第一篇:角平分線定理的多種證明方法
三角形內(nèi)角平分線定理的多種證明方法
已知,如圖,AM為△ABC的角平分線,求證AB/AC=MB/MC
證明:方法一:(面積法)
三角形ABM面積S=(1/2)*AB*AM*sin∠BAM, 三角形ACM面積S=(1/2)*AC*AM*sin∠CAM, 所以三角形ABM面積S:三角形ACM面積S=AB:AC 又三角形ABM和三角形ACM是等高三角形,面積的比等于底的比,即三角形ABM面積S:三角形ACM面積S=BM:CM 所以AB/AC=MB/MC 方法二(相似形)
過C作CN平行于AB交AM的延長線于N 三角形ABM相似三角形NCM, AB/NC=BM/CM, 又可證明∠CAN=∠ANC 所以AC=CN,所以AB/AC=MB/MC 方法三(相似形)
過M作MN平行于AB交AC于N 三角形ABC相似三角形NMC, AB/AC=MN/NC,AN/NC=BM/MC 又可證明∠CAM=∠AMN 所以AN=MN,所以AB/AC=AN/NC所以AB/AC=MB/MC
方法四(正弦定理)
作三角形的外接圓,AM交圓于D,由正弦定理,得,AB/sin∠BMA=BM/sin∠BAM, AC/sin∠CMA=CM/sin∠CAM 又∠BAM=∠CAM,∠BMA+∠AMC=180 sin∠BAM=sin∠CAM,sin∠BMA=sin∠AMC, 所以AB/AC=MB/MC
閱讀下面材料,按要求完成后面作業(yè)。
三角形內(nèi)角平分線性質(zhì)定理:三角形內(nèi)角平分線分對邊所得的兩條線段和這個角的兩邊對應(yīng)成比例。
已知:△ABC中,AD是角平分線(如圖1),求證:=。
分析:要證=,一般只要證BD、DC與AB、AC或BD、AB與DC、AC所在的三角形相似,現(xiàn)在B、D、C在一條直線,△ABD與△ADC不相似,需要考慮用別的方法換比。
在比例式=中,AC恰好是BD、DC、AB的第四比例項,所以考慮過C作CE∥AD交BA的延長線于E,從而得到BD、DC、AB的
第四比例項AE,這樣,證明(1)完成證明過程: 證明:
=,就可轉(zhuǎn)化證=。
(2)上述證明過程中,用到了哪些定理(寫對兩個即可)答:用了:①____________;②_____________。
(3)在上述分析和你的證明過程中,主要用到了下列三種數(shù)學(xué)思想的哪一種:①數(shù)形結(jié)合思想 ②轉(zhuǎn)化思想 ③分類討論思想 答:____________。(4)用三角形內(nèi)角平分線定理解答問題:
如圖2,△ABC中,AD是角平分線,AB=5cm,AC=4cm,BD=7cm,求BC之長。
(1)證明:過點C作CE//AD交BA的延長線于點E,則∠E=∠BAD=∠DAC=∠ECA,所以AE=AC,由CE//AD,可得=,∴=。
(2)兩直線平行,同位角相等;等腰三角形的判定;三角形相似的判定的定理:平行于三角形一邊的直線和其他兩邊相交,所構(gòu)成的三角形與原三角形相似。(3)②;(4)“略”
第二篇:角平分線的性質(zhì)定理教案
角平分線的性質(zhì)定理教案
慧光中學(xué):王曉艷
教學(xué)目標(biāo):(1)掌握角平分線的性質(zhì)定理;
(2)能夠運用性質(zhì)定理證明兩條線段相等;
教學(xué)重點:角平分線的性質(zhì)定理及它的應(yīng)用。教學(xué)難點:角平分線定理的應(yīng)用;
教學(xué)方法:引導(dǎo)學(xué)生發(fā)現(xiàn)、探索、研究問題,歸納結(jié)論的方法 教學(xué)過程:
一,新課引入:
