欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      函數(shù)極限證明

      時(shí)間:2019-05-15 12:33:10下載本文作者:會員上傳
      簡介:寫寫幫文庫小編為你整理了多篇相關(guān)的《函數(shù)極限證明》,但愿對你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫還可以找到更多《函數(shù)極限證明》。

      第一篇:函數(shù)極限證明

      函數(shù)極限證明

      記g(x)=lim^(1/n),n趨于正無窮;

      下面證明limg(x)=max{a1,...am},x趨于正無窮。把max{a1,...am}記作a。

      不妨設(shè)f1(x)趨于a;作b>a>=0,M>1;

      那么存在N1,當(dāng)x>N1,有a/M<=f1(x)注意到f2的極限小于等于a,那么存在N2,當(dāng)x>N2時(shí),0<=f2(x)同理,存在Ni,當(dāng)x>Ni時(shí),0<=fi(x)取N=max{N1,N2...Nm};

      那么當(dāng)x>N,有

      (a/M)^n<=f1(x)^n<=f1(x)^n+...fm(x)^n所以a/M<=^(1/n)

      第二篇:函數(shù)極限的證明

      函數(shù)極限的證明

      (一)時(shí)函數(shù)的極限:

      以時(shí)和為例引入.介紹符號:的意義,的直觀意義.定義(和.)

      幾何意義介紹鄰域其中為充分大的正數(shù).然后用這些鄰域語言介紹幾何意義.例1驗(yàn)證例2驗(yàn)證例3驗(yàn)證證……

      (二)時(shí)函數(shù)的極限:

      由考慮時(shí)的極限引入.定義函數(shù)極限的“”定義.幾何意義.用定義驗(yàn)證函數(shù)極限的基本思路.例4驗(yàn)證例5驗(yàn)證例6驗(yàn)證證由=

      為使需有為使需有于是,倘限制,就有

      例7驗(yàn)證例8驗(yàn)證(類似有(三)單側(cè)極限:

      1.定義:單側(cè)極限的定義及記法.幾何意義:介紹半鄰域然后介紹等的幾何意義.例9驗(yàn)證證考慮使的2.單側(cè)極限與雙側(cè)極限的關(guān)系:

      Th類似有:例10證明:極限不存在.例11設(shè)函數(shù)在點(diǎn)的某鄰域內(nèi)單調(diào).若存在,則有

      =§2函數(shù)極限的性質(zhì)(3學(xué)時(shí))

      教學(xué)目的:使學(xué)生掌握函數(shù)極限的基本性質(zhì)。

      教學(xué)要求:掌握函數(shù)極限的基本性質(zhì):唯一性、局部保號性、不等式性質(zhì)以及有理運(yùn)算性等。

      教學(xué)重點(diǎn):函數(shù)極限的性質(zhì)及其計(jì)算。

      教學(xué)難點(diǎn):函數(shù)極限性質(zhì)證明及其應(yīng)用。

      教學(xué)方法:講練結(jié)合。

      一、組織教學(xué):

      我們引進(jìn)了六種極限:,.以下以極限為例討論性質(zhì).均給出證明或簡證.二、講授新課:

      (一)函數(shù)極限的性質(zhì):以下性質(zhì)均以定理形式給出.1.唯一性:

      2.局部有界性:

      3.局部保號性:

      4.單調(diào)性(不等式性質(zhì)):

      Th4若和都存在,且存在點(diǎn)的空心鄰域,使,都有證設(shè)=(現(xiàn)證對有)

      註:若在Th4的條件中,改“”為“”,未必就有以舉例說明.5.迫斂性:

      6.四則運(yùn)算性質(zhì):(只證“+”和“”)

      (二)利用極限性質(zhì)求極限:已證明過以下幾個(gè)極限:

      (注意前四個(gè)極限中極限就是函數(shù)值)

