第一篇:關(guān)于二元函數(shù)極限定義的教學(xué)探討
關(guān)于二元函數(shù)極限定義的教學(xué)探討
【摘要】本文對(duì)二重極限的兩種不同定義進(jìn)行了比較,指出了二重極限與二次極限的異同,并通過具體的例子加深理解.【關(guān)鍵詞】二重極限;二次極限;定義
二元函數(shù)的極限是在一元函數(shù)極限的基礎(chǔ)上建立起來(lái)的,是一元函數(shù)極限概念的推廣.因而二元函數(shù)的極限比一元函數(shù)極限更抽象,要求更高,從而更難理解.初學(xué)者很容易犯一些概念性的錯(cuò)誤,因此加強(qiáng)對(duì)二元函數(shù)的極限概念的教學(xué)和理解顯得尤為重要.1.二重極限的定義
現(xiàn)行教材中,對(duì)于二重極限有兩種定義方法:
并且兩種順序的二次極限中的里層極限都存在,則兩種順序的二次極限都存在,且與二重極限的值相等.【參考文獻(xiàn)】
[1]同濟(jì)大學(xué)數(shù)學(xué)系.高等數(shù)學(xué)(第4版)[M].北京:高等教育出版社,1996.[2]同濟(jì)大學(xué)數(shù)學(xué)系.高等數(shù)學(xué)(第6版)[M].北京:高等教育出版社,2007.[3]裴禮文.數(shù)學(xué)分析中的典型問題與方法[M].北京:高等教育出版社,2006.
第二篇:二元函數(shù)的極限
§2 二元函數(shù)的極限
(一)教學(xué)目的:
掌握二元函數(shù)的極限的定義,了解重極限與累次極限的區(qū)別與聯(lián)系.
(二)教學(xué)內(nèi)容:二元函數(shù)的極限的定義;累次極限.
基本要求:
(1)掌握二元函數(shù)的極限的定義,了解重極限與累次極限的區(qū)別與聯(lián)系,熟悉判別極限存在性的基本方法.
(2)較高要求:掌握重極限與累次極限的區(qū)別與聯(lián)系,能用來(lái)處理極限存在性問題.
(三)教學(xué)建議:
(1)要求學(xué)生弄清一元函數(shù)極限與多元函數(shù)極限的聯(lián)系與區(qū)別,教會(huì)他們求多元函數(shù)極
限的方法.
(2)對(duì)較好學(xué)生講清重極限與累次極限的區(qū)別與聯(lián)系,通過舉例介紹判別極限存在性的較完整的方法.
一二元函數(shù)的極限
先回憶一下一元函數(shù)的極限: limf(x)?A 的“???” 定義(c31):
x?x0
0設(shè)函數(shù)f(x)在x0的某一空心鄰域U(x0,?1)內(nèi)由定義,如果對(duì)
???0,當(dāng) x?U(x0,?),即 |x?x0|?? 時(shí),都有 |f(x)?A|??,???0,???1,則稱x?x0時(shí),函數(shù)f(x)的極限是 A.類似的,我們也可以定義二元函數(shù)的極限如下:
設(shè)二元函數(shù)f(x,y)為定義在D?R2上的二元函數(shù),在點(diǎn)P0(x0,y0)為D的一個(gè)聚點(diǎn),A是一個(gè)確定的常數(shù),如果對(duì) ???0,???0,使得當(dāng) P(x,y)?U(P0,?)?D 時(shí),0都有 |f(P)?A|??,則稱f在D上當(dāng) P?P0時(shí),以A為極限。記作
P?P0P?Dlimf(P)?A
也可簡(jiǎn)寫為limf(P)?A或
P?P0(x,y)?(x0,y0)
2limf(x,y)?A 例1用定義驗(yàn)證
2lim(x,y)?(2,1)2(x?xy?y)?7 222證明:|x?xy?y?7|?|x?x?6?xy?x?y?1|
?|x?3||x?2|?|x?y?1||y?1|
限制在(2,1)的鄰域 {(x,y)||x?2|?1,|y?1|?1}
|x?3|?6,|x?y?1|?6
取 ??min{1,?/6},則有
|x?xy?y|??
由二元函數(shù)極限定義lim
(x,y)?(2,1)
(x?xy?y)?7
?x?y,(x,y)?(0,0)?xy22
例2 f(x,y)??x?y,?0,(x,y)?(0,0)?