1.通過復(fù)習(xí)線段垂直平分線的性質(zhì)定理引出角平分線上的點具有什么樣的特點? 操作:(1)畫一個角的平分線;
(2)在這條平分線上任取一點P,畫出P點到角兩邊的距離。
(3)說出這兩段距離的關(guān)系并思考如何證明。2.定理的獲得:
A、學(xué)生用文字語言敘述出命題的內(nèi)容,寫出已知,求證并給予證明,得出此命題是真命題,從而得到定理,并寫出相應(yīng)的符號語言。B、分析此定理的作用:證明兩條線段相等;
應(yīng)用定理所具備的前提條件是:有角的平分線,有垂直距離。3.定理的應(yīng)用 二.例題講解:
例1:已知:如圖,點B、C在∠A的兩邊上,且AB=AC,P為∠A內(nèi)一點,PB=PC,PE⊥AB,PF⊥AC,垂足分別是E、F。求證:PE=PF(此題已知中有垂直,缺乏角平分線這個條件)FBPACE
例2:已知:如圖,⊙O與∠MAN的邊AM交于點B、C,與邊AN交于點E、F,圓心O在∠MAN的角平分線AQ上。
求證:BC=EF(此題已知中有角平分線,缺乏垂直這個條件)
M
CQBAEONF
三:課堂小結(jié):
①應(yīng)用角平分線的性質(zhì)定理所具備的前提條件是:有角的平分線,有垂直距離;②若圖中有角平分線,可嘗試添加輔助線的方法:向角的兩邊引垂線段.四:鞏固練習(xí)
1.已知:如圖,△ABC中,D是BC上一點,BD=CD,∠1=∠2 求證:AB=AC 分析:此題看起來簡單,其實不然。題中雖然有三個條件(∠1= ∠2;BD=CD,AD=AD),但無法證明△ABD ≌△ACD,所以必須添加一些線幫助解題。
A1EBDFC
方
一、延長AD到AE,使DE=AD,再連接CD。(此方
法前面已經(jīng)重點講過,這里不再考慮)
方
二、過點D分別作DE⊥AB于點E,DF⊥AB于點F,①利用全等證明
②利用面積相等證明
2.練習(xí)的拓展: 已知:如圖,D是BC上一點,AB=3㎝,AC=2㎝
求:① S⊿ABD :S⊿ADC
② BD :CD
ABDC
五.課后小結(jié)
1、本節(jié)課所學(xué)習(xí)的重要定理是什么?
2、定理的作用是什么?應(yīng)用該定理必須具備什么樣的前提條件?
3、若圖中有角平分線常采用添加輔助線的方法是什么?
4、基本圖形拓展:此圖中根據(jù)已知條件還可以得到那些結(jié)論?若連接AP,EF還可以得到哪些結(jié)論?
慧光中學(xué):王曉艷
教師的成長在于不斷地總結(jié)教學(xué)經(jīng)驗和進(jìn)行教學(xué)反思,下面是我對這一節(jié)課的得失分析:
一、教材分析
本節(jié)課是九年制義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書八年級上冊11.3角平分線的性質(zhì)的第一課時。角平分線是初中數(shù)中重要的概念,它有著十分重要的性質(zhì),通過本節(jié)的學(xué)習(xí),可以豐富和加深學(xué)生對已學(xué)圖形的認(rèn)識,同時為學(xué)習(xí)其它圖形知識打好基礎(chǔ).二、學(xué)生情況
八年級學(xué)生有一定的自學(xué)、探索能力,求知欲強(qiáng)。借助于課件的優(yōu)勢,能使腦、手充分動起來,學(xué)生間相互探討,積極性也被充分調(diào)動起來。教法和法學(xué)
通過創(chuàng)設(shè)情境、動手實踐,激發(fā)學(xué)生的學(xué)習(xí)興趣,促進(jìn)學(xué)生積極思考,尋找解決問題的途徑和方法。
