欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      關于“對向量法證明線面垂直一法質(zhì)疑”的回應

      時間:2019-05-14 13:31:41下載本文作者:會員上傳
      簡介:寫寫幫文庫小編為你整理了多篇相關的《關于“對向量法證明線面垂直一法質(zhì)疑”的回應》,但愿對你工作學習有幫助,當然你在寫寫幫文庫還可以找到更多《關于“對向量法證明線面垂直一法質(zhì)疑”的回應》。

      第一篇:關于“對向量法證明線面垂直一法質(zhì)疑”的回應

      關于“對向量法證明線面垂直一法質(zhì)疑”的回應

      我在不同的場合提到過”用向量法證明線面垂直“的內(nèi)容,大體思路是:

      一個平面α和三條直線a、m、n,m和n在α上,m和n相交,a⊥m且a⊥n,證明a⊥α。要證明a⊥α,只需要在α里任意取一直線c,只要證明a⊥c就行。根據(jù)平面向量理論,c向量可以用m向量和n向量表示(這里就直接用a和b表示向量了),于是我們設c=km+hn,其中k、h為常數(shù)。那么:

      a·c=a·(km+hn)=ka·m+ha·n 因為a⊥m,所以a·m=0,同理a·n=0,從而a·c=0,所以a⊥c。

      這方法一直以來被奉為上賓,不只是學夫子,很多名師都提倡這方法。不過新疆的一位老師卻提出質(zhì)疑,因為在他看來,此方法犯了”循環(huán)論證“的錯誤。因為在這樣一個證明過程里面,用到了”空間向量數(shù)量積的分配率“,這是關鍵的地方,因為我們在證明”空間向量數(shù)量積滿足分配率“的問題上,又必須用到線面垂直的內(nèi)容,因此犯了循環(huán)論證的錯誤,具體可以參考彭翕成老師博客里的配圖,那里有論文全文。

      首先我得感謝這位老師,我不得不承認,至始至終我都忽略了空間向量分配率的證明,在此對我是當頭棒喝,深感慚愧。當一個人的思想觀念受到質(zhì)疑時,只有兩條路可走:一是推翻質(zhì)疑,一定要有足夠的理由;二就是承認自己的錯誤和無知。對于這一個問題的解決辦法,有這么一條路可以走,那就是繞過”線面垂直“。

      1:一個比較”耍賴“的辦法就是,我們用”證明線面垂直“的辦法直接證明線線垂直(配圖截取

      自原論文)

      現(xiàn)在不是要證明OA⊥HF嗎?我們這里就不直接用線面垂直的判定定理,我們直接用證明線面垂直的證明方法來證明OA⊥HF。想想線面垂直不就是證明平面里的任何一條直線都垂直于OA嗎?那我們就直接用這方法證明OA⊥HF得了,很簡單地繞過”線面垂直“這個話題。整體說來這個過程就是:用證明結論P的方法來證明另一個結論Q,反過來Q的證明可以大大簡化P的證明。我覺得這并不算循環(huán)論證。

      2:另外一個稍微有點好的方法就是,完全利用向量數(shù)量積的定義,跨過分配率,直接證明

      向量數(shù)量積的坐標表示

      現(xiàn)在有a,b,c三向量,現(xiàn)在把他們的起點都移動到原點,并且設其坐標為

      a=(x1,y1,z1),b=(x2,y2,z2).根據(jù)定義a·b=|a|·|b|·cosα。|a|=√x12+y12+z12,|b|=√x22+y22+z22,在a和b構成的三角形里,第三條邊的長度為|c|=√(x1-x2)2+(y1-y2)2+(z1-z2)2,利用余弦定理:

      從而跳過了分配率直接得到數(shù)量積坐標公式:a·b=x1x2+y1y2+z1z2.這樣我們就可以通過這個

      公式開始我們的證明了 現(xiàn)在是要證明:a·(b+c)=a·b+a·c 設a=(x1,y1,z1),b=(x2,y2,z2).c=(x3,y3,z3),b+c=(x2+x3,y2+y3,z2+z3).左邊=a·(b+c)=x1(x2+x3)+y1(y2+y3)+z1(z2+z3)