      這些極限可作為公式用.在計(jì)算一些簡單極限時(shí),有五組基本極限作為公式用,我們將陸續(xù)證明這些公式.利用極限性質(zhì),特別是運(yùn)算性質(zhì)求極限的原理是:通過有關(guān)性質(zhì),把所求極限化為基本極限,代入基本極限的值,即計(jì)算得所求極限.例1(利用極限和)

      例2例3註:關(guān)于的有理分式當(dāng)時(shí)的極限.例4

      例5例6例7

      第三篇:函數(shù)極限的定義證明

      習(xí)題1?3

      1.根據(jù)函數(shù)極限的定義證明:

      (1)lim(3x?1)?8;x?3

      (2)lim(5x?2)?12;x?2

      x2?4??4;(3)limx??2x?2

      1?4x3

      (4)lim?2.x??2x?12

      1證明(1)分析 |(3x?1)?8|?|3x?9|?3|x?3|, 要使|(3x?1)?8|?? , 只須|x?3|??.3

      1證明 因?yàn)?? ?0, ????, 當(dāng)0?|x?3|??時(shí), 有|(3x?1)?8|?? , 所以lim(3x?1)?8.x?33

      1(2)分析 |(5x?2)?12|?|5x?10|?5|x?2|, 要使|(5x?2)?12|?? , 只須|x?2|??.5

      1證明 因?yàn)?? ?0, ????, 當(dāng)0?|x?2|??時(shí), 有|(5x?2)?12|?? , 所以lim(5x?2)?12.x?25

      (3)分析

      |x?(?2)|??.x2?4x2?4x?4x2?4?(?4)??|x?2|?|x?(?2)|, 要使?(?4)??, 只須x?2x?2x?2

      x2?4x2?4?(?4)??, 所以lim??4.證明 因?yàn)?? ?0, ????, 當(dāng)0?|x?(?2)|??時(shí), 有x??2x?2x?2

      (4)分析 1?4x3111?4x31?2??, 只須|x?(?)|??.?2?|1?2x?2|?2|x?(?)|, 要使2x?12x?1222

      1?4x3111?4x3

      ?2??, 所以lim證明 因?yàn)?? ?0, ????, 當(dāng)0?|x?(?)|??時(shí), 有?2.12x?12x?122x??2.根據(jù)函數(shù)極限的定義證明:

      (1)lim1?x3

      2x3

      sinxx???1;2(2)limx???x?0.證明(1)分析

      |x|?1

      1?x32x311?x3?x3??22x3?12|x|3, 要使1?x32x3?11??, 只須??, 即322|x|2?.證明 因?yàn)?? ?0, ?X?(2)分析

      sinxx?0?

      12?, 當(dāng)|x|?X時(shí), 有1x

      1?x32x311?x31???, 所以lim?.x??2x322

      1x

      ??, 即x?

      sinxx

      |sinx|x

      ?, 要使

      sinx

      證明 因?yàn)???0, ?X?

      ?2, 當(dāng)x?X時(shí), 有

      xsinxx

      ?0??, 只須

      ?

      .?0??, 所以lim

      x???

      ?0.3.當(dāng)x?2時(shí),y?x2?4.問?等于多少, 使當(dāng)|x?2|

      解 由于x?2, |x?2|?0, 不妨設(shè)|x?2|?1, 即1?x?3.要使|x2?4|?|x?2||x?2|?5|x?2|?0.001, 只要

      |x?2|?

      0.001

      ?0.0002, 取??0.0002, 則當(dāng)0?|x?2|??時(shí), 就有|x2?4|?0.001.5

      x2?1x?

      34.當(dāng)x??時(shí), y?

      x2?1x2?3

      ?1, 問X等于多少, 使當(dāng)|x|>X時(shí), |y?1|<0.01?

      解 要使?1?

      4x2?3

      ?0.01, 只|x|?