在教師的指導(dǎo)下,采用學(xué)生自己動手探索的學(xué)習(xí)方式,讓學(xué)生思考問題,獲取知識,掌握方法,借此培養(yǎng)學(xué)生動手動腦、動口的能力,使學(xué)生真正成為學(xué)習(xí)的主體。
三、教學(xué)過程設(shè)計
首先,本節(jié)課我本著學(xué)生為主,突出重點的意圖,結(jié)合課件使之得到充分的詮釋。如在角平分線的畫法總結(jié)中,我讓學(xué)生自己動手,通過對比平分角的儀器的原理進(jìn)行作圖,并留給學(xué)生足夠的時間進(jìn)行證明。為了解決角平分線的性質(zhì)這一難點,我通過具體實踐操作、猜想證明、語言轉(zhuǎn)換讓學(xué)生感受知識的連貫性。
其次,我在講解過程中突出了對中考知識的點撥,并且讓學(xué)生感受生活中的實例,體現(xiàn)了數(shù)學(xué)與生活的聯(lián)系;滲透美學(xué)價值。<<角平分線的性質(zhì)>>教學(xué)反思
再次,從教學(xué)流程來說:情境創(chuàng)設(shè)---實踐操作---交流探究---練習(xí)與小結(jié)---拓展提高,這樣的教學(xué)環(huán)節(jié)激發(fā)了學(xué)生的學(xué)習(xí)興趣,將想與做有機(jī)地結(jié)合起來,使學(xué)生在想與做中感受和體驗,主動獲取數(shù)學(xué)知識。像采用這種由易到難的手法,符合學(xué)生的思維發(fā)展,一氣呵成,突破了本節(jié)課的重點和難點。
四、本節(jié)課的不足
本節(jié)課在授課開始,我沒有把平分角的學(xué)具的建模思想充分傳達(dá)給學(xué)生,只是利用它起到了一個引課的作用,并且沒有在尺規(guī)作圖后將平分角的學(xué)具與角平分線的畫法的關(guān)系兩相對照。
在授課過程中,我對學(xué)生的能力有些低估,表現(xiàn)在整個教學(xué)過程中始終大包大攬,沒有放手讓學(xué)生自主合作,在教學(xué)中總是以我在講為主,沒有培養(yǎng)學(xué)生的能力。
對課堂所用時間把握不夠準(zhǔn)確,由于在開始的尺規(guī)作圖中浪費了一部分時間,以至于在后面所準(zhǔn)備的習(xí)題沒有時間去練習(xí),給人感覺這節(jié)課不夠完整。再就是課堂上安排的內(nèi)容
《角平分線的性質(zhì)》說課稿
慧光初級中學(xué) 王曉艷
我說課的題目是《角的平分線的性質(zhì)》。下面,我從教材分析、教法與學(xué)法、教學(xué)過程、設(shè)計說明四個方面對我的教學(xué)設(shè)計加以說明.
一、教材分析
(一)地位和作用:
本節(jié)課選自新人教版教材《數(shù)學(xué)》八年級上冊第二章第三節(jié),本節(jié)課的教學(xué)內(nèi)容包括探索并證明角平分線性質(zhì)定理的逆定理,會用角平分線性質(zhì)定理的逆定理解決問題。是在七年級學(xué)習(xí)了角平分線的概念和前面剛學(xué)完證明直角三角形全等的基礎(chǔ)上進(jìn)行教學(xué)的.角平分線的性質(zhì)和判定為證明線段或角相等開辟了新的途徑,簡化了證明過程,同時也是全等三角形知識的延續(xù),又為后面的學(xué)習(xí)奠定基礎(chǔ).因此,本節(jié)內(nèi)容在數(shù)學(xué)知識體系中起到了承上啟下的作用.同時教材的安排由淺入深、由易到難、知識結(jié)構(gòu)合理,符合學(xué)生的心理特點和認(rèn)知規(guī)律.
