第一篇:高一數(shù)學函數(shù)值域解題技巧
一.觀察法
通過對函數(shù)定義域、性質的觀察,結合函數(shù)的解析式,求得函數(shù)的值域。例1求函數(shù)y=3+√(2-3x)的值域。
點撥:根據(jù)算術平方根的性質,先求出√(2-3x)的值域。解:由算術平方根的性質,知√(2-3x)≥0,故3+√(2-3x)≥3?!嗪瘮?shù)的知域為.點評:算術平方根具有雙重非負性,即:(1)被開方數(shù)的非負性,(2)值的非負性。
本題通過直接觀察算術平方根的性質而獲解,這種方法對于一類函數(shù)的值域的求法,簡捷明了,不失為一種巧法。
練習:求函數(shù)y=[x](0≤x≤5)的值域。(答案:值域為:{0,1,2,3,4,5})二.反函數(shù)法
當函數(shù)的反函數(shù)存在時,則其反函數(shù)的定義域就是原函數(shù)的值域。例2求函數(shù)y=(x+1)/(x+2)的值域。
點撥:先求出原函數(shù)的反函數(shù),再求出其定義域。
解:顯然函數(shù)y=(x+1)/(x+2)的反函數(shù)為:x=(1-2y)/(y-1),其定義域為y≠1的實數(shù),故函數(shù)y的值域為{y∣y≠1,y∈R}。點評:利用反函數(shù)法求原函數(shù)的定義域的前提條件是原函數(shù)存在反函數(shù)。這種方法體現(xiàn)逆向思維的思想,是數(shù)學解題的重要方法之一。
練習:求函數(shù)y=(10x+10-x)/(10x-10-x)的值域。(答案:函數(shù)的值域為{y∣y<-1或y>1})三.配方法
當所給函數(shù)是二次函數(shù)或可化為二次函數(shù)的復合函數(shù)時,可以利用配方法求函數(shù)值域
例3:求函數(shù)y=√(-x2+x+2)的值域。
點撥:將被開方數(shù)配方成完全平方數(shù),利用二次函數(shù)的最值求。
解:由-x2+x+2≥0,可知函數(shù)的定義域為x∈[-1,2]。此時-x2+x+2=-(x-1/2)2+9/4∈[0,9/4] ∴0≤√-x2+x+2≤3/2,函數(shù)的值域是[0,3/2] 點評:求函數(shù)的值域不但要重視對應關系的應用,而且要特別注意定義域對值域的制約作用。配方法是數(shù)學的一種重要的思想方法。
練習:求函數(shù)y=2x-5+√15-4x的值域.(答案:值域為{y∣y≤3})四.判別式法
若可化為關于某變量的二次方程的分式函數(shù)或無理函數(shù),可用判別式法求函數(shù)的值域。
例4求函數(shù)y=(2x2-2x+3)/(x2-x+1)的值域。
點撥:將原函數(shù)轉化為自變量的二次方程,應用二次方程根的判別式,從而確定出原函數(shù)的值域。
解:將上式化為(y-2)x2-(y-2)x+(y-3)=0(*)
當y≠2時,由Δ=(y-2)2-4(y-2)x+(y-3)≥0,解得:2<x≤10/3 當y=2時,方程(*)無解?!嗪瘮?shù)的值域為2<y≤10/3。
點評:把函數(shù)關系化為二次方程F(x,y)=0,由于方程有實數(shù)解,故其判別式為非負數(shù),可求得函數(shù)的值域。常適應于形如y=(ax2+bx+c)/(dx2+ex+f)及y=ax+b±√(cx2+dx+e)的函數(shù)。
練習:求函數(shù)y=1/(2x2-3x+1)的值域。(答案:值域為y≤-8或y>0)。五.最值法
對于閉區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),可求出y=f(x)在區(qū)間[a,b]內(nèi)的極值,并與邊界值f(a).f(b)作比較,求出函數(shù)的最值,可得到函數(shù)y的值域。
例5已知(2x2-x-3)/(3x2+x+1)≤0,且滿足x+y=1,求函數(shù)z=xy+3x的值域。
點撥:根據(jù)已知條件求出自變量x的取值范圍,將目標函數(shù)消元、配方,可求出函數(shù)的值域。
解:∵3x2+x+1>0,上述分式不等式與不等式2x2-x-3≤0同解,解之得-1≤x≤3/2,又x+y=1,將y=1-x代入z=xy+3x中,得z=-x2+4x(-1≤x≤3/2),∴z=-(x-2)2+4且x∈[-1,3/2],函數(shù)z在區(qū)間[-1,3/2]上連續(xù),故只需比較邊界的大小。
當x=-1時,z=-5;當x=3/2時,z=15/4?!嗪瘮?shù)z的值域為{z∣-5≤z≤15/4}。
點評:本題是將函數(shù)的值域問題轉化為函數(shù)的最值。對開區(qū)間,若存在最值,也可通過求出最值而獲得函數(shù)的值域。
練習:若√x為實數(shù),則函數(shù)y=x2+3x-5的值域為()
A.(-∞,+∞)B.[-7,+∞] C.[0,+∞)D.[-5,+∞)(答案:D)。六.圖象法
通過觀察函數(shù)的圖象,運用數(shù)形結合的方法得到函數(shù)的值域。例6求函數(shù)y=∣x+1∣+√(x-2)2 的值域。
點撥:根據(jù)絕對值的意義,去掉符號后轉化為分段函數(shù),作出其圖象。解:原函數(shù)化為 -2x+1(x≤1)y= 3(-1
顯然函數(shù)值y≥3,所以,函數(shù)值域[3,+∞]。
點評:分段函數(shù)應注意函數(shù)的端點。利用函數(shù)的圖象
求函數(shù)的值域,體現(xiàn)數(shù)形結合的思想。是解決問題的重要方法。