      ?3?397, X?.0.01

      5.證明函數(shù)f(x)?|x| 當(dāng)x?0時(shí)極限為零.x|x|

      6.求f(x)?, ?(x)?當(dāng)x?0時(shí)的左﹑右極限, 并說明它們在x?0時(shí)的極限是否存在.xx

      證明 因?yàn)?/p>

      x

      limf(x)?lim?lim1?1,x?0?x?0?xx?0?x

      limf(x)?lim?lim1?1,x?0?x?0?xx?0?limf(x)?limf(x),??

      x?0

      x?0

      所以極限limf(x)存在.x?0

      因?yàn)?/p>

      lim?(x)?lim??

      x?0

      x?0

      |x|?x

      ?lim??1,?x?0xx|x|x?lim?1,xx?0?x

      lim?(x)?lim??

      x?0

      x?0

      lim?(x)?lim?(x),??

      x?0

      x?0

      所以極限lim?(x)不存在.x?0

      7.證明: 若x???及x???時(shí), 函數(shù)f(x)的極限都存在且都等于A, 則limf(x)?A.x??

      證明 因?yàn)閘imf(x)?A, limf(x)?A, 所以??>0,x???

      x???

      ?X1?0, 使當(dāng)x??X1時(shí), 有|f(x)?A|??;?X2?0, 使當(dāng)x?X2時(shí), 有|f(x)?A|??.取X?max{X1, X2}, 則當(dāng)|x|?X時(shí), 有|f(x)?A|?? , 即limf(x)?A.x??

      8.根據(jù)極限的定義證明: 函數(shù)f(x)當(dāng)x?x0 時(shí)極限存在的充分必要條件是左極限、右極限各自存在并且相等.證明 先證明必要性.設(shè)f(x)?A(x?x0), 則??>0, ???0, 使當(dāng)0<|x?x0|

      |f(x)?A|

      |f(x)?A|0,??1>0, 使當(dāng)x0??10, 使當(dāng)x0

      | f(x)?A|

      證明 設(shè)f(x)?A(x??)? 則對于? ?1? ?X?0? 當(dāng)|x|?X時(shí)? 有|f(x)?A|?? ?1? 所以|f(x)|?|f(x)?A?A|?|f(x)?A|?|A|?1?|A|?

      這就是說存在X?0及M?0? 使當(dāng)|x|?X時(shí)? |f(x)|?M? 其中M?1?|A|?

      第四篇:函數(shù)極限

      《數(shù)學(xué)分析》教案

      第三章 函數(shù)極限

      xbl

      第三章 函數(shù)極限

      教學(xué)目的:

      1.使學(xué)生牢固地建立起函數(shù)極限的一般概念,掌握函數(shù)極限的基本性質(zhì); 2.理解并運(yùn)用海涅定理與柯西準(zhǔn)則判定某些函數(shù)極限的存在性; 3.掌握兩個(gè)重要極限

      和,并能熟練運(yùn)用;

      4.理解無窮?。ù螅┝考捌潆A的概念,會利用它們求某些函數(shù)的極限。教學(xué)重(難)點(diǎn):

      本章的重點(diǎn)是函數(shù)極限的概念、性質(zhì)及其計(jì)算;難點(diǎn)是海涅定理與柯西準(zhǔn)則的應(yīng)用。

      教學(xué)時(shí)數(shù):16學(xué)時(shí)

      § 1 函數(shù)極限概念(3學(xué)時(shí))

      教學(xué)目的:使學(xué)生建立起函數(shù)極限的準(zhǔn)確概念;會用函數(shù)極限的定義證明函數(shù)極限等有關(guān)命題。

      教學(xué)要求:使學(xué)生逐步建立起函數(shù)極限的???定義的清晰概念。會應(yīng)用函數(shù)極限的???定義證明函數(shù)的有關(guān)命題,并能運(yùn)用???語言正確表述函數(shù)不以某實(shí)數(shù)為極限等相應(yīng)陳述。

      教學(xué)重點(diǎn):函數(shù)極限的概念。

      教學(xué)難點(diǎn):函數(shù)極限的???定義及其應(yīng)用。

      一、復(fù)習(xí):數(shù)列極限的概念、性質(zhì)等

      二、講授新課:

      (一)時(shí)函數(shù)的極限:

      《數(shù)學(xué)分析》教案

      第三章 函數(shù)極限

      xbl

      例4 驗(yàn)證

      例5 驗(yàn)證

      例6 驗(yàn)證

      證 由 =

      為使

      需有

      需有

      為使

      于是, 倘限制 , 就有

      例7 驗(yàn)證

      例8 驗(yàn)證(類似有

      (三)單側(cè)極限:

      1.定義:單側(cè)極限的定義及記法.幾何意義: 介紹半鄰域

      《數(shù)學(xué)分析》教案

      第三章 函數(shù)極限

      xbl

      我們引進(jìn)了六種極限:.以下以極限,為例討論性質(zhì).均給出證明或簡證.二、講授新課:

      (一)函數(shù)極限的性質(zhì): 以下性質(zhì)均以定理形式給出.1.唯一性:

      2.局部有界性:

      3.局部保號性:

      4.單調(diào)性(不等式性質(zhì)):

      Th 4 若使,證 設(shè)

      和都有 =

      (現(xiàn)證對 都存在, 且存在點(diǎn) 的空心鄰域),有

      註: 若在Th 4的條件中, 改“ 就有

      5.6.以

      迫斂性:

      ”為“ 舉例說明.”, 未必

      四則運(yùn)算性質(zhì):(只證“+”和“ ”)

      (二)利用極限性質(zhì)求極限: 已證明過以下幾個(gè)極限:

      《數(shù)學(xué)分析》教案

      第三章 函數(shù)極限

      xbl

      例8

      例9

      例10 已知

      求和

      補(bǔ)充題:已知

      求和()§ 3 函數(shù)極限存在的條件(4學(xué)時(shí))

      教學(xué)目的:理解并運(yùn)用海涅定理與柯西準(zhǔn)則判定某些函數(shù)極限的存在性。教學(xué)要求:掌握海涅定理與柯西準(zhǔn)則,領(lǐng)會其實(shí)質(zhì)以及證明的基本思路。教學(xué)重點(diǎn):海涅定理及柯西準(zhǔn)則。教學(xué)難點(diǎn):海涅定理及柯西準(zhǔn)則 運(yùn)用。

      教學(xué)方法:講授為主,輔以練習(xí)加深理解,掌握運(yùn)用。本節(jié)介紹函數(shù)極限存在的兩個(gè)充要條件.仍以極限

      為例.一.Heine歸并原則——函數(shù)極限與數(shù)列極限的關(guān)系:

      Th 1 設(shè)函數(shù)在,對任何在點(diǎn)

      且的某空心鄰域

      內(nèi)有定義.則極限都存在且相等.(證)

      存Heine歸并原則反映了離散性與連續(xù)性變量之間的關(guān)系,是證明極限不存在的有力工具.對單側(cè)極限,還可加強(qiáng)為

      單調(diào)趨于

      .參閱[1]P70.例1 證明函數(shù)極限的雙逼原理.7 《數(shù)學(xué)分析》教案

      第三章 函數(shù)極限

      xbl

      教學(xué)難點(diǎn):兩個(gè)重要極限的證明及運(yùn)用。

      教學(xué)方法:講授定理的證明,舉例說明應(yīng)用,練習(xí)。一.