(二)教學(xué)目標(biāo)
1、知識目標(biāo):(1)探索并證明角平分線性質(zhì)定理的逆定理.(2)會用角平分線性質(zhì)定理的逆定理解決問題了解尺規(guī)作圖的原理及角的平分線的性質(zhì).2、基本技能
讓學(xué)生通過自主探索,運用邏輯推理的方法證明關(guān)于角平分線的判定,并體會感性認(rèn)識與理性認(rèn)識之間的聯(lián)系與區(qū)別。
3、數(shù)學(xué)思想方法:從特殊到一般
4、基本活動經(jīng)驗:體驗從操作、測量、猜想、驗證的過程,獲得驗證幾何命題正確性的一般過程的活動經(jīng)驗
設(shè)計意圖:
通過讓學(xué)生經(jīng)歷動手操作,合作交流,自主探究等過程,培養(yǎng)學(xué)生用數(shù)學(xué)知識解決問題的能力和數(shù)學(xué)建模能力了解角的平分線的性質(zhì)在生產(chǎn),生活中的應(yīng)用培養(yǎng)學(xué)生探究問題的興趣,增強(qiáng)解決問題的信心,獲得解決問題的成功體驗,激發(fā)學(xué)生應(yīng)用數(shù)學(xué)的熱情.(三)教學(xué)重難點
進(jìn)入八年級的學(xué)生觀察、操作、猜想能力較強(qiáng),但歸納、運用數(shù)學(xué)意識的思想比較薄弱,思維的廣闊性、敏捷性、靈活性比較欠缺,需要在課堂教學(xué)中進(jìn)一步加強(qiáng)引導(dǎo).根據(jù)學(xué)生的認(rèn)知特點和接受水平,我把本節(jié)課的教學(xué)重點定為:掌握角平分線的尺規(guī)作圖,理解角的平分線的性質(zhì)并能初步運用,難點是:(1)對角平分線性質(zhì)定理中點到角兩邊的距離的正確理解;(2)對于性質(zhì)定理的運用(學(xué)生習(xí)慣找三角形全等的方法解決問題而不注重利用剛學(xué)過的定理來解決,結(jié)果相當(dāng)于對定理的重復(fù)證明)
教學(xué)難點突破方法:
(1)利用多媒體動態(tài)顯示角平分線性質(zhì)的本質(zhì)內(nèi)容,在學(xué)生腦海中加深印象,從而對性質(zhì)定理正確使用;(2)通過對比教學(xué)讓學(xué)生選擇簡單的方法解決問題;(3)通過多媒體創(chuàng)設(shè)具有啟發(fā)性的問題情境,使學(xué)生在積極的思維狀態(tài)中進(jìn)行學(xué)習(xí).
二、教法和學(xué)法
本節(jié)課我堅持“教與學(xué)、知識與能力的辯證統(tǒng)一”和“使每個學(xué)生都得到充分發(fā)展”的原則,采用引導(dǎo)式探索發(fā)現(xiàn)法、主動式探究法、講授教學(xué)法,引導(dǎo)學(xué)生自主學(xué)習(xí)、合作學(xué)習(xí)和探究學(xué)習(xí),指導(dǎo)學(xué)生“動手操作,合作交流,自主探究”.鼓勵學(xué)生多思、多說、多練,堅持師生間的多向交流,努力做到教法、學(xué)法的最優(yōu)組合.
教學(xué)輔助手段:根據(jù)本節(jié)課的實際教學(xué)需要,我選擇多媒體PPT課件,幾何畫板軟件教學(xué),將有關(guān)教學(xué)內(nèi)容用動態(tài)的方式展示出來,讓學(xué)生能夠進(jìn)行直觀地觀察,并留下清晰的印象,從而發(fā)現(xiàn)變化之中的不變.這樣,吸引了學(xué)生的注意力,激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,有利于學(xué)生對知識點的理解和掌握.
四、教學(xué)過程
(一)創(chuàng)設(shè)情景 引出課題
出示生活中的數(shù)學(xué)問題:
問題1 如圖,要在S 區(qū)建一個廣告牌P,使它到兩條高速公路的距離相等,離兩條公路交叉處500 m,請你幫忙設(shè)計一下,這個廣告牌P 應(yīng)建于何處(在圖上 標(biāo)出它的位置,比例尺為1:20 000)?
[設(shè)計意圖]利用多媒體渲染氣氛,激發(fā)情感.