求函數(shù)值域的方法較多,還適應通過不等式法、函數(shù)的單調性、換元法等方法求函數(shù)的值域。七.單調法
利用函數(shù)在給定的區(qū)間上的單調遞增或單調遞減求值域。例1求函數(shù)y=4x-√1-3x(x≤1/3)的值域。
點撥:由已知的函數(shù)是復合函數(shù),即g(x)= -√1-3x,y=f(x)+g(x),其定義域為x≤1/3,在此區(qū)間內(nèi)分別討論函數(shù)的增減性,從而確定函數(shù)的值域。
解:設f(x)=4x,g(x)= -√1-3x ,(x≤1/3),易知它們在定義域內(nèi)為增函數(shù),從而y=f(x)+g(x)= 4x-√1-3x
在定義域為x≤1/3上也為增函數(shù),而且y≤f(1/3)+g(1/3)=4/3,因此,所求的函數(shù)值域為{y|y≤4/3}。
點評:利用單調性求函數(shù)的值域,是在函數(shù)給定的區(qū)間上,或求出函數(shù)隱含的區(qū)間,結合函數(shù)的增減性,求出其函數(shù)在區(qū)間端點的函數(shù)值,進而可確定函數(shù)的值域。練習:求函數(shù)y=3+√4-x 的值域。(答案:{y|y≥3})八.換元法
以新變量代替函數(shù)式中的某些量,使函數(shù)轉化為以新變量為自變量的函數(shù)形式,進而求出值域。
例2求函數(shù)y=x-3+√2x+1 的值域。
點撥:通過換元將原函數(shù)轉化為某個變量的二次函數(shù),利用二次函數(shù)的最值,確定原函數(shù)的值域。
解:設t=√2x+1(t≥0),則 x=1/2(t2-1)。
于是 y=1/2(t2-1)-3+t=1/2(t+1)2-4≥1/2-4=-7/2.所以,原函數(shù)的值域為{y|y≥-7/2}。
點評:將無理函數(shù)或二次型的函數(shù)轉化為二次函數(shù),通過求出二次函數(shù)的最值,從而確定出原函數(shù)的值域。這種解題的方法體現(xiàn)換元、化歸的思想方法。它的應用十分廣泛。
練習:求函數(shù)y=√x-1 –x的值域。(答案:{y|y≤-3/4} 九.構造法
根據(jù)函數(shù)的結構特征,賦予幾何圖形,數(shù)形結合。例3求函數(shù)y=√x2+4x+5+√x2-4x+8 的值域。
點撥:將原函數(shù)變形,構造平面圖形,由幾何知識,確定出函數(shù)的值域。解:原函數(shù)變形為f(x)=√(x+2)2+1+√(2-x)2+22 作一個長為
4、寬為3的矩形ABCD,再切割成12個單位 正方形。設HK=x,則ek=2-x,KF=2+x,AK=√(2-x)2+22 , KC=√(x+2)2+1。
由三角形三邊關系知,AK+KC≥AC=5。當A、K、C三點共 線時取等號。
∴原函數(shù)的知域為{y|y≥5}。
點評:對于形如函數(shù)y=√x2+a ±√(c-x)2+b(a,b,c均為正數(shù)),均可通過構造幾何圖形,由幾何的性質,直觀明了、方便簡捷。這是數(shù)形結合思想的體現(xiàn)。
練習:求函數(shù)y=√x2+9 +√(5-x)2+4的值域。(答案:{y|y≥5√2})十.比例法
對于一類含條件的函數(shù)的值域的求法,可將條件轉化為比例式,代入目標函數(shù),進而求出原函數(shù)的值域。
例4已知x,y∈R,且3x-4y-5=0,求函數(shù)z=x2+y2的值域。
點撥:將條件方程3x-4y-5=0轉化為比例式,設置參數(shù),代入原函數(shù)。解:由3x-4y-5=0變形得,(x3)/4=(y-1)/3=k(k為參數(shù))∴x=3+4k,y=1+3k, ∴z=x2+y2=(3+4k)2+(14+3k)2=(5k+3)2+1。當k=-3/5時,x=3/5,y=-4/5時,zmin=1。函數(shù)的值域為{z|z≥1}.點評:本題是多元函數(shù)關系,一般含有約束條件,將條件轉化為比例式,通過設參數(shù),可將原函數(shù)轉化為單函數(shù)的形式,這種解題方法體現(xiàn)諸多思想方法,具有一定的創(chuàng)新意識。
練習:已知x,y∈R,且滿足4x-y=0,求函數(shù)f(x,y)=2x2-y的值域。(答案:{f(x,y)|f(x,y)≥1})
十一.利用多項式的除法
例5求函數(shù)y=(3x+2)/(x+1)的值域。
點撥:將原分式函數(shù),利用長除法轉化為一個整式與一個分式之和。解:y=(3x+2)/(x+1)=3-1/(x+1)?!?/(x+1)≠0,故y≠3。
∴函數(shù)y的值域為y≠3的一切實數(shù)。
點評:對于形如y=(ax+b)/(cx+d)的形式的函數(shù)均可利用這種方法。練習:求函數(shù)y=(x2-1)/(x-1)(x≠1)的值域。(答案:y≠2)十二.不等式法
例6求函數(shù)Y=3x/(3x+1)的值域。
點撥:先求出原函數(shù)的反函數(shù),根據(jù)自變量的取值范圍,構造不等式。解:易求得原函數(shù)的反函數(shù)為y=log3[x/(1-x)], 由對數(shù)函數(shù)的定義知 x/(1-x)>0 1-x≠0
解得,0<x<1。
∴函數(shù)的值域(0,1)。
點評:考查函數(shù)自變量的取值范圍構造不等式(組)或構造重要不等式,求出函數(shù)定義域,進而求值域。不等式法是重要的解題工具,它的應用非常廣泛。是數(shù)學解題的方法之一。
