpentry(木工手藝),”Jack said.“I wouldn’t be in this business if it weren’t for him.He spent a lot of time 6 me important things.I’ll be there for the funeral.” Mr.Belser’s funeral was 7.He had no children and most of his relatives had died.The night after he returned home,Jack and his mother 8 the old house next door.The houses was 9 as Jack remembered.Jack told his mother that there was a small gold box that Mr.Belser kept 10 on top of his desk.He had asked a thousand times what was inside, 11 Mr.Belser only said “The thing I value most.”It was 12.The house was exactly how Jack remembered it,except for the box.He figured someone from the Belser 13 had taken it.“Now I’ll never know what was so 14 to him,”Jack said.Two weeks after Mr.Belser died,Jack discovered a note in his mailbox.“Signature requested on a package.Please 15 by the main post office.” Next day Jack collected the package.The return address 16 his attention:“Mr.Harold Belser”.Jack opened the package.Inside was the gold box and an envelope.“Upon my death,please 17 this box and its contents to Jack Bennett.It’s the thing I valued most in my life.”Jack 18 opened the box.Inside he found a simple pocket watch and also these words 19 to it,“Jack,Thanks for your time!—Harold Belser.” “My god!The thing he valued most was...my time.”He couldn’t believe it.Immediately he called 20 his appointments for the next two days,because he needed some time to spend with his family.1.A.friend B.neighbor C.relative D.classmate 解析:friend “朋友”;neighbor “鄰居”;relative “親戚”;classmate “同學”。根據(jù)本段第三句中的“...some of his childhood days with his old neighbor”可知,此處應該選neighbor,指杰克的鄰居,故B項正確。答案:B 2.A.working B.playing C.spending D.talking 解析:句意:杰克想起了小時候與他的老鄰居一起度過的時光。由第三段中的“He’d remember the many days you spent at his home.”可知此處選spending,意為“度過”。答案:C 3.A.honestly B.actively C.foolishly D.carefully 解析:honestly “真地;老實說”;actively “積極地”;foolishly “愚笨地”;carefully “小心地”。根據(jù)上一句“It had been so long since Jack had thought of him.”可知,杰克真的以為貝爾瑟先生幾年前就死了。故A項正確。答案:A 4.A.when B.where 教育資料 C.how D.why 解析:當杰克的媽媽見到貝爾瑟先生的時候,他會問起杰克過得怎樣。how“如何”,符合語境。How is sb.doing?意為“某人過得怎么樣?” 答案:C 5.A.help B.influence C.shadow D.attitude 解析:help“幫助”;influence “影響”;shadow“陰影,影子”;attitude “態(tài)度”。此處指貝爾瑟先生來確認杰克是否能在生活中像個男人一樣有所擔當,故B項正確。答案:B 6.A.giving B.teaching C.helping D.assisting 解析:由本段開頭的“He taught me carpentry...”可知,貝爾瑟先生花時間教杰克重要的事情,故B項正確。答案:B 7.A.big B.wonderful C.small D.moving 解析:big “大的”;wonderful “奇妙的;極好的”;small “小的”;moving “令人感動的”。從下一句“He had no children and most of his relatives had died.”可推斷此處表示貝爾瑟先生的葬禮規(guī)模很小,故C項正確。答案:C 8.A.came B.returned C.painted D.visited 解析:根據(jù)語境可知此處指杰克和母親去看了看隔壁的老房子,故選D項visited,意為“拜訪;參觀”。答案:D 9.A.possibly B.strangely C.differently D.completely 解析:possibly “可能地”;strangely “奇怪地”;differently “不同地”;completely “完全地”。從下一段倒數(shù)第二句The house was exactly how Jack remembered it...可知,這個房子和杰克記憶中的完全一樣,故D項正確。答案:D 10.A.buried B.discovered C.locked D.reached 解析:bury “埋葬”;discover “發(fā)現(xiàn)”;lock “鎖”;reach “夠到”。