教師利用多媒體展示,引領(lǐng)學(xué)生進(jìn)入實際問題情景中,利用信息技術(shù)既生動展示問題,同時又通過圖片讓學(xué)生身臨其境般感受生活。學(xué)生動手畫圖,猜測并說出觀察到的結(jié)論.李薇同學(xué)很快就回答:“在兩條路夾角的平分線上,因為由昨天我們學(xué)習(xí)的角平線的性質(zhì)定知道到角兩邊路離相等的點在角的平分線上?!逼溆嗤瑢W(xué)對這一回答也表示了認(rèn)可。此是教師提問:角平分線的性質(zhì)的題設(shè)是已知角平分線,結(jié)論是有到角兩邊距離相等,而此題是要求角兩邊距離相等,那這個點在這個角的平分線上嗎?這二者有區(qū)別嗎?”學(xué)生晃然明白過來這二者是有區(qū)別的,此時教師引導(dǎo)學(xué)生分析:“只要后者是正確的,那李薇同學(xué)的回答也就可行了,這便是今天我們要研究的內(nèi)容”由此引入本節(jié)新課。.
[設(shè)計理由]依據(jù)新課程理念,教師要創(chuàng)造性地使用教材,作為本課的第一個引例,從學(xué)生的生活出發(fā),激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生運用數(shù)學(xué)知識,解決實際問題的意識,復(fù)習(xí)了角平分線的性質(zhì),為后續(xù)的學(xué)習(xí)作好知識上的儲備.
(二)、主體探究,體驗過程
問題2交叉角的平分線的性質(zhì)中的已知和結(jié)論,你能得到什么結(jié)論,這個新結(jié)論正確嗎?讓學(xué)生分組討論、交流,再利用幾何畫板軟件驗證結(jié)論,并用文字語言闡述得到的性質(zhì).(角的內(nèi)部到角的兩邊距離相等的點在角的平分線上。)
追問1你能證明這個結(jié)論的正確性嗎?
結(jié)合圖形寫出已知,求證,分析后寫出證明過程.證明后,教師強(qiáng)調(diào)經(jīng)過證明正確的命題可作為定理.教師歸納,強(qiáng)調(diào)定理的條件和作用.同時強(qiáng)調(diào)文字命題的證明步驟.
[設(shè)計意圖]經(jīng)歷實踐→猜想→證明→歸納的過程,培養(yǎng)學(xué)生的動手操作能力和觀察能力,符合學(xué)生的認(rèn)知規(guī)律,尤其是對于結(jié)論的驗證,信息技術(shù)在此體現(xiàn)其不可替代性,從而更利于學(xué)生的直觀體驗上升到理性思維.
追問2 這個結(jié)論與角的平分線的性質(zhì)在應(yīng)用上有什么不同?
這個結(jié)論可以判定角的平分線,而角的平分線的性。
質(zhì)可用來證明線段相等.
(三)鞏固練習(xí),應(yīng)用性質(zhì)。讓學(xué)生運用本節(jié)所學(xué)知識分步來解決課前所提問題。讓學(xué)生體會生活中蘊含數(shù)學(xué)知識,數(shù)學(xué)知識又能解決生活中的問題,感受數(shù)學(xué)的價值,讓人人學(xué)到有用的數(shù)學(xué)。
在教學(xué)的實際過程中,重視學(xué)生的親身體驗、自主探究、過程感悟。在教學(xué)中,給學(xué)生一段時間去體悟,給他們一個空間去創(chuàng)造,給他們一個舞臺去表演;讓他們動腦去思考,用眼睛去觀察,用耳朵去聆聽,用自己的嘴去描述,用自己的手去操作。這種探究超越知識范疇而擴(kuò)展到情感、價值觀領(lǐng)域,使課堂成為學(xué)生生命成長的樂園。為了讓學(xué)生做到學(xué)以致用,在判定證明完后,我讓學(xué)生回頭來解決問題1,對于問題1的解決作了如下分解:在問題1中,在S 區(qū)建一個廣告牌P,使它到兩條公路的距離相等.
(1)這個廣告牌P 應(yīng)建于何處?這樣的廣告牌可建多少個?
(2)若這個廣告牌P 離兩條公路交叉處500 m(在圖上標(biāo)出它的位置,比例尺為1:20 000),這個廣告牌應(yīng)建于何處?
(3)如圖,要在S 區(qū)建一個廣告牌P,使它到兩 條公路和一條鐵路的距離都相等.這個廣告牌P 應(yīng)建在何處?