      =x1x2+x1x3+y1y2+y1y3+z1z2+z1z3.右邊=a·b+a·c

      =x1x2+y1y2+z1z2+x1x3+y1y3+z1z3.左邊=右邊,從而分配率得證。

      第二篇:向量法證明不等式

      向量法證明不等式

      高中新教材引入平面向量和空間向量,將其延伸到歐氏空間上的n維向量,向量的加、減、數(shù)乘運算都沒有發(fā)生改變.若在歐式空間中規(guī)定一種涵蓋平面向量和空間向量上的數(shù)量積的運算,則高中階段的向量即為n=2,3時的情況.設a,b是歐氏空間的兩向量,且a=(x1,x2,…,xn),b=(y1,y2,…,yn)(xi,yi∈R,i=1,…,n)

      規(guī)定a·b=(x1,x2,…,xn)·(y1,y2,…,yn)=x1y1+x2y2+…+xnyn=xiyi.(注:a·b可記為(a,b),表示兩向量的內(nèi)積),有

      由上,我們就可以利用向量模的和與和向量的模的不等式及數(shù)量積的不等式建立一系列n元不等式,進而構造n維向量來證明其他不等式.一、利用向量模的和與和向量的模的不等式(即

      例1設a,b,c∈R+,求證:(a+b+c)≤++≤.證明:先證左邊,設m=(a,b),n=(b,c),p=(c,a),則由

      綜上,原不等式成立.點評:利用向量模的和不小于和向量的模建立不等式證明左邊,利用向量數(shù)量積建立不等式證明右邊.作單位向量j⊥AC

      j(AC+CB)=jAB

      jAC+jCB=jAB

      jCB=jAB

      |CB|cos(π/2-∠C)=|AB|cos(π/2-∠A)

      即|CB|sinC=|AB|sinA

      a/sinA=c/sinC

      其余邊同理

      在三角形ABC平面上做一單位向量i,i⊥BC,因為BA+AC+CB=0恒成立,兩邊乘以i得i*BA+i*AC=0①根據(jù)向量內(nèi)積定義,i*BA=c*cos(i,AB)=c*sinB,同理i*AC=bcos(i,AC)=b(-sinC)=-bsinC代入①得csinB-bsinC=0所以b/sinB=c/sinC類似地,做另外兩邊的單位垂直向量可證a/sinA=b/sinB,所以a/sinA=b/sinB=c/sinC

      步驟1

      記向量i,使i垂直于AC于C,△ABC三邊AB,BC,CA為向量a,b,c

      ∴a+b+c=0

      則i(a+b+c)

      =i·a+i·b+i·c

      =a·cos(180-(C-90))+b·0+c·cos(90-A)

      =-asinC+csinA=0

      接著得到正弦定理

      其他

      步驟2.在銳角△ABC中,設BC=a,AC=b,AB=c。作CH⊥AB垂足為點H

      CH=a·sinB

      CH=b·sinA

      ∴a·sinB=b·sinA

      得到a/sinA=b/sinB

      同理,在△ABC中,b/sinB=c/sinC

      步驟3.證明a/sinA=b/sinB=c/sinC=2R:

      任意三角形ABC,作ABC的外接圓O.作直徑BD交⊙O于D.連接DA.因為直徑所對的圓周角是直角,所以∠DAB=90度

      因為同弧所對的圓周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R

      類似可證其余兩個等式。

      第三篇:用向量法證明

      用向量法證明

      步驟1

      記向量i,使i垂直于AC于C,△ABC三邊AB,BC,CA為向量a,b,c

      ∴a+b+c=0

      則i(a+b+c)

      =i·a+i·b+i·c

      =a·cos(180-(C-90))+b·0+c·cos(90-A)

      =-asinC+csinA=0

      接著得到正弦定理

      其他

      步驟2.在銳角△ABC中,設BC=a,AC=b,AB=c。作CH⊥AB垂足為點H

      CH=a·sinB

      CH=b·sinA

      ∴a·sinB=b·sinA

      得到a/sinA=b/sinB

      同理,在△ABC中,b/sinB=c/sinC

      步驟3.證明a/sinA=b/sinB=c/sinC=2R:

      任意三角形ABC,作ABC的外接圓O.作直徑BD交⊙O于D.連接DA.因為直徑所對的圓周角是直角,所以∠DAB=90度

      因為同弧所對的圓周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R

      類似可證其余兩個等式.希望對你有所幫助!