      (證)(同理有)

      例1

      例2.例3

      例4

      例5 證明極限 不存在.二.證 對

      例6

      特別當(dāng) 等.例7

      例8

      《數(shù)學(xué)分析》教案

      第三章 函數(shù)極限

      xbl

      三. 等價(jià)無窮?。?/p>

      Th 2(等價(jià)關(guān)系的傳遞性).等價(jià)無窮小在極限計(jì)算中的應(yīng)用: Th 3(等價(jià)無窮小替換法則)

      幾組常用等價(jià)無窮小:(見[2])

      例3 時(shí), 無窮小

      是否等價(jià)? 例4

      四.無窮大量:

      1.定義:

      2.性質(zhì):

      性質(zhì)1 同號無窮大的和是無窮大.性質(zhì)2 無窮大與無窮大的積是無窮大.性質(zhì)3 與無界量的關(guān)系.無窮大的階、等價(jià)關(guān)系以及應(yīng)用, 可仿無窮小討論, 有平行的結(jié)果.3.無窮小與無窮大的關(guān)系:

      無窮大的倒數(shù)是無窮小,非零無窮小的倒數(shù)是無窮大

      習(xí)題 課(2學(xué)時(shí))

      一、理論概述:

      《數(shù)學(xué)分析》教案

      第三章 函數(shù)極限

      xbl

      例7.求

      .注意 時(shí), 且

      .先求

      由Heine歸并原則

      即求得所求極限

      .例8 求是否存在.和.并說明極限

      解;

      可見極限 不存在.--32

      第五篇:函數(shù)極限

      習(xí)題

      1.按定義證明下列極限:

      (1)limx???6x?5=6;(2)lim(x2-6x+10)=2;x?2x

      x2?5?1;(4)lim?(3)lim2x???x?1x?2

      (5)limcos x = cos x0 x?x04?x2=0;

      2.根據(jù)定義2敘述limf(x)≠ A.x?x0

      3.設(shè)limf(x)= A.,證明limf(x0+h)= A.x?x0h?0

      4.證明:若limf(x)= A,則lim| f(x)| = |A|.當(dāng)且僅當(dāng)A為何值時(shí)反之也成立? x?x0x?x0

      5.證明定理3.1

      6.討論下列函數(shù)在x0→0 時(shí)的極限或左、右極限:(1)f(x)=x

      x;(2)f(x)= [x]

      ?2x;x?0.?(3)f(x)=?0;x?0.?1?x2,x?0.?

      7.設(shè) limf(x)= A,證明limf(x???x?x01)= A x

      8.證明:對黎曼函數(shù)R(x)有l(wèi)imR(x)= 0 , x0∈[0,1](當(dāng)x0=0或1時(shí),考慮單側(cè)極限).x?x0

      習(xí)題

      1. 求下列極限:

      x2?1(1)lim2(sinx-cosx-x);(2)lim;?x?02x2?x?1x?22

      x2?1?x?1???1?3x?;

      lim(3)lim;(4)

      x?12x2?x?1x?0x2?2x3

      xn?1(5)limm(n,m 為正整數(shù));(6)lim

      x?1xx?4?1

      (7)lim

      x?0

      ?2x?3x?2

      70;

      a2?x?a?3x?6??8x?5?.(a>0);(8)lim

      x???x5x?190

      2. 利用斂性求極限:(1)lim

      x???

      x?cosxxsinx

      ;(2)lim2

      x?0xx?4

      x?x0

      3. 設(shè) limf(x)=A, limg(x)=B.證明:

      x?x0

      (1)lim[f(x)±g(x)]=A±B;

      x?x0

      (2)lim[f(x)g(x)]=AB;

      x?x0

      (3)lim

      x?x0

      f(x)A

      =(當(dāng)B≠0時(shí))g(x)B

      4. 設(shè)

      a0xm?a1xm?1???am?1x?am

      f(x)=,a0≠0,b0≠0,m≤n,nn?1

      b0x?b1x???bn?1x?bn

      試求 limf(x)

      x???

      5. 設(shè)f(x)>0, limf(x)=A.證明

      x?x0

      x?x0

      lim

      f(x)=A,其中n≥2為正整數(shù).6.證明limax=1(0

      x?0

      7.設(shè)limf(x)=A, limg(x)=B.x?x0

      x?x0

      (1)若在某∪(x0)內(nèi)有f(x)< g(x),問是否必有A < B ? 為什么?