這樣有梯次的設(shè)問為學(xué)生最終解決問題1作了很好的分解,學(xué)生獨立解決這道路問題也就變得很簡單了。同時在分解問題(3)時,有學(xué)生說作三角的平分線找交點,有學(xué)生反駁說作兩條就可以了因為第三條角平分也一定過這個交點。此時老師及時提問任意三角形的兩內(nèi)角平分線的交點在第三個角的平分線上嗎?那么我們來作下面的探究。(教師出示問題2:如圖,點P是△ABC的兩條角平分線BM,CN 的交點,點P 在∠BAC的平分線上嗎?這說明三角形的三條角平分線有什么關(guān)系? 這樣提出問題連慣性強(qiáng),讓學(xué)生的思維始終處于活躍和不斷對知識的渴求探索中。
(四)歸納小結(jié),充實結(jié)構(gòu)
1、這節(jié)課你有哪些收獲,還有什么困惑?
2、通過本節(jié)課你了解了哪些思考問題的方法?
教師讓學(xué)生暢談本節(jié)課的收獲與體會.學(xué)生歸納、梳理交流本節(jié)課所獲得的知識技能與情感體驗.
[設(shè)計意圖]通過引導(dǎo)學(xué)生自主歸納,調(diào)動學(xué)生的主動參與意識,鍛煉學(xué)生歸納概括與表達(dá)能力.
五、布置作業(yè)
作業(yè),必做題:教材習(xí)題12.3第3、7題; 選做題:課時通上選做部分題。
[設(shè)計意圖]設(shè)置必做題的目的是鞏固本節(jié)課應(yīng)知應(yīng)會的內(nèi)容,面向全體學(xué)生,人人必須完成.選做題要求學(xué)生根據(jù)個人的實際情況盡力完成,使學(xué)有余力的學(xué)生得到提高,達(dá)到“不同的人得到不同的發(fā)展”的目的.
本節(jié)課設(shè)計了四個環(huán)節(jié),環(huán)環(huán)相扣,三個整合點,層層深入,將信息技術(shù)與教學(xué)進(jìn)行有機(jī)整合,充分調(diào)動學(xué)生的自主探究與合作交流,教師注意適時的點拔引導(dǎo),學(xué)生的主體地位和教師的主導(dǎo)作用得以充分體現(xiàn),切實能夠達(dá)到發(fā)展思維、提升能力的根本目的,能夠較好地實現(xiàn)教學(xué)目標(biāo),也使課標(biāo)理念能夠很好地得到落實。
第三篇:角平分線定理在幾何證明題中的妙用
http://004km.cn。
http://004km.cn,由圖形特征可構(gòu)造以BM、CN為邊的兩個三角形,并證明這兩個三角形全等。考慮?BAC的平分線與BC邊的垂直平分線相交于點P,于是連接PB、PC,則利用垂直平分線和角平分線的知識即可解決。
證明:因AP是角平分線,PM?AB,PN?AC,故PM=PN 又因PD是BC的垂直平分線,故PB=PC 因PB=PC,PM=PN,故Rt?PBM?Rt?PCN
?BM?CN
點撥:這是一道垂直平分線與角平分線的綜合運用問題。上述解答省去了兩次全等的證明,相信同學(xué)們一定能體會到線段的垂直平分線定理與角平分線定理在幾何證明中的重要性。
第四篇:正弦定理,余弦的多種證明
正弦(余弦)定理的另類證明
課本利用向量法證明正弦定理,本文來介紹的另外兩種證法.正弦定理:在一個三角形中,各邊和它所對角的正弦比相等,即a=bsinAsinB=csinC.證法1:(等積法)在任意斜三角形ABC中,S△111absinC?acsinB?bcsinA,222兩邊同除以1abc即得:a=b=c2sinAsinBsinCABC=
.C點評:證法1主要利用了任意斜三角形面積可分別轉(zhuǎn)化為三角形不同邊與其對應(yīng)高的乘積的12.此證法體現(xiàn)了轉(zhuǎn)化與化歸的思想方法.abAOBDc證法2:(外接圓法)如圖1所示,設(shè)O為△ABC的外接圓的圓心,連接CO并延長交圓O于D,連接BD,則A=D,BCaa所以sinA?sinD?CD,即??2R.同理 2RsinAbsinB=2R,csinC=2R.故 a=b=csinAsinBsinC=2R(R為三角形外接圓半徑).點評:證法2建立了三角形中的邊與對角、外接圓半徑三者之間的聯(lián)系,這三者知二可求一,為正弦定理增添了新內(nèi)容,體現(xiàn)了數(shù)形結(jié)合的思想.小結(jié):由以上證明過程,我們可以得到正弦定理的幾種變形形式: 1.a: b: c = sinA : sinB :sinC;2.a=2RsinA;b=2RsinB;c=2RsinC;3.sinA=2aR;sinB= 2bR;sinC=2cR.(其中R為△ABC外接圓的半徑)
在解決三角形問題時,一定要根據(jù)問題的具體情況,恰當(dāng)?shù)剡x用公式.公式選擇得當(dāng)、方法運用對路是簡化問題的必要手段.