      設向量AB=a,向量AC=b,向量AM=c向量BM=d,延長AM到D使AM=DM,連接BD,CD,則ABCD為平行四邊形

      則向量a+b=2c(a+b)平方=4c平方a平方+2ab+b平方=4c

      平方(1)

      向量b-a=2d(b-a)平方=4d平方a平方-2ab+b平方=4d

      平方(2)

      (1)+(2)2a平方+2b平方=4d平方+4c平方

      c平方=1/2(a+b)-d平方

      AM^2=1/2(AB^2+AC^2)-BM^2

      已知EF是梯形ABCD的中位線,且AD//BC,用向量法證明梯形的中位線定理

      過A做AG‖DC交EF于p點

      由三角形中位線定理有:

      向量Ep=?向量BG

      又∵AD‖pF‖GC且AG‖DC∴向量pF=向量AD=向量GC(平行四邊形性質(zhì))

      ∴向量pF=?(向量AD+向量GC)

      ∴向量Ep+向量pF=?(向量BG+向量AD+向量GC)

      ∴向量EF=?(向量AD+向量BC)

      ∴EF‖AD‖BC且EF=(AD+BC)

      得證

      先假設兩條中線AD,BE交與p點

      連接Cp,取AB中點F連接pF

      pA+pC=2pE=Bp

      pB+pC=2pD=Ap

      pA+pB=2pF

      三式相加

      2pA+2pB+2pC=Bp+Ap+2pF

      3pA+3pB+2pC=2pF

      6pF+2pC=2pF

      pC=-2pF

      所以pC,pF共線,pF就是中線

      所以ABC的三條中線交于一點p

      連接OD,OE,OF

      OA+OB=2OF

      OC+OB=2OD

      OC+OC=2OE

      三式相加

      OA+OB+OC=OD+OE+OF

      OD=Op+pD

      OE=Op+pE

      OF=Op+pF

      OA+OB+OC=3Op+pD+pE+pF=3Op+1/2Ap+1/2Bp+1/2Cp

      由第一問結論

      2pA+2pB+2pC=Bp+Ap+Cp

      2pA+2pB+2pC=0

      1/2Ap+1/2Bp+1/2Cp

      所以OA+OB+OC=3Op+pD+pE+pF=3Op

      向量Op=1/3(向量OA+向量OB+OC向量)

      第四篇:向量法證明正弦定理

      向量法證明正弦定理

      證明a/sinA=b/sinB=c/sinC=2R:

      任意三角形ABC,作ABC的外接圓O.作直徑BD交⊙O于D.連接DA.因為直徑所對的圓周角是直角,所以∠DAB=90度

      因為同弧所對的圓周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R

      2如圖1,△ABC為銳角三角形,過點A作單位向量j垂直于向量AC,則j與向量AB的夾角為90°-A,j與向量CB的夾角為90°-C

      由圖1,AC+CB=AB(向量符號打不出)

      在向量等式兩邊同乘向量j,得·

      j·AC+CB=j·AB

      ∴│j││AC│cos90°+│j││CB│cos(90°-C)

      =│j││AB│cos(90°-A)

      ∴asinC=csinA

      ∴a/sinA=c/sinC

      同理,過點C作與向量CB垂直的單位向量j,可得

      c/sinC=b/sinB

      ∴a/sinA=b/sinB=c/sinC

      2步驟

      1記向量i,使i垂直于AC于C,△ABC三邊AB,BC,CA為向量a,b,c

      ∴a+b+c=0

      則i(a+b+c)

      =i·a+i·b+i·c

      =a·cos(180-(C-90))+b·0+c·cos(90-A)

      =-asinC+csinA=0

      接著得到正弦定理

      其他

      步驟2.在銳角△ABC中,設BC=a,AC=b,AB=c。作CH⊥AB垂足為點H

      CH=a·sinB

      CH=b·sinA

      ∴a·sinB=b·sinA

      得到a/sinA=b/sinB

      同理,在△ABC中,b/sinB=c/sinC

      步驟3.證明a/sinA=b/sinB=c/sinC=2R:

      任意三角形ABC,作ABC的外接圓O.作直徑BD交⊙O于D.連接DA.因為直徑所對的圓周角是直角,所以∠DAB=90度

      因為同弧所對的圓周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R

      類似可證其余兩個等式。

      3用向量叉乘表示面積則s=CB叉乘CA=AC叉乘AB

      =>absinC=bcsinA(這部可以直接出來哈哈,不過為了符合向量的做法)