以下供練習選用:求下列函數(shù)的值域 1.Y=√(15-4x)+2x-5;({y|y≤3})2.Y=2x/(2x-1)。(y>1或y<0)
第二篇:函數(shù)值域問題
努力今天成就明
天
知識就是財富
求分式函數(shù)值域的幾種方法
求分式函數(shù)值域的常見方法 1 用配方法求分式函數(shù)的值域
如果分式函數(shù)變形后可以轉化為y?配方,用直接法求得函數(shù)的值域.例1 求y?解:y?1的值域.22x?3x?113?1?2?x???4?8?2a?b的形式則我們可以將它的分母2a1x?b2x?c22,3?11?因為2?x???≥?,4?88?所以函數(shù)的值域為:???,?8?∪?0,???.x2?x例2 求函數(shù)y?2的值域.x?x?1解:y?2?1?1,2x?x?121?33?因為x?x?1??x???≥,2?44?所以?3?1≤2?0,4x?x?12 ?1?故函數(shù)的值域為??,1?.?3?先配方后再用直接法求值域的時候,要注意自變量的取值范圍.取“?”的條件.利用判別式法求分式函數(shù)的值域
我們知道若ax2?bx?c?0?a?0,a,b?R?有實根,則??b2?4ac≥0常常利用這一結論來求分式函數(shù)的值域.x2?3x?4例1 求y?2的值域.x?3x?4解:將函數(shù)變形為?y?1?x2??3y?3?x??4y?4??0?①,當y?1時①式是一個關于x的一元二次方程.因為x可以是任意實數(shù),所以?≥0,即?3y?3??4?y?1??4y?4???7y?50y?7≥0,解得,17≤y≤1或1?y≤7,又當y?1時,x?0,?1?故函數(shù)的值域為?,7?.?7?2x2?bx?c例2 函數(shù)y?的值域為?1,3?,求b,c的值.2x?1解:化為?y?2?x?bx?y?c?0,⑴當y?2時x?R???b?4?y?2??y?c?≥0,?4y2?4?c?2?y?8c?b2≥0,由已知4y2?4?c?2?y?8c?b2?0的兩根為1,3,由韋達定理得,c?2,b??2.⑵當y?2時x?2?c?0有解 b綜上⑴和⑵,b??2,c?2.由這兩個例題我們知道在利用判別式法求分式函數(shù)的值域時要注意下列問題:
1、函數(shù)定義域為R(即分母恒不為0)時用判別式求出的值域是完備的.2、當x不能取某些實數(shù)時(分母為零),若要用判別式法求它的值域則需要對使y?a2x2?b2x?c2??a1x2?b1x?c1的判別式??0的y值進行檢驗.3、轉換后的一元二次方程若二次項系數(shù)中含有字母則需要討論其是否為0只有在其不為0的情況下才可以使用判別式法.3.利用函數(shù)單調性求分式函數(shù)的值
對于求函數(shù)的值域問題,我們通常使用能夠揭示此類函數(shù)本質特征的通性通法即利用函數(shù)的單調性來求其值域.例1求函數(shù)y?解:y?2x?1(x?R,x??1)的值域.x?12x?12(x?1)?33,?2??x?1x?1x?13是x減函數(shù)進而y是x的增函數(shù),于是y????,?2?; x?1當x??1時,當x??1時,同樣y是x的增函數(shù),于是y??2,???; 所以y?2x?1(x??1)的值域為???,?2?∪?2,???.x?1a的單調性的結論: x在求分式函數(shù)時我們常運用函數(shù)y?x??⑴當a?0時在??,a和??a,??上增函數(shù),在??a,0和0,a上是減函數(shù).??????⑵當a?0時在???,0?和?0,???上是增函數(shù).例求函數(shù)y?x(1≤x≤3)的值域.2x?x?4解:x?0所以y?x.4x??1x4令t?x?在?1,2?上是減函數(shù),在?2,3?是上增函數(shù),x所以x?2時,tmin?4;
x?1時,tmax?5;
所以t??4,5?,t?1??3,t?,?11?故值域為?,?.?43?4.利用反函數(shù)法(反解)求分式函數(shù)的值域
設y?f(x)有反函數(shù),則函數(shù)y?f(x)的定義域是它反函數(shù)的值域,函數(shù)y?f(x)的值域是其反函數(shù)的定義域.那么如果一個分式函數(shù)的反函數(shù)存在,我們就可以通過求反函數(shù)的定義域來求其值域.例1 求函數(shù)y?2x的值域.5x?12x1(x??)的映射是一一映射因此反函數(shù)存在,其反函數(shù)為5x?152??,5?解:由于函數(shù)y?y?x? 明顯知道該函數(shù)的定義域為?x|x?2?5x?2??2??故函數(shù)的值域為???,?∪?,???.5??5??說明:由于本方法中所具有的某些局限性,一般說來,用此方法求值域只用y?ax?b(c≠0)的函數(shù),并且用此方法求函數(shù)的值域,也不是比較理想的方法.我們用這種cx?d方法目的是找關于y的不等式所以反函數(shù)求值域的實質是反函數(shù)的思想樹立這種思想是我們的宗旨.下面這種方法就是利用了反函數(shù)的思想比較通用的方法.5.利用方程法求分式函數(shù)的值域
4x2?7x??0,1?求函數(shù)例1(2005年全國高考理科卷Ⅲ第22題)已知函數(shù)f(x)?2?xf(x)的值域