余弦定理是揭示三角形邊角關(guān)系的重要定理,直接運用它可解決一類已知三角形兩邊及夾角求第三邊或者是已知三個邊求角的問題,若對余弦定理加以變形并適當(dāng)移于其它知識,則使用起來更為方便、靈活.
對于任意三角形 三邊為a,b,c 三角為A,B,C 滿足性質(zhì)
a^2=b^2+c^2-2*b*c*CosA
b^2=a^2+c^2-2*a*c*CosB
c^2=a^2+b^2-2*a*b*CosC
CosC=(a^2+b^2-c^2)/2ab
CosB=(a^2+c^2-b^2)/2ac
CosA=(c^2+b^2-a^2)/2bc
證明: 如圖:
∵a=b-c
∴a^2=(b-c)^2(證明中前面所寫的a,b,c皆為向量,^2為平方)拆開即a^2=b^2+c^2-2bc 再拆開,得a^2=b^2+c^2-2*b*c*CosA 同理可證其他,而下面的CosA=(c^2+b^2-a^2)/2bc就是將CosA移到右邊表示一下。------------------平面幾何證法: 在任意△ABC中 做AD⊥BC.∠C所對的邊為c,∠B所對的邊為b,∠A所對的邊為a 則有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c 根據(jù)勾股定理可得: AC^2=AD^2+DC^2 b^2=(sinB*c)^2+(a-cosB*c)^2 b^2=sin^2B*c^2+a^2+cos^2B*c^2-2ac*cosB b^2=(sin^2B+cos^2B)*c^2-2ac*cosB+a^2 b^2=c^2+a^2-2ac*cosB cosB=(c^2+a^2-b^2)/2ac 從余弦定理和余弦函數(shù)的性質(zhì)可以看出, 如果一個三角形兩邊的平方和等于第三 邊的平方,那么第三邊所對的角一定是直 角,如果小于第三邊的平方,那么第三邊所 對的角是鈍角,如果大于第三邊,那么第三邊
所對的角是銳角.即,利用余弦定理,可以判斷三角形形狀。同時,還可以用余弦定理求三角形邊長取值范圍。
第五篇:正弦定理證明方法
正弦定理證明方法
方法1:用三角形外接圓
證明:任意三角形ABC,作ABC的外接圓O.作直徑BD交⊙O于D.連接DA.因為直徑所對的圓周角是直角,所以∠DAB=90度
因為同弧所對的圓周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R
類似可證其余兩個等式。
∴a/sinA=b/sinB=c/sinC=2R
方法2:用直角三角形
證明:在銳角△ABC中,設(shè)BC=a,AC=b,AB=c。作CH⊥AB垂足為點H
CH=a·sinBCH=b·sinA∴a·sinB=b·sinA得到a/sinA=b/sinB
同理,在△ABC中,b/sinB=c/sinC∴a/sinA=b/sinB=c/sinC
在直角三角形中,在鈍角三角形中(略)。
方法3:用向量
證明:記向量i,使i垂直于AC于C,△ABC三邊AB,BC,CA為向量a,b,c∴a+b+c=0則i(a+b+c)=i·a+i·b+i·c
=a·cos(180-(C-90))+0+c·cos(90-A)=-asinC+csinA=0∴a/sinA=c/sinC(b與i垂直,i·b=0)
方法4:用三角形面積公式
證明:在△ABC中,設(shè)BC=a,AC=b,AB=c。作CD⊥AB垂足為點D,作BE⊥AC垂足為點E,則CD=a·sinB,BE=csinA,由三角形面積公式得:AB·CD=AC·BE
即c·a·sinB=b·csinA∴a/sinA=b/sinB同理可得b/sinB=c/sinC
∴a/sinA=b/sinB=c/sinC
用余弦定理:a^2+b^2-2abCOSc=c^2
COSc=(a^2+b^2-c^2)/2ab
SINc^2=1-COSc^2
SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2
=/4a^2*b^2*c^2