      (2)證明:若A>B,則在某∪(x0)內(nèi)有f(x)> g(x).8.求下列極限(其中n皆為正整數(shù)):(1)lim ?

      x?0

      x

      x11

      lim;(2);nn?x?0x1?xx1?x

      x?x2???xn?n

      (3)lim;(4)lim

      x?0x?0x?1

      ?x?1

      x

      (5)lim

      x??

      ?x?(提示:參照例1)

      x

      x?0

      x?0

      x?0

      9.(1)證明:若limf(x3)存在,則limf(x)= lim f(x3)(2)若limf(x2)存在,試問是否成立limf(x)=limf(x2)?

      x?0

      x?0

      x?0

      習(xí)題

      1.敘述函數(shù)極限limf(x)的歸結(jié)原則,并應(yīng)用它證明limcos x不存在.n???

      n???

      2.設(shè)f 為定義在[a,+?)上的增(減)函數(shù).證明: lim= f(x)存在的充要條件是f在n???

      [a,+?)上有上(下)界.3.(1)敘述極限limf(x)的柯西準(zhǔn)則;

      n???

      (2)根據(jù)柯西準(zhǔn)則敘述limf(x)不存在的充要條件,并應(yīng)用它證明limsin x不存在.n???

      n???

      4.設(shè)f在∪0(x0)內(nèi)有定義.證明:若對任何數(shù)列{xn}?∪0(x0)且limxn=x0,極限limf(xn)都

      n??

      n??

      存在,則所有這極限都相等.提示: 參見定理3.11充分性的證明.5設(shè)f為∪0(x0)上的遞減函數(shù).證明:f(x0-0)和f(x0+0)都存在,且f(x0-0)=supf(x),f(x0+0)=

      0x?u?

      ?x0?

      0x?un(x0)

      inff(x)

      6.設(shè) D(x)為狄利克雷函數(shù),x0∈R證明limD(x)不存在.x?x0

      7.證明:若f為周期函數(shù),且limf(x)=0,則f(x)=0

      x???

      8.證明定理3.9

      習(xí)題

      1.求下列極限

      sin2xsinx3

      (1)lim;(2)lim

      x?0x?0sinx2x

      (3)lim

      x?

      cosxx?

      ?

      tanx?sinxarctanx

      lim(5)lim;(6);3x?0x?0xx

      sin2x?sin2a1

      (7)limxsin;(8)lim;

      x???x?axx?a

      ;(4)lim

      x?0

      tanx

      ;x

      ?cosx2

      (9)lim;(10)lim

      x?0x?01?cosxx?1?1

      sin4x

      2.求下列極限

      12?x

      (1)lim(1?);(2)lim?1?ax?x(a為給定實(shí)數(shù));

      n??x?0x

      x

      (3)lim?1?tanx?

      x?0

      cotx

      ;(4)lim?

      ?1?x?

      ?;

      x?01?x??

      (5)lim(x???

      3x?22x?1?);(6)lim(1?)?x(?,?為給定實(shí)數(shù))

      n???3x?1x

      3.證明:lim?lim?cosxcoxcos4.利用歸結(jié)原則計(jì)算下列極限:(1)limnsin

      n??

      ?

      x?0n??

      ??

      ?

      x2

      xx???cos?1 2n??22??

      ?

      n

      ;(2)

      習(xí)題

      1. 證明下列各式

      (1)2x-x2=O(x)(x→0);(2)x sinx?O(x)(x→0);

      +

      (3)?x?1?o(1)(x→0);

      (4)(1+x)n= 1+ nx+o(x)(x→0)(n 為正整數(shù))(5)2x3 + x2=O(x3)(x→∞);

      (6)o(g(x))±o(g(x))=o(g(x))(x→x0)

      (7)o(g1(x))·0(g2(x))=o(g1(x)g2(x))(x→x0)2. 應(yīng)用定理3.12求下列極限:

      ?x2?1x(1)lim(2)lim x?01?cosxx??x?cosx

      x3. 證明定理3.13

      4. 求下列函數(shù)所表示曲線的漸近線:

      13x3?4

      (1)y =;(2)y = arctan x;(3)y = 2

      xx?2x

      5. 試確定a的值,使下列函數(shù)與xa當(dāng)x→0時(shí)為同階無窮小量:

      (1)sin2x-2sinx;(2)

      -(1-x);1?x

      (3)?tanx??sinx;(4)

      x2?4x3

      6. 試確定a的值,使下列函數(shù)與xa當(dāng)x→∞時(shí)為同階無窮大量:

      (1)

      x2?x5;(2)x+x2(2+sinx);

      (3)(1+x)(1+x2)…(1+xn).7. 證明:若S為無上界數(shù)集,則存在一遞增數(shù)列{xn}?s,使得xn→+∞(n→∞)

      8. 證明:若f為x→r時(shí)的無窮大量,而函數(shù)g在某U0(r)上滿足g(x)≥K>0,則fg為x→r

      時(shí)的無窮大量。

      9. 設(shè) f(x)~g(x)(x→x0),證明:

      f(x)-g(x)= o(f(x))或 f(x)-g(x)= o(g(x))

      總 練習(xí)題

      1. 求下列極限:

      ?1

      (x?[x])lim([x]?1)(1)lim;(2)??

      x?3

      x?1

      (3)lim(x???

      a?xb?x?a?xb?x)

      xx?a

      (4)lim

      x???

      (5)lim

      xx?a

      x???

      (6)lim

      ?x??x?x??x

      x?0

      (7)lim?

      n??m,m,n 為正整數(shù) ?n?x?11?xm1?x??

      2. 分別求出滿足下述條件的常數(shù)a與b:

      ?x2?1?

      (1)lim??ax?b???0 x????x?1??

      x(3)limx

      (2)lim

      x???x???x?2

      ??x?1?ax?b??0

      ?x?1?ax?b?0

      x?2

      3. 試分別舉出符合下列要求的函數(shù)f:

      (1)limf(x)?f(2);(2)limf(x)不存在。

      4. 試給出函數(shù)f的例子,使f(x)>0恒成立,而在某一點(diǎn)x0處有l(wèi)imf(x)?0。這同極限的x?x0

      局部保號性有矛盾嗎?

      5. 設(shè)limf(x)?A,limg(u)?B,在何種條件下能由此推出

      x?a

      g?A

      limg(f(x))?B?

      x?a

      6. 設(shè)f(x)=x cos x。試作數(shù)列

      (1){xn} 使得 xn→∞(n→∞), f(xn)→0(n→∞);(2){yn} 使得 yn→∞(n→∞), f(yn)→0(n→∞);(3){zn} 使得 zn→∞(n→∞), f(zn)→0(n→∞).7. 證明:若數(shù)列{an}滿足下列條件之一,則{an}是無窮大數(shù)列:

      (1)liman?r?1

      n??

      (2)lim

      an?1

      ?s?1(an≠0,n=1,2,…)

      n??an

      n2

      n2

      8. 利用上題(1)的結(jié)論求極限:

      (1)lim?1?

      ?n??

      ?1??1??(2)lim?1??

      n??n??n?

      9. 設(shè)liman???,證明

      n??

      (1)lim

      (a1?a2???an)??? n??n

      n??

      (2)若an > 0(n=1,2,…),則lima1a2?an??? 10.利用上題結(jié)果求極限:

      (1)limn!(2)lim

      n??

      In(n!)

      n??n

      11.設(shè)f為U-0(x0)內(nèi)的遞增函數(shù)。證明:若存在數(shù)列{xn}?U-0(x0)且xn→x0(n→∞),使得

      limf(xn)?A,則有

      n??

      f(x0-0)=

      supf(x)?A

      0x?U?(x0)

      12.設(shè)函數(shù)f在(0,+∞)上滿足方程f(2x)=f(x),且limf(x)?A。證明:f(x)?A,x∈(0,+∞)

      x???