4x2?7解:f(x)?,x??0,1?,2?x所以2y?xy?4x2?7,x??0,1?,即4x2?yx?(7?2y)?0,x??0,1?.這樣函數(shù)的值域即為關于x的方程4x2?yx?(7?2y)?0在x??0,1?內(nèi)有解的y的取值集.令g(x)?4x2?yx?(7?2y),x??0,1?,則關于x的方程4x2?yx?(7?2y)?0在x??0,1?內(nèi)有解?g(0)?g(1)≤0 ?g(0)?0?g(1)?0?77?或???≤y≤?3或?4≤y≤???4≤y≤3,by22?0??2a??2?4?1???b?4ac?y?4?(?7?2y)?0即所求函數(shù)的值域為??4,?3?..利用換元法求分式函數(shù)的值域
當題目的條件與結論看不出直接的聯(lián)系(甚至相去甚遠)時,為了溝通已知與未知的聯(lián)系,我們常常引進一個(或幾個)新的量來代替原來的量,實行這種“變量代換”往往可以暴露已知與未知之間被表面形式掩蓋著的實質,發(fā)現(xiàn)解題方向.換元法是一種重要的數(shù)學解題方法,掌握它的關鍵在于通過觀察、聯(lián)想,發(fā)現(xiàn)與構造出變換式(或新元換舊式、或新式換舊元、或新式換舊式).在中學數(shù)學問題中,常見的基本換元形式有式代換、三角代換、點代換、參數(shù)代換等.x2?4x?4,x?[?1,0]的值域. 例1 求函數(shù)f(x)?2x?4x?5解:令t?x?2,t2則y?2?t?111,?[,1]. 1t21?2t115因為1?2?[,2],t414所以函數(shù)f(x)的值域是[,].
25x4例2 求函數(shù)y?的值域.
(1?x2)3解:令x?tan?,??(???,),22tan4?tan4??則y??sin4?cos2? 233(1?tan?)sec?1?sin2?sin2?2cos2?21?sin2??sin2??2cos2??4≤?.??2?327?6
3當且僅當tan2??2時“?”成立.x4?4?所以函數(shù)y?的值域為0,?.?(1?x2)3?27?在這道例題中不僅用了換元法還用了均值不等式.利用三角函數(shù)來代換是我們在用換元法解題最常用的在換元后根據(jù)三角函數(shù)的有界性求能求出函數(shù)的值域.在用換元法的時候重要的就是要注意換元后的自變量發(fā)生了改變,那么它的定義域也就變了.注意到這點才能準確地求出值域.7.利用不等式法求分式函數(shù)的值域
“不等式法”就是通過利用不等式的一些性質和均值不等式來求某些具有一定特性的分式函數(shù)的值域.若原函數(shù)通過變形后的分子分母符和下列條件①各變數(shù)為正;②各變數(shù)的和或積為常數(shù).則可以考慮用均值不等式求它的值域.要注意在得到結論之后要說明其中等號能夠取到.例1 求函數(shù)y?解:y?24(x?1)(x??1)的值域.(x?3)224(x?1)24.?24(x?1)?4(x?1)?4(x?1)??4x?14因為x?1?0,所以x?1?≥4,x?14則x?1??4?8,x?124所以0?y≤?3(當x?1時取等號),8故函數(shù)的值域為?0,3?.例2 設Sn?1?2?3???n,n?N求f(n)?中數(shù)學聯(lián)賽)
解:f(n)?Sn(n?32)Sn?1Sn的最大值.(2000年全國高
(n?32)Sn?1n(n?1)nn2??2,?(n?1)(n?2)(n?32)(n?2)n?34n?64(n?32)?27 即化為了求分式函數(shù)最值的問題f(n)?164n?34?n.又因為n?34?當n?6464?34?50,≥2n?nn641即n?8時“?”成立,所以對任何n?N有f(n)≤,n501故f(n)的最大值為.50例2表面上看是數(shù)列的問題而實際是我們可以將其轉化為求函數(shù)值域的問題在這里我們利用均值不等式的性質來求其值域就使得整個解題過程利用數(shù)更簡單.8.斜率法求分式函數(shù)的值域
數(shù)形結合是中學數(shù)學中的一種重要的數(shù)學思想方法.數(shù)是形的抽象概括,形是數(shù)的直觀表現(xiàn).華羅庚先生指出:數(shù)缺形時少直覺,形少數(shù)時難入微,數(shù)形結合百般好,隔離分家萬事休.這種方法不僅僅體現(xiàn)在數(shù)學的其它領域中,在求函數(shù)的值域與最值時也有良好的反映.聯(lián)想到過A(x1,y1),B(x2,y2)的直線LAB的斜率為kAB?函數(shù)化為斜率式并利用數(shù)形結合法來求函數(shù)的值域.3t22(t?)的最小值.例1 求函數(shù)f(t)?2(3t?2)3y2?y1,我們可以考慮把分式x2?x13t2?02解:函數(shù)f(t)可變形為f(t)?(t?),6t?43設A(6t,3t2),B(4,0)則f(t)看作是直線AB的斜率,令x?6t,y?3t2則x2?12y(x?4).在直角坐標系中A點的軌跡為拋物線的一部分直線與拋物線相切是斜率最小.過點B(4,0)直線方程為:y?k(x?4)將它代入x2?12y,有x2?12kx?48k?0,則??0推算出k?即t?8時,f(t)min?4.34此時x?8,38 x2?x?11例2 求y?(?≤x≤1)的值域.x?12(x2?x)?1解:y?,令A(?1,1),B(x,x2?x),x?(?1)則y?kAB,點B的軌跡方程為y?x2?x(?1≤x≤1),21151B1(?,?),B2(1,2),kAB1??,kAB2?,2422所以y?k?51?AB????2,2??,即函數(shù)的值域為??51???2,2??.