同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2
得證
正弦定理:三角形ABC中BC/sinA=AC/sinB=AB/sinC
證明如下:在三角形的外接圓里證明會比較方便
例如,用BC邊和經(jīng)過B的直徑BD,構(gòu)成的直角三角形DBC可以得到:
2RsinD=BC(R為三角形外接圓半徑)
角A=角D
得到:2RsinA=BC
同理:2RsinB=AC,2RsinC=AB
這樣就得到正弦定理了
一種是用三角證asinB=bsinA
用面積證
用幾何法,畫三角形的外接圓
聽說能用向量證,咋么證呢?
三角形ABC為銳角三角形時,過A作單位向量j垂直于向量AB,則j與向量AB夾角為90,j與向量BC夾角為(90-B),j與向量CA夾角為(90+A),設(shè)AB=c,BC=a,AC=b,因為AB+BC+CA=0
即j*AB+J*BC+J*CA=0
|j||AB|cos90+|j||BC|cos(90-B)+|j||CA|cos(90+A)=0
所以asinB=bsinA
用余弦定理:a^2+b^2-2abCOSc=c^2
COSc=(a^2+b^2-c^2)/2ab
SINc^2=1-COSc^2
SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2
=/4a^2*b^2*c^2
同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2
得證用余弦定理:a^2+b^2-2abCOSc=c^2COSc=(a^2+b^2-c^2)/2abSINc^2=1-COSc^2SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2=/4a^2*b^2*c^2同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2得證
滿意答案好評率:100%
正弦定理
步驟1.在銳角△ABC中,設(shè)BC=a,AC=b,AB=c。作CH⊥AB垂足為點H
CH=a·sinB
CH=b·sinA
∴a·sinB=b·sinA
得到a/sinA=b/sinB
同理,在△ABC中,b/sinB=c/sinC
步驟2.證明a/sinA=b/sinB=c/sinC=2R:
如圖,任意三角形ABC,作ABC的外接圓O.作直徑BD交⊙O于D.連接DA.因為直徑所對的圓周角是直角,所以∠DAB=90度
因為同弧所對的圓周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R類似可證其余兩個等式。
余弦定理
平面向量證法:
∵如圖,有a+b=c(平行四邊形定則:兩個鄰邊之間的對角線代表兩個鄰邊大小)
∴c·c=(a+b)·(a+b)
∴c^2=a·a+2a·b+b·b∴c^2=a^2+b^2+2|a||b|Cos(π-θ)
(以上粗體字符表示向量)
又∵Cos(π-θ)=-CosC
∴c^2=a^2+b^2-2|a||b|Cosθ(注意:這里用到了三角函數(shù)公式)
再拆開,得c^2=a^2+b^2-2*a*b*CosC
同理可證其他,而下面的CosC=(c^2-b^2-a^2)/2ab就是將CosC移到左邊表示一下。
平面幾何證法:
在任意△ABC中
做AD⊥BC.∠C所對的邊為c,∠B所對的邊為b,∠A所對的邊為a
則有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c
根據(jù)勾股定理可得:
AC^2=AD^2+DC^2
b^2=(sinB*c)^2+(a-cosB*c)^2
b^2=sinB2·c2+a^2+cosB2·c^2-2ac*cosB
b^2=(sinB^2+cosB^2)*c^2-2ac*cosB+a^2
b^2=c^2+a^2-2ac*cosB
cosB=(c^2+a^2-b^2)/2ac