      13.設(shè)函數(shù)f在(0,+∞)此上滿足方程f(x2)= f(x),且

      f(x)=limf(x)?f(1)lim?

      x?0

      x???

      證明:f(x)?f(1),x∈(0,+∞)

      14.設(shè)函數(shù)f定義在(a,+∞)上,f在每一個(gè)有限區(qū)間內(nèi)(a,b)有界,并滿足

      x???

      lim(f(x?1)?f(1))?A證明

      x???

      lim

      f(x)

      ?A x

      下載函數(shù)極限證明word格式文檔
      下載函數(shù)極限證明.doc
      將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
      點(diǎn)此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        函數(shù)極限

        數(shù)學(xué)之美2006年7月第1期函數(shù)極限的綜合分析與理解經(jīng)濟(jì)學(xué)院 財(cái)政學(xué) 任銀濤 0511666數(shù)學(xué)不僅僅是工具,更是一種能力。一些數(shù)學(xué)的方法被其它學(xué)科廣泛地運(yùn)用。例如,經(jīng)濟(jì)學(xué)中的邊際......

        函數(shù)極限的性質(zhì)證明(5篇)

        函數(shù)極限的性質(zhì)證明X1=2,Xn+1=2+1/Xn,證明Xn的極限存在,并求該極限求極限我會|Xn+1-A|......

        利用函數(shù)極限定義證明115篇

        習(xí)題2-2 1. 利用函數(shù)極限定義證明: . limxsinx?01x?0;x|?1,則當(dāng) 0?|x|?? 時(shí), 有 證明: 對于任意給定的正數(shù) ??0, 取 ???, 因?yàn)?|sinx1x1xxsin?|x|sin?|x|??,所以limxsinx?0?0. 2.利用無窮大量......

        二元函數(shù)極限證明(精選五篇)

        二元函數(shù)極限證明設(shè)p=f(x,y),p0=(a,b),當(dāng)p→p0時(shí)f(x,y)的極限是x,y同時(shí)趨向于a,b時(shí)所得到的稱為二重極限。此外,我們還要討論x,y先后相繼地趨于a,b時(shí)的極限,稱為二次極限。我......

        1-2函數(shù)極限

        高等數(shù)學(xué)教案§1.2函數(shù)極限教學(xué)目標(biāo):1. 掌握各種情形下的函數(shù)極限的基本概念和性質(zhì)。2. 掌握極限存在性的判定及應(yīng)用。3. 熟練掌握求函數(shù)極限的基本方法。教學(xué)重難點(diǎn):函數(shù)極限......

        函數(shù)極限概念

        一. 函數(shù)極限的概念 1.x趨于?時(shí)函數(shù)的極限 設(shè)函數(shù)f定義在??,???上,類似于數(shù)列情形,我們研究當(dāng)自變量x趨于+?時(shí),對應(yīng)的函數(shù)值能否無線地接近于某個(gè)定數(shù)A.例如,對于函數(shù)f?x?=,從圖象上可見,當(dāng)......

        2.3函數(shù)極限

        高三極限同步練習(xí)3(函數(shù)的極限) 求第一類函數(shù)的極限 例1、討論下列函數(shù)當(dāng)x???,x???,x??時(shí)的極限: ?1?(1)f(x)????1 ?2? (2)f(x)?x1 x?1 (x?0)?2?(3)h(x)??x?2 x?0)??x?1求函數(shù)的左右極限 例2、討論下列函數(shù)在點(diǎn)x?1處的......

        用定義證明函數(shù)極限方法總結(jié)

        144163369.doc第 1 頁 共 4 頁用定義證明函數(shù)極限方法總結(jié):用定義來證明函數(shù)極限式limf(x)?c,方法與用定義證明數(shù)列極限式類似,只是細(xì)節(jié)x?a不同。方法1:從不等式f(x)?c??中直接解出(......