第三篇:高一數(shù)學解題技巧
高一數(shù)學解題技巧:巧用知識點解題口訣
二、《立體幾何》
點線面三位一體,柱錐臺球為代表。距離都從點出發(fā),角度皆為線線成。垂直平行是重點,證明須弄清概念。線線線面和面面、三對之間循環(huán)現(xiàn)。方程思想整體求,化歸意識動割補。計算之前須證明,畫好移出的圖形。立體幾何輔助線,常用垂線和平面。射影概念很重要,對于解題最關鍵。異面直線二面角,體積射影公式活。公理性質三垂線,解決問題一大片。
三、《平面解析幾何》
有向線段直線圓,橢圓雙曲拋物線,參數(shù)方程極坐標,數(shù)形結合稱典范。笛卡爾的觀點對,點和有序實數(shù)對,兩者—一來對應,開創(chuàng)幾何新途徑。兩種思想相輝映,化歸思想打前陣;都說待定系數(shù)法,實為方程組思想。三種類型集大成,畫出曲線求方程,給了方程作曲線,曲線位置關系判。四件工具是法寶,坐標思想?yún)?shù)好;平面幾何不能丟,旋轉變換復數(shù)求。解析幾何是幾何,得意忘形學不活。圖形直觀數(shù)入微,數(shù)學本是數(shù)形學。
第四篇:高一函數(shù)整理求值域的方法
一.觀察法
通過對函數(shù)定義域、性質的觀察,結合函數(shù)的解析式,求得函數(shù)的值域。
例1求函數(shù)y=3+√(2-3x)的值域。
點撥:根據(jù)算術平方根的性質,先求出√(2-3x)的值域。
解:由算術平方根的性質,知√(2-3x)≥0,故3+√(2-3x)≥3。
∴函數(shù)的知域為.點評:算術平方根具有雙重非負性,即:(1)被開方數(shù)的非負性,(2)值的非負性。本題通過直接觀察算術平方根的性質而獲解,這種方法對于一類函數(shù)的值域的求法,簡捷明了,不失為一種巧法。
練習:求函數(shù)y=[x](0≤x≤5)的值域。(答案:值域為:{0,1,2,3,4,5})
二.反函數(shù)法
當函數(shù)的反函數(shù)存在時,則其反函數(shù)的定義域就是原函數(shù)的值域。
例2求函數(shù)y=(x+1)/(x+2)的值域。
點撥:先求出原函數(shù)的反函數(shù),再求出其定義域。
解:顯然函數(shù)y=(x+1)/(x+2)的反函數(shù)為:x=(1-2y)/(y-1),其定義域為y≠1的實數(shù),故函數(shù)y的值域為{y∣y≠1,y∈R}。
點評:利用反函數(shù)法求原函數(shù)的定義域的前提條件是原函數(shù)存在反函數(shù)。這種方法體現(xiàn)逆向思維的思想,是數(shù)學解題的重要方法之一。
練習:求函數(shù)y=(10x+10-x)/(10x-10-x)的值域。(答案:函數(shù)的值域為{y∣y<-1或y>1})
三.配方法
當所給函數(shù)是二次函數(shù)或可化為二次函數(shù)的復合函數(shù)時,可以利用配方法求函數(shù)值域 例3:求函數(shù)y=√(-x2+x+2)的值域。
點撥:將被開方數(shù)配方成完全平方數(shù),利用二次函數(shù)的最值求。
解:由-x2+x+2≥0,可知函數(shù)的定義域為x∈[-1,2]。此時-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]
∴0≤√-x2+x+2≤3/2,函數(shù)的值域是[0,3/2]
點評:求函數(shù)的值域不但要重視對應關系的應用,而且要特別注意定義域對值域的制約作用。配方法是數(shù)學的一種重要的思想方法。
練習:求函數(shù)y=2x-5+√15-4x的值域.(答案:值域為{y∣y≤3})
四.判別式法
若可化為關于某變量的二次方程的分式函數(shù)或無理函數(shù),可用判別式法求函數(shù)的值域。例4求函數(shù)y=(2x2-2x+3)/(x2-x+1)的值域。
點撥:將原函數(shù)轉化為自變量的二次方程,應用二次方程根的判別式,從而確定出原函數(shù)的值域。
解:將上式化為(y-2)x2-(y-2)x+(y-3)=0(*)
當y≠2時,由Δ=(y-2)2-4(y-2)x+(y-3)≥0,解得:2<x≤10/
3當y=2時,方程(*)無解。∴函數(shù)的值域為2<y≤10/3。
點評:把函數(shù)關系化為二次方程F(x,y)=0,由于方程有實數(shù)解,故其判別式為非負數(shù),可求得函數(shù)的值域。常適應于形如y=(ax2+bx+c)/(dx2+ex+f)及y=ax+b±√(cx2+dx+e)的函數(shù)。練習:求函數(shù)y=1/(2x2-3x+1)的值域。(答案:值域為y≤-8或y>0)。
五.最值法
對于閉區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),可求出y=f(x)在區(qū)間[a,b]內(nèi)的極值,并與邊界值f(a).f(b)作比較,求出函數(shù)的最值,可得到函數(shù)y的值域。