證明lim
(x,y)?(0,0)
f(x,y)?0
x?yx?y
證|f(x,y)|?|xy
所以
lim
(x,y)?(0,0)
|?|xy|
lim
(x,y)?(0,0)
|f(x,y)|?lim
(x,y)?(0,0)
|xy|?0
|f(x,y)|?0
對(duì)于二元函數(shù)的極限的定義,要注意下面一點(diǎn):
P?P0
limf(P)?A 是指: P(x,y)以任何方式趨于P0(x0,y0),包括沿任何直線,沿任
何曲線趨于p0(x0,y0)時(shí),f(x,y)必須趨于同一確定的常數(shù)。
對(duì)于一元函數(shù),x 僅需沿X軸從x0的左右兩個(gè)方向趨于x0,但是對(duì)于二元函數(shù),P趨于P0的路線有無(wú)窮多條,只要有兩條路線,P趨于P0時(shí),函數(shù)f(x,y)的值趨于不同的常數(shù),二元函數(shù)在P0點(diǎn)極限就不存在。
?1,0?y?x2
例1 二元函數(shù)f(x,y)??
?0,rest
請(qǐng)看圖像(x62),盡管P(x,y)沿任何直線趨于原點(diǎn)時(shí)f(x,y)都趨于零,但也不能說(shuō)該函數(shù)在原點(diǎn)的極限就是零,因?yàn)楫?dāng)P(x,y)沿拋物線 y?kx,0?k?1時(shí),f(x,y)的值趨于1而不趨于零,所以極限不存在。
(考慮沿直線y?kx的方向極限).?x2y,?
例2設(shè)函數(shù)f(x,y)??x2?y2
?0,?
(x.,y)?(0,0)(x,y)?(0,0)
求證limf(x,y)?0
x?0
y?0
證明因?yàn)閨f(x,y)?0|?
x|y|x?y
?
x|y|x
?|y|
所以,當(dāng)(x,y)?(0,0)時(shí),f(x,y)?0。
請(qǐng)看它的圖像,不管P(x,y)沿任何方向趨于原點(diǎn),f(x,y)的值都趨于零。
通常為證明極限limf(P)不存在,可證明沿某個(gè)方向的極限不存在 , 或證明沿某兩
P?P0
個(gè)方向的極限不相等, 或證明方向極限與方向有關(guān).但應(yīng)注意 ,沿任何方向的極限存在且相等 ?? 全面極限存在.例3
設(shè)函數(shù)
(x,y)?(0,0)(x,y)?(0,0)
?xy,?22
f(x,y)??x?y
?0,?
證明函數(shù) f(x,y)在原點(diǎn)處極限不 存在。
證明盡管 P(x,y)沿 x軸和y軸
趨于原點(diǎn)時(shí)(f(x,y)的值都趨于零,但沿直線y?mx 趨于原點(diǎn)時(shí)
x?mxx?(mx)
f(x,y)??
mx
(1?m)x
?
m1?m
沿斜率不同的直線趨于原點(diǎn)時(shí)極限不一樣,請(qǐng)看它的圖象, 例1沿任何路線趨于原點(diǎn)時(shí),極
限都是0,但例2沿不同的路線趨于原點(diǎn)時(shí),函數(shù)趨于不同的值,所以其極限不存在。
例4
非正常極限極限
lim
(x,y)?(x0,y0)
判別函數(shù)f(x,y)?
xy?1?1x?y
在原點(diǎn)是否存在極限.f(x,y)???的定義:
12x?3y
例1設(shè)函數(shù)f(x,y)?證明limf(x,y)??
x?0y?0
證|
12x?3y
|?|
13(x?y)
|
只要取??
16M
|x?0|??,|y?0|??時(shí),都有
|
12x?3y16?
|?|
13(x?y)
|
??M
12x?3y
請(qǐng)看它的圖象,因此是無(wú)窮大量。
例2求下列極限: i)
lim
xyx?y
;ii)
(x,y)?(0,0)(x,y)?(3,0)
lim
sinxyy
;
iii)
(x,y)?(0,0)
lim
xy?1?1xy
;iV)
(x,y)?(0,0)
lim
ln(1?x?y)
x?y
.二.累次極限: 累次極限
前面講了P(x,y)以任何方式趨于P0(x0,y0)時(shí)的極限,我們稱它為二重極限,對(duì)于兩個(gè)自變量x,y依一定次序趨于x0,y0時(shí) f(x,y)的極限,稱為累次極限。對(duì)于二元函數(shù)f(x,y)在P0(x0,y0)的累次極限由兩個(gè)
limlimf(x,y)和limlimf(x,y)
y?y0x?x0
x?x0y?y0
例1
f(x,y)?