從下一句中的He had asked a thousand times what was inside...可推知此處表示桌子上的小金盒子是上了鎖的,故C項正確。答案:C 11.A.so B.but C.or D.when 解析:根據(jù)前面的a thousand times和后面的only可知,前后是轉(zhuǎn)折關系,故用but,故B項正確。答案:B 12.A.dear B.gone C.old D.clear 解析:由本段最后一句“He figured someone from the Belser had taken it.”可知,那個金盒子不見了。be gone “不見了”,符合語境。 答案:B 13.A.wife B.son C.family D.neighbor 解析:此處是指貝爾瑟先生的家人,故用family。the Belser family 意為“貝爾瑟一家人”。答案:C 14.A.valuable B.necessary 教育資料 C.important D.expensive 解析:valuable “有價值的,貴重的”;necessary “有必要的”;important “重要的”;expensive “昂貴的”。根據(jù)上一段中的“The thing I value most.”可知,盒子里的東西很貴重,故A項正確。答案:A 15.A.stop B.begin C.start D.hurry 解析:從下段中的“Next Day Jack collected the package.”可知,紙條上給杰克指出了取包裹的地址,stop by “順便來訪”,為固定短語,符合語境。答案:A 16.A.gathered B.visited C.greeted D.caught 解析:gather “收集;收割”;visit “訪問;拜訪”;greet “歡迎,迎接”;catch “抓住”。根據(jù)下一段“Jack opened the package.”可推斷此處表示吸引了他的注意,catch one’s attention “引起某人的注意”,為固定短語,符合語境。答案:D 17.A.give B.improve C.return D.pay 解析:杰克收到了貝爾瑟先生寄給他的盒子,信中說貝爾瑟先生要把盒子給杰克。give sth.to sb.“把某物給某人”,為固定結(jié)構(gòu),符合語境。答案:A 18.A.casually B.sadly C.nervously D.carefully 解析:casually “隨便地”;sadly “悲哀地”;nervously “緊張地”;carefully “仔細地,小心地”。杰克收到盒子后,應該是小心地打開了盒子,故D項正確。答案:D 19.A.attached B.writing C.reading D.printed 解析:attach “附加,附屬”;write “寫”;read “閱讀”;print “印刷”。根據(jù)此空前的“...and also these words”可知,在那個手表上還附帶著一些話,attach...to...“把……附在……上”,為固定短語,符合語境。答案:A 20.A.on B.at C.in D.off 解析:call on “探望;拜訪”;call at “訪問”;call in “召集”;call off “取消”。貝爾瑟先生送給杰克的東西和對他的感謝讓杰克領悟到,即使工作再忙也要抽出時間與家人待在一起。此處表示“他立刻取消了接下來兩天的預約”,故D項正確。答案:D Ⅳ.七選五 根據(jù)短文內(nèi)容,從短文后的選項中選出能填入空白處的最佳選項。選項中有兩項為多余選項。If you’re finding it tough to find a job,try expanding your job-hunting plan to include the following key points: Set your target.1 A specific job hunt will be more efficient than an ordinary one.Plan enough interviews.Use every possible method to get interviews—answering ads,using search firms,contacting companies directly,surfing the Web,and networking.2 Follow up.3 Then,some weeks later,send another brief letter to explain that you still have not found the perfect position and that you will be available to interview again if the original position you applied for—or any other position,for that matter—is open.4 教育資料 5 You can’t find a job by looking at times.You have to make time for it.If you’re unemployed and looking,devote as much time as you would to a full-time job.A.Do this with every position you interview for,and you may just catch a break.B.Even if a job is not perfect for you,every interview can be approached as a positive experience.C.Value the chance of work.D.You should also be sure to target exactly what you want in a job.E.If you are well-dressed,it’s more likely that you can get the job.F.Even if someone does not hire you,write them a thank-you note for the interview.G.Make it your full-time job.答案:1~5 DBFAG 教育資料第二篇:(新Ⅱ)2018年高考數(shù)學總復習專題06數(shù)列分項練習理!
第三篇:小學數(shù)學畢業(yè)總復習:數(shù)列求和考點
第四篇:【天津市2013屆高三數(shù)學總復習之綜合專題:數(shù)列(理)(學生版)
第五篇:高考英語總復習Unit1Womenofachievement練習新人教版必修4