例5已知(2x2-x-3)/(3x2+x+1)≤0,且滿足x+y=1,求函數(shù)z=xy+3x的值域。
點撥:根據(jù)已知條件求出自變量x的取值范圍,將目標函數(shù)消元、配方,可求出函數(shù)的值域。解:∵3x2+x+1>0,上述分式不等式與不等式2x2-x-3≤0同解,解之得-1≤x≤3/2,又x+y=1,將y=1-x代入z=xy+3x中,得z=-x2+4x(-1≤x≤3/2),∴z=-(x-2)2+4且x∈[-1,3/2],函數(shù)z在區(qū)間[-1,3/2]上連續(xù),故只需比較邊界的大小。當x=-1時,z=-5;當x=3/2時,z=15/4。
∴函數(shù)z的值域為{z∣-5≤z≤15/4}。
點評:本題是將函數(shù)的值域問題轉化為函數(shù)的最值。對開區(qū)間,若存在最值,也可通過求出最值而獲得函數(shù)的值域。
練習:若√x為實數(shù),則函數(shù)y=x2+3x-5的值域為()
A.(-∞,+∞)B.[-7,+∞] C.[0,+∞)D.[-5,+∞)
(答案:D)。
六.圖象法
通過觀察函數(shù)的圖象,運用數(shù)形結合的方法得到函數(shù)的值域。
例6求函數(shù)y=∣x+1∣+√(x-2)2 的值域。
點撥:根據(jù)絕對值的意義,去掉符號后轉化為分段函數(shù),作出其圖象。
解:原函數(shù)化為 -2x+1(x≤1)
y= 3(-1 2x-1(x>2) 它的圖象如圖所示。 顯然函數(shù)值y≥3,所以,函數(shù)值域[3,+∞]。 點評:分段函數(shù)應注意函數(shù)的端點。利用函數(shù)的圖象 求函數(shù)的值域,體現(xiàn)數(shù)形結合的思想。是解決問題的重要方法。 求函數(shù)值域的方法較多,還適應通過不等式法、函數(shù)的單調性、換元法等方法求函數(shù)的值域。 七.單調法 利用函數(shù)在給定的區(qū)間上的單調遞增或單調遞減求值域。 例1求函數(shù)y=4x-√1-3x(x≤1/3)的值域。 點撥:由已知的函數(shù)是復合函數(shù),即g(x)= -√1-3x,y=f(x)+g(x),其定義域為x≤1/3,在此區(qū)間內(nèi)分別討論函數(shù)的增減性,從而確定函數(shù)的值域。 解:設f(x)=4x,g(x)= -√1-3x ,(x≤1/3),易知它們在定義域內(nèi)為增函數(shù),從而y=f(x)+g(x)= 4x-√1-3x 在定義域為x≤1/3上也為增函數(shù),而且y≤f(1/3)+g(1/3)=4/3,因此,所求的函數(shù)值域為{y|y≤4/3}。 點評:利用單調性求函數(shù)的值域,是在函數(shù)給定的區(qū)間上,或求出函數(shù)隱含的區(qū)間,結合函 數(shù)的增減性,求出其函數(shù)在區(qū)間端點的函數(shù)值,進而可確定函數(shù)的值域。 練習:求函數(shù)y=3+√4-x 的值域。(答案:{y|y≥3}) 八.換元法 以新變量代替函數(shù)式中的某些量,使函數(shù)轉化為以新變量為自變量的函數(shù)形式,進而求出值域。 例2求函數(shù)y=x-3+√2x+1 的值域。 點撥:通過換元將原函數(shù)轉化為某個變量的二次函數(shù),利用二次函數(shù)的最值,確定原函數(shù)的值域。 解:設t=√2x+1(t≥0),則 x=1/2(t2-1)。 于是 y=1/2(t2-1)-3+t=1/2(t+1)2-4≥1/2-4=-7/2.所以,原函數(shù)的值域為{y|y≥-7/2}。 點評:將無理函數(shù)或二次型的函數(shù)轉化為二次函數(shù),通過求出二次函數(shù)的最值,從而確定出原函數(shù)的值域。這種解題的方法體現(xiàn)換元、化歸的思想方法。它的應用十分廣泛。練習:求函數(shù)y=√x-1 –x的值域。(答案:{y|y≤-3/4} 九.構造法 根據(jù)函數(shù)的結構特征,賦予幾何圖形,數(shù)形結合。 例3求函數(shù)y=√x2+4x+5+√x2-4x+8 的值域。 點撥:將原函數(shù)變形,構造平面圖形,由幾何知識,確定出函數(shù)的值域。 解:原函數(shù)變形為f(x)=√(x+2)2+1+√(2-x)2+2 2作一個長為 4、寬為3的矩形ABCD,再切割成12個單位 正方形。設HK=x,則ek=2-x,KF=2+x,AK=√(2-x)2+22 ,KC=√(x+2)2+1。 由三角形三邊關系知,AK+KC≥AC=5。當A、K、C三點共 線時取等號。 ∴原函數(shù)的知域為{y|y≥5}。 點評:對于形如函數(shù)y=√x2+a ±√(c-x)2+b(a,b,c均為正數(shù)),均可通過構造幾何圖形,由幾何的性質,直觀明了、方便簡捷。這是數(shù)形結合思想的體現(xiàn)。 練習:求函數(shù)y=√x2+9 +√(5-x)2+4的值域。(答案:{y|y≥5√2}) 十一.利用多項式的除法 例5求函數(shù)y=(3x+2)/(x+1)的值域。 