xyx?yx?yx?y
222, 求在點(diǎn)(0 , 0)的兩個(gè)累次極限.22
例2 f(x,y)?, 求在點(diǎn)(0 , 0)的兩個(gè)累次極限.例3 f(x,y)?xsin
1y
?ysin
1x, 求在點(diǎn)(0 , 0)的兩個(gè)累次極限.二重極限與累次極限的關(guān)系:
(1)兩個(gè)累次極限可以相等也可以不相等,所以計(jì)算累次極限時(shí)一定要注意不能隨意改變它們的次序。
例函數(shù) f(x,y)?
x?y?x?y
x?y
22的兩個(gè)累次極限是 y?yyx?xx
limlim
x?y?x?y
x?yx?y?x?y
x?y
y?0x?0
?lim
y?0
?lim(y?1)??1
y?0
?lim(x?1)?1
x?0
limlim
x?0y?0
?lim
x?0
(2)兩個(gè)累次極限即使都存在而且相等,也不能保證二重極限存在 例f(x,y)?
xyx?y
xyx?y,兩個(gè)累次極限都存在limlim
y?0x?0
?0,limlim
xyx?y
x?0y?0
?0
但二重極限卻不存在,事實(shí)上若點(diǎn)P(x,)沿直線 y?kx趨于原點(diǎn)時(shí),kx
f(x,y)?
x?(kx)
?
k1?k
二重極限存在也不能保證累次極限存在二重極限存在時(shí),兩個(gè)累次極限可以不存在.例函數(shù) f(x,y)?xsin
1y?ysin
1x
由|f(x,y)| ? |x|?|y|?0 ,(x ,y)?(0,0).可見二重極限存在 ,但
1x
limsin
x?0
和limsin
y?0
1y
不存在,從而兩個(gè)累次極限不存在。
(4)二重極限極限lim
(x,y)?(x0,y0)
f(x,y)和累次極限limlimf(x,y)(或另一次序)都存
x?x0y?y0
在 , 則必相等.(證)
(5)累次極限與二重極限的關(guān)系
若累次極限和二重極限都存在,則它們必相等
第三篇:二元函數(shù)極限的研究
二元函數(shù)極限的研究
作者:鄭露遙指導(dǎo)教師:楊翠
摘要 函數(shù)的極限是高等數(shù)學(xué)重要的內(nèi)容,二元函數(shù)的極限是一元函數(shù)極限的基礎(chǔ)上發(fā)展起來(lái)的,本文討論了二元函數(shù)極限的定義、二元函數(shù)極限存在或不存在的判定方法、求二元函數(shù)極限的方法、簡(jiǎn)單討論二元函數(shù)極限與一元函數(shù)極限的關(guān)系以及二元函數(shù)極限復(fù)雜的原因、最后討論二重極限與累次極限的關(guān)系。
關(guān)鍵詞 二元函數(shù)極限、累次極限、二重極限、連續(xù)性、判別法、洛必達(dá)法則、運(yùn)算定理引言
函數(shù)的極限是高等數(shù)學(xué)中非常重要的內(nèi)容, 關(guān)于一元函數(shù)的極限及其求法, 各種教材中都有詳盡的說(shuō)明。二元函數(shù)極限是在一元函數(shù)極限的基礎(chǔ)上發(fā)展起來(lái)的, 兩者之間既有聯(lián)系又有區(qū)別。例如, 在極運(yùn)算法則上, 它們是一致的, 但隨著變量個(gè)數(shù)的增加, 二元函數(shù)極限比一元函數(shù)極限變得復(fù)雜得多, 但目前的各類教材、教學(xué)參考書中有關(guān)二元函數(shù)極限的求法介紹不夠詳二元函數(shù)的極限是反映函數(shù)在某一領(lǐng)域內(nèi)的重要屬性的一個(gè)基本概念, 它刻劃了當(dāng)自變量趨向于某一個(gè)定值時(shí), 函數(shù)值的變化趨勢(shì)。是高等數(shù)學(xué)中一個(gè)極其重要的問題。但是, 一 般來(lái)說(shuō), 二元函數(shù)的極限比起一元函數(shù)的極限, 無(wú)論從計(jì)算還是證明都具有更大的難度。