      =>a/sinA=c/sinC

      2011-7-1817:16jinren92|三級

      記向量i,使i垂直于AC于C,△ABC三邊AB,BC,接著得到正弦定理其他步驟2.在銳角△ABC中,證明a/sinA=b/sinB=c/sinC=2R:任意三角形ABC,4過三角形ABC的頂點A作BC邊上的高,垂足為D.(1)當D落在邊BC上時,向量AB與向量AD的夾角為90°-B,向量AC與向量AD的夾角為90°-C,由于向量AB、向量AC在向量AD方向上的射影相等,有數(shù)量積的幾何意義可知向量AB*向量AD=向量AC*向量AD即向量AB的絕對值*向量AD的絕對值*COS(90°-B)=向量的AC絕對值*向量AD的絕對值*cos(90°-C)所以csinB=bsinC即b/sinB=c/sinC(2)當D落在BC的延長線上時,同樣可以證得

      第五篇:余弦定理的證明 向量法

      ∵如圖,有a+b=c(平行四邊形定則:兩個鄰邊之間的對角線代表兩個鄰邊大小

      ∴c·c=(a+b)·(a+b)∴c^2=a·a+2a·b+b·b∴c^2=a^2+b^2+2|a||b|Cos(π-θ)(以上粗體字符表示向量)又∵cos(π-θ)=-Cosθ

      ∴c^2=a^2+b^2-2|a||b|cosθ(注意:這里用到了三角函數(shù)公式)再拆開,得c^2=a^2+b^2-2*a*b*CosC 即 cosC=(a^2+b^2-c^2)/2*a*b 同理可證其他,而下面的cosC=(a^2+b^2-c^2)/2ab就是將cosC移到左邊表示一下。

      下載關于“對向量法證明線面垂直一法質(zhì)疑”的回應word格式文檔
      下載關于“對向量法證明線面垂直一法質(zhì)疑”的回應.doc
      將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
      點此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻自行上傳,本網(wǎng)站不擁有所有權,未作人工編輯處理,也不承擔相關法律責任。如果您發(fā)現(xiàn)有涉嫌版權的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進行舉報,并提供相關證據(jù),工作人員會在5個工作日內(nèi)聯(lián)系你,一經(jīng)查實,本站將立刻刪除涉嫌侵權內(nèi)容。

      相關范文推薦

        向量法證明正弦定理[最終版]

        向量法證明正弦定理證明a/sinA=b/sinB=c/sinC=2R: 任意三角形ABC,作ABC的外接圓O. 作直徑BD交⊙O于D. 連接DA. 因為直徑所對的圓周角是直角,所以∠DAB=90度 因為同弧所對的......

        用向量法證明平行關系

        2010 山東省昌樂二中 高二數(shù)學選修2-1導學案時間:2010-12-21班級:姓名:小組:教師評價:課題: 3.2.1用向量法證明平行關系編制人:劉本松、張文武、王偉潔審核人:領導簽字: 【使用說明......

        用向量法證明直線與直線平行

        用向量法證明直線與直線平行、直線與平面平行、平面與平面平行導學案一、知識梳理???????1、設直線l1和l2的方向向量分別是為v1和v2,由向量共線條件得l1∥l2或l1與l2重合?v1???∥v2。2、......

        淺談用向量法證明立體幾何中的幾個定理

        淺談用向量法證明立體幾何中的幾個定理15號海南華僑中學(570206)王亞順摘要:向量是既有代數(shù)運算又有幾何特征的工具,在高中數(shù)學的解題中起著很重要的作用。在立體幾何中像直線與......

        用向量法證明正弦定理教學設計(推薦)

        用向量法證明正弦定理教學設計一、 教學目標1、知識與技能:掌握正弦定理的內(nèi)容及其證明方法;會運用正弦定理解決一些簡單的三角形度量問題。2、過程與方法:讓學生通過向量方法......

        向量法證明三點共線的又一方法及應用

        向量法證明三點共線的又一方法及應用平面向量既具有數(shù)量特征,又具有圖形特征,學習向量的應用,可以啟發(fā)同學們從新的視角去分析、解決問題,有益于培養(yǎng)創(chuàng)新能力. 下面就一道習題......

        對構造函數(shù)法證明不等式的再研究

        龍源期刊網(wǎng) http://.cn 對構造函數(shù)法證明不等式的再研究 作者:時英雄 來源:《理科考試研究·高中》2013年第10期 某刊一文闡述了構造法證明不等式的九個模型,筆者深受啟發(fā),對其......

        人大對一法一條例執(zhí)法檢查情況的工作匯報(一稿)

        九原區(qū)關于貫徹實施《中華人民共和國 人口與計劃生育法》及《內(nèi)蒙古自治區(qū)人口與計劃生育條例》情況的工作匯報 首先,熱烈歡迎市人大常委會人口與計劃生育執(zhí)法檢查組各位領導......