點撥:將原分式函數(shù),利用長除法轉化為一個整式與一個分式之和。 解:y=(3x+2)/(x+1)=3-1/(x+1)。 ∵1/(x+1)≠0,故y≠3。 ∴函數(shù)y的值域為y≠3的一切實數(shù)。 點評:對于形如y=(ax+b)/(cx+d)的形式的函數(shù)均可利用這種方法。 練習:求函數(shù)y=(x2-1)/(x-1)(x≠1)的值域。(答案:y≠2) 十二.不等式法 例6求函數(shù)Y=3x/(3x+1)的值域。 點撥:先求出原函數(shù)的反函數(shù),根據(jù)自變量的取值范圍,構造不等式。 解:易求得原函數(shù)的反函數(shù)為y=log3[x/(1-x)],由對數(shù)函數(shù)的定義知 x/(1-x)>0 1-x≠0 解得,0<x<1。 ∴函數(shù)的值域(0,1)。 點評:考查函數(shù)自變量的取值范圍構造不等式(組)或構造重要不等式,求出函數(shù)定義域,進而求值域。不等式法是重要的解題工具,它的應用非常廣泛。是數(shù)學解題的方法之一。以下供練習選用:求下列函數(shù)的值域 1.Y=√(15-4x)+2x-5;({y|y≤3}) 2.Y=2x/(2x-1)。(y>1或y<0) 已知函數(shù)F(X)=lg(X^2-mx+3)(m為實數(shù)) (1)函數(shù)F(X)的定義域與值域能否同時為實數(shù)集R?證明你的結論.(2)是否存在實數(shù)M,使函數(shù)發(fā)F(X)的定義域和值域同時為<1,正無窮),若存在,請求出M值,若不存在,說明理由! 類似上面一題的函數(shù)F(X)= lg(ax^2+2x+1) (1)若F(X)的定義域為R,求實數(shù)a的取值范圍 (2)若F(X)的值域為R,求實數(shù)a的取值范圍 函數(shù)Y=-log以2為底(x^2-ax-a)在區(qū)間(負無窮,-1/2)上是增函數(shù)的充要條件. 分式函數(shù)值域解法匯編 甘肅省定西工貿(mào)中專文峰分校 張占榮 函數(shù)既是中學數(shù)學各骨干知識的交匯點,是數(shù)學思想,數(shù)學方法應用的載體,是初等數(shù)學與高等數(shù)學的銜接點,還是中學數(shù)學聯(lián)系實際的切入點,因此函數(shù)便理所當然地成為了歷年高考的重點與熱點,考查函數(shù)的定義域、值域、單調性、奇偶性、反函數(shù)以及函數(shù)圖象。而對函數(shù)值域的考查或是單題形式出現(xiàn),但更多的是以解題的一個環(huán)節(jié)形式出現(xiàn),其中求分式函數(shù)的值域更是學生失分較大知識點之一。為此,如何提高學生求分式函數(shù)值域的能力,是函數(shù)教學和復習中較為重要的一環(huán),值得探討。下面就本人對分式函數(shù)值域的教學作如下探究,不餒之處、敬請同仁指教。 一、相關概念 函數(shù)值是指在函數(shù)y=f(x)中,與自變量x的值對應的y值。 函數(shù)的值域是函數(shù)值的集合,是指圖象在y軸上的投影所覆蓋的實數(shù)y的集合。函數(shù)的值域由函數(shù)的定義域及其對應法則唯一確定;當函數(shù)由實際問題給出時,函數(shù)的值域由問題的實際意義確定。 分式函數(shù)是指函數(shù)解析式為分式形式的函數(shù)。 二、分式函數(shù)的類型及值域解法 類型一:一次分式型 一次分式型是指分子與分母都是關于自變量x(或參數(shù))的一次函數(shù)的分式函數(shù)。 1.y=(a0)型 例1 求函數(shù)y=的值域。 解法一:常數(shù)分離法。將y=轉化為y=(k1,k2為常數(shù)),則yk1 解:∵y==,∴ y。 解法二:反函數(shù)法。利用函數(shù)和它的反函數(shù)的定義域與值域的互逆關系,通過求反函數(shù)的定義域,得到原函數(shù)的值域。 解:反解y=得x=,對調 y=(x),∴函數(shù)y=的值域為 y。 2.y=(a0)型 分析:這是一道含三角函數(shù)的一次分式函數(shù),由于含三角函數(shù),不易直接解出x,但其有一個特點:只出現(xiàn)一種三角函數(shù)名。可以考慮借助三角函數(shù)值域解題,其實質跟y=(t=sinx)在t的指定區(qū)間上求值域類似。 即:將y=反解得sinx=f(y),而-1≤sinx≤1,即-1≤f(y)≤1,解之即可。 例2 求函數(shù)y=的值域。 解:由y=得,sinx=,∵-1≤sinx≤1,∴-1≤≤1,解之得≤y≤3。 3.y=或y=(a0)型 分析:這道題不僅含有三角函數(shù),且三角函數(shù)不同,例2解法行不通,但反解之后會出現(xiàn)正、余弦的和、差形式,故可考慮用疊加法。 即:去分母以后,利用疊加公式和|sinx|≤1解題。 例3 求函數(shù)y= 解:∵2cosx+100,∴3sinx-2ycosx=10y+3。的值域。 ∴, 其中,由∴和,整理得8y+5y≤0。2得,∴≤y≤0 即原函數(shù)的值域為[,0]。 總結:求一次分式函數(shù)的值域,首先要看清楚是在整個定義域內(nèi),還是在指定區(qū)間上;其次用反函數(shù)法解題;再次還要注意含三角函數(shù)的分式函數(shù),其實質是在指定區(qū)間上求分式函數(shù)的值域。 類型二:二次分式型 二次分式型是指分子與分母的最高次項至少有一項是關于x的二次函數(shù)。由于出現(xiàn)了x2項,直接反解x的方法行不通。但我們知道,不等式、函數(shù)、方程三者相互聯(lián)系,可以相互轉化。所以可考慮將其轉化為不等式或方程來解題。 1.y=(a、d不同時為0),x∈R型 分析:去分母后,可將方程看作是含參數(shù)y的二次方程f(x)=0。由于函數(shù)的定義域并非空集,所以方程一定有解,≥0(f(y)≥0),解該不等式便可求出原函數(shù)的值域。 ≥0(=f(y)),即:用判別式法。先去分母,得到含參數(shù)y的二次方程f(x)=0,根據(jù)判別式 即可求出值域。 例4 求函數(shù)y=的值域。 解:由y=得yx2-3x+4y=0。 當y=0時,x=0,當y≠0時,由△≥0得- ∵函數(shù)定義域為R,≤y≤。 ∴函數(shù)y=的值域為[-,]。 說明:判別式法求二次函數(shù)的值域只適用于在整個定義域內(nèi),但不能用其在指定的區(qū)間上求二次函數(shù)的值域,否則就會放大值域。 2.y=(a、d不同時為0),指定的區(qū)間上求值域型。 例5 求(x<)的值域。 分析:因為x<,所以若用判別式法,可能會放大其值域??梢钥紤]使用均值定理解題。解:∵x<,∴5-4x>0,>0。 ∴=1-4x+ =[(5-4x)+ ]- 4≥ 2=-2,∴原函數(shù)的值域為。-4 例6 求的值域。 錯解:=≥2。 分析:在使用均值定理時一定要注意使用條件“一定、二正、三相等”,顯然上述解法中和不能相等,“相等”條件不能成立。所以不能使用均值定理。但若用判別式法又無法解決根式問題,此時可考慮借函數(shù)的單調性求值域。 解:用單調性法 =,令=t,顯然t≥2,則y=t +(t≥2),任取2≤t1≤t2,則f(t1)= t1+, f(t2)= t2+,f(t1)-f(t2)=(t1+)-(t2+)=(t1-t2)(1-),∵2≤t1≤t2∴t1-t2<0, t1· t2≥4, 1->0,∴f(t1)-f(t2)=(t1-t2)(1-)<0。 ∴f(t1)< f(t2),即函數(shù)y=t+ 在t≥2上單調遞增。 ∴當t= 2、即= 2、x=0時,ymin =,∴原函數(shù)的值域為。 總結:不管是求一次分式函數(shù),還是求二次分式函數(shù)的值域,都必須注意自變量的取值范圍。雖然我們提倡通解通法的培養(yǎng),但一定要看到只有對一類題才可以用通解通法。若失去同一類前提,只強調通解通法,便是空中樓閣。故要因題而論,就事論事,防止一概而論的錯誤,用辯證和發(fā)展的眼光看待問題,這樣才會起到事半功倍的效果。 三、提煉知識,總結分式函數(shù)值域解法 求函數(shù)的值域是高中數(shù)學的難點之一,它沒有固定的方法和模式。但我們可以針對不同的題型進行歸類總結,盡最大可能地尋找不同類型分式函數(shù)求值域的通解通法。常用的方法有: 1.反函數(shù)法。反函數(shù)法是求一次分式函數(shù)的基本方法,是利用函數(shù)和它的反函數(shù)的定義域與值域的互逆關系,通過求反函數(shù)的定義域,得到原函數(shù)的值域。但要注意看清楚是在整個定義域內(nèi),還是在指定區(qū)間上求值域。 2.判別式法。判別式法是求二次分式函數(shù)的基本方法之一,即先去分母,把函數(shù)轉化成關于x的二次方程f(x,y)=0,因為方程有實根,所以判別式△≥0,通過解不等式求得原函數(shù)的值域。需注意的是判別式法求二次函數(shù)的值域只適用于在整個定義域內(nèi)。 3.不等式法。不等式法是利用基本不等式:a+b≥2(a、b∈R+),是在指定區(qū)間上求二次分式函數(shù)的基本方法之一,當二次分式函數(shù)在指定區(qū)間上求值域時可考慮用不等式法。用不等式法求值域,要注意均值不等式的使用條件:“一正、二定、三相等”。 4.換元法。換元法是求復合型分式函數(shù)值域的常用方法。當分式函數(shù)的分子或分母出現(xiàn)子函數(shù)(如三角函數(shù))時,可考慮用換元法,將所給函數(shù)化成值域容易確定的另一函數(shù),從而求得原函數(shù)的值域。要注意換元后自變量的取值范圍。 5.單調性法。單調性法是通過確定函數(shù)在定義域(或某個定義域的子集)上的單調性求出函數(shù)的值域的方法。 另外,還可以根據(jù)函數(shù)的特點,利用數(shù)形結合或求導數(shù)的方法求分式函數(shù)的值域。由于這些方法不是很常用,在此就不多做說明第五篇:分式函數(shù)值域解法