本文就二元函數(shù)極限的問題作如下探討求一元函數(shù)的極限問題, 主要困難多數(shù)集中于求未定型極限問題, 而所有未定型的極限又總可轉(zhuǎn)化為兩類基本型即00 與∞∞型,解決這兩類基本未定型的有力工具是洛泌達(dá)(LHO SP ital)法則。類似地, 二元函數(shù)基本未定型的極限問題也有相似的洛泌達(dá)法則。為了敘述上的方便, 對(duì)它的特殊情形(即(x0,y0)=(0, 0))作出如下研究, 并得到相應(yīng)的法則與定理。二元函數(shù)的極限是反映函數(shù)在某一領(lǐng)域內(nèi)的重要屬性的 一個(gè)基本概念, 它刻劃了當(dāng)自變量趨向于某一個(gè)定值時(shí), 函數(shù)
值的變化趨勢(shì)。是高等數(shù)學(xué)中一個(gè)極其重要的問題。但是, 一
般來(lái)說(shuō), 二元函數(shù)的極限比起一元函數(shù)的極限, 無(wú)論從計(jì)算還
是證明都具有更大的難度。本文就二元函數(shù)極限的問題作如
下探討。
第四篇:二元函數(shù)極限證明
二元函數(shù)極限證明
設(shè)p=f(x,y),p0=(a,b),當(dāng)p→p0時(shí)f(x,y)的極限是x,y同時(shí)趨向于a,b時(shí)所得到的稱為二重極限。
此外,我們還要討論x,y先后相繼地趨于a,b時(shí)的極限,稱為二次極限。
我們必須注意有以下幾種情形:’
(1)兩個(gè)二次極限都不存在而二重極限仍有可能存在(2)兩個(gè)二次極限存在而不相等
(3)兩個(gè)二次極限存在且相等,但二重極限仍可能不存在2函數(shù)f(x)當(dāng)x→X0時(shí)極限存在,不妨設(shè):limf(x)=a(x→X0)
根據(jù)定義:對(duì)任意ε>0,存在δ>0,使當(dāng)|x-x0|<δ時(shí),有|f(x)-a|<ε
而|x-x0|<δ即為x屬于x0的某個(gè)鄰域U(x0;δ)
又因?yàn)棣庞腥我庑?故可取ε=1,則有:|f(x)-a|<ε=1,即:a-
1再取M=max{|a-1|,|a+1|},則有:存在δ>0,當(dāng)任意x屬于x0的某個(gè)鄰域U(x0;δ)時(shí),有|f(x)|
證畢
3首先,我的方法不正規(guī),其次,正確不正確有待考察。
1,y以y=x^2-x的路徑趨于0Limitedsin(x+y)/x^2=Limitedsinx^2/x^2=1而y=x的路徑趨于0結(jié)果是無(wú)窮大。
2,3可以用類似的方法,貌似同濟(jì)書上是這么說(shuō)的,二元函數(shù)在該點(diǎn)極限存在,是p(x,y)以任何方式趨向于該點(diǎn)。
4f(x,y)={(x^2+y^2)/(|x|+|y|)}*sin(1/x)
顯然有y->0,f->(x^2/|x|)*sin(1/x)存在當(dāng)x->0,f->(y^2/|y|)*sin(1/x),sin(1/x)再0處是波動(dòng)的所以不存在而當(dāng)x->0,y->0時(shí)
由|sin(1/x)|<=1得|f|<=(x^2+y^2)/(|x|+|y|)
而x^2+y^2<=x^2+y^2+2*|x||y|=(|x|+|y|)^
2所以|f|<=|x|+|y|
所以顯然當(dāng)x->0,y->0時(shí),f的極限就為0
這個(gè)就是你說(shuō)的,唯一不一樣就是非正常極限是不存在而不是你說(shuō)的正無(wú)窮或負(fù)無(wú)窮或無(wú)窮,我想這個(gè)就可以了
就我這個(gè)我就線了好久了
5(一)時(shí)函數(shù)的極限:
以時(shí)和為例引入.介紹符號(hào):的意義,的直觀意義.定義(和.)
幾何意義介紹鄰域其中為充分大的正數(shù).然后用這些鄰域語(yǔ)言介紹幾何意義.例1驗(yàn)證例2驗(yàn)證例3驗(yàn)證證……
(二)時(shí)函數(shù)的極限:
由考慮時(shí)的極限引入.定義函數(shù)極限的“”定義.幾何意義.用定義驗(yàn)證函數(shù)極限的基本思路.例4驗(yàn)證例5驗(yàn)證例6驗(yàn)證證由=
為使需有為使需有于是,倘限制,就有
例7驗(yàn)證例8驗(yàn)證(類似有(三)單側(cè)極限:
1.定義:?jiǎn)蝹?cè)極限的定義及記法.幾何意義:介紹半鄰域然后介紹等的幾何意義.例9驗(yàn)證證考慮使的2.單側(cè)極限與雙側(cè)極限的關(guān)系:
Th類似有:例10證明:極限不存在.例11設(shè)函數(shù)在點(diǎn)的某鄰域內(nèi)單調(diào).若存在,則有
=§2函數(shù)極限的性質(zhì)(3學(xué)時(shí))
教學(xué)目的:使學(xué)生掌握函數(shù)極限的基本性質(zhì)。
教學(xué)要求:掌握函數(shù)極限的基本性質(zhì):唯一性、局部保號(hào)性、不等式性質(zhì)以及有理運(yùn)算性等。
教學(xué)重點(diǎn):函數(shù)極限的性質(zhì)及其計(jì)算。
教學(xué)難點(diǎn):函數(shù)極限性質(zhì)證明及其應(yīng)用。
教學(xué)方法:講練結(jié)合。
一、組織教學(xué):
我們引進(jìn)了六種極限:,.以下以極限為例討論性質(zhì).均給出證明或簡(jiǎn)證.二、講授新課:
(一)函數(shù)極限的性質(zhì):以下性質(zhì)均以定理形式給出.1.唯一性:
2.局部有界性:
3.局部保號(hào)性:
4.單調(diào)性(不等式性質(zhì)):
Th4若和都存在,且存在點(diǎn)的空心鄰域,使,都有證設(shè)=(現(xiàn)證對(duì)有)
註:若在Th4的條件中,改“”為“”,未必就有以舉例說(shuō)明.5.迫斂性:
6.四則運(yùn)算性質(zhì):(只證“+”和“”)
(二)利用極限性質(zhì)求極限:已證明過以下幾個(gè)極限:
(注意前四個(gè)極限中極限就是函數(shù)值)
這些極限可作為公式用.在計(jì)算一些簡(jiǎn)單極限時(shí),有五組基本極限作為公式用,我們將陸續(xù)證明這些公式.利用極限性質(zhì),特別是運(yùn)算性質(zhì)求極限的原理是:通過有關(guān)性質(zhì),把所求極限化為基本極限,代入基本極限的值,即計(jì)算得所求極限.例1(利用極限和)
例2例3註:關(guān)于的有理分式當(dāng)時(shí)的極限.例4
例5例6例7
第五篇:函數(shù)極限的定義證明
習(xí)題1?3
1.根據(jù)函數(shù)極限的定義證明:
(1)lim(3x?1)?8;x?3
(2)lim(5x?2)?12;x?2
x2?4??4;(3)limx??2x?2
1?4x3
(4)lim?2.x??2x?12
1證明(1)分析 |(3x?1)?8|?|3x?9|?3|x?3|, 要使|(3x?1)?8|?? , 只須|x?3|??.3
1證明 因?yàn)?? ?0, ????, 當(dāng)0?|x?3|??時(shí), 有|(3x?1)?8|?? , 所以lim(3x?1)?8.x?33
1(2)分析 |(5x?2)?12|?|5x?10|?5|x?2|, 要使|(5x?2)?12|?? , 只須|x?2|??.5
1證明 因?yàn)?? ?0, ????, 當(dāng)0?|x?2|??時(shí), 有|(5x?2)?12|?? , 所以lim(5x?2)?12.x?25
(3)分析
|x?(?2)|??.x2?4x2?4x?4x2?4?(?4)??|x?2|?|x?(?2)|, 要使?(?4)??, 只須x?2x?2x?2
x2?4x2?4?(?4)??, 所以lim??4.證明 因?yàn)?? ?0, ????, 當(dāng)0?|x?(?2)|??時(shí), 有x??2x?2x?2
(4)分析 1?4x3111?4x31?2??, 只須|x?(?)|??.?2?|1?2x?2|?2|x?(?)|, 要使2x?12x?1222
1?4x3111?4x3
?2??, 所以lim證明 因?yàn)?? ?0, ????, 當(dāng)0?|x?(?)|??時(shí), 有?2.12x?12x?122x??2.根據(jù)函數(shù)極限的定義證明:
(1)lim1?x3
2x3
sinxx???1;2(2)limx???x?0.證明(1)分析
|x|?1
1?x32x311?x3?x3??22x3?12|x|3, 要使1?x32x3?11??, 只須??, 即322|x|2?.證明 因?yàn)?? ?0, ?X?(2)分析
sinxx?0?
12?, 當(dāng)|x|?X時(shí), 有1x
1?x32x311?x31???, 所以lim?.x??2x322
1x
??, 即x?
sinxx
|sinx|x
?, 要使
sinx
證明 因?yàn)???0, ?X?
?2, 當(dāng)x?X時(shí), 有
xsinxx
?0??, 只須
?
.?0??, 所以lim
x???
?0.3.當(dāng)x?2時(shí),y?x2?4.問?等于多少, 使當(dāng)|x?2|
解 由于x?2, |x?2|?0, 不妨設(shè)|x?2|?1, 即1?x?3.要使|x2?4|?|x?2||x?2|?5|x?2|?0.001, 只要
|x?2|?
0.001
?0.0002, 取??0.0002, 則當(dāng)0?|x?2|??時(shí), 就有|x2?4|?0.001.5
x2?1x?
34.當(dāng)x??時(shí), y?
x2?1x2?3
?1, 問X等于多少, 使當(dāng)|x|>X時(shí), |y?1|<0.01?
解 要使?1?
4x2?3
?0.01, 只|x|?
?3?397, X?.0.01
5.證明函數(shù)f(x)?|x| 當(dāng)x?0時(shí)極限為零.x|x|
6.求f(x)?, ?(x)?當(dāng)x?0時(shí)的左﹑右極限, 并說(shuō)明它們?cè)趚?0時(shí)的極限是否存在.xx
證明 因?yàn)?/p>
x
limf(x)?lim?lim1?1,x?0?x?0?xx?0?x
limf(x)?lim?lim1?1,x?0?x?0?xx?0?limf(x)?limf(x),??
x?0
x?0
所以極限limf(x)存在.x?0
因?yàn)?/p>
lim?(x)?lim??
x?0
x?0
|x|?x
?lim??1,?x?0xx|x|x?lim?1,xx?0?x
lim?(x)?lim??
x?0
x?0
lim?(x)?lim?(x),??
x?0
x?0
所以極限lim?(x)不存在.x?0
7.證明: 若x???及x???時(shí), 函數(shù)f(x)的極限都存在且都等于A, 則limf(x)?A.x??
證明 因?yàn)閘imf(x)?A, limf(x)?A, 所以??>0,x???
x???
?X1?0, 使當(dāng)x??X1時(shí), 有|f(x)?A|??;?X2?0, 使當(dāng)x?X2時(shí), 有|f(x)?A|??.取X?max{X1, X2}, 則當(dāng)|x|?X時(shí), 有|f(x)?A|?? , 即limf(x)?A.x??
8.根據(jù)極限的定義證明: 函數(shù)f(x)當(dāng)x?x0 時(shí)極限存在的充分必要條件是左極限、右極限各自存在并且相等.證明 先證明必要性.設(shè)f(x)?A(x?x0), 則??>0, ???0, 使當(dāng)0<|x?x0| 時(shí), 有
|f(x)?A|.因此當(dāng)x0?? |f(x)?A|.這說(shuō)明f(x)當(dāng)x?x0時(shí)左右極限都存在并且都等于A.再證明充分性.設(shè)f(x0?0)?f(x0?0)?A, 則??>0,??1>0, 使當(dāng)x0??1 | f(x)?A| ,即f(x)?A(x?x0).9.試給出x??時(shí)函數(shù)極限的局部有界性的定理, 并加以證明.解 x??時(shí)函數(shù)極限的局部有界性的定理? 如果f(x)當(dāng)x??時(shí)的極限存在? 則存在X?0及M?0? 使當(dāng)|x|?X時(shí)? |f(x)|?M? 證明 設(shè)f(x)?A(x??)? 則對(duì)于? ?1? ?X?0? 當(dāng)|x|?X時(shí)? 有|f(x)?A|?? ?1? 所以|f(x)|?|f(x)?A?A|?|f(x)?A|?|A|?1?|A|? 這就是說(shuō)存在X?0及M?0? 使當(dāng)|x|?X時(shí)? |f(x)|?M? 其中M?1?|A|?