第一篇:2016江西初中數(shù)學(xué)說(shuō)課教案:一元二次不等式的解法
初中數(shù)學(xué)說(shuō)課教案:一元二次不等式的解法 《一元二次不等式的解法(第一課時(shí))》說(shuō)課稿
一、教材內(nèi)容分析:
1.本節(jié)課內(nèi)容在整個(gè)教材中的地位和作用。
概括地講,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續(xù)和深化,對(duì)已學(xué)習(xí)過(guò)的集合知識(shí)的鞏固和運(yùn)用具有重要的作用,也與后面的函數(shù)、數(shù)列、三角函數(shù)、線形規(guī)劃、直線與圓錐曲線以及導(dǎo)數(shù)等內(nèi)容密切相關(guān)。許多問(wèn)題的解決都會(huì)借助一元二次不等式的解法。因此,一元二次不等式的解法在整個(gè)高中數(shù)學(xué)教學(xué)中具有很強(qiáng)的基礎(chǔ)性,體現(xiàn)出很大的工具作用。
2.教學(xué)目標(biāo)定位。
根據(jù)教學(xué)大綱要求、高考綱說(shuō)明、新課程標(biāo)準(zhǔn)精神、高一學(xué)生已有的知識(shí)儲(chǔ)備狀況和學(xué)生心理認(rèn)知特征,我確定了四個(gè)層面的教學(xué)目標(biāo)。第一層面是面向全體學(xué)生的知識(shí)目標(biāo):熟練掌握一元二次不等式的兩種解法,正確理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系。第二層面是能力目標(biāo),培養(yǎng)學(xué)生運(yùn)用數(shù)形結(jié)合與等價(jià)轉(zhuǎn)化等數(shù)學(xué)思想方法解決問(wèn)題的能力,提高運(yùn)算和作圖能力。第三層面是德育目標(biāo),通過(guò)對(duì)解不等式過(guò)程中等與不等對(duì)立統(tǒng)一關(guān)系的認(rèn)識(shí),向?qū)W生逐步滲透辨證唯物主義思想。第四層面是情感目標(biāo),在教師的啟發(fā)引導(dǎo)下,學(xué)生自主探究,交流討論,培養(yǎng)學(xué)生的合作意識(shí)和創(chuàng)新精神。
3.教學(xué)重點(diǎn)、難點(diǎn)確定。
本節(jié)課是在復(fù)習(xí)了一次不等式的解法之后,利用二次函數(shù)的圖象研究一元二次不等式的解法。只要學(xué)生能夠理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系,并利用其關(guān)系解不等式即可。因此,我確定本節(jié)課的教學(xué)重點(diǎn)為一元二次不等式的解法,關(guān)鍵是一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系。
二、教法學(xué)法分析:
數(shù)學(xué)是發(fā)展學(xué)生思維、培養(yǎng)學(xué)生良好意志品質(zhì)和美好情感的重要學(xué)科,在教學(xué)中,我們不僅要使學(xué)生獲得知識(shí)、提高解題能力,還要讓學(xué)生在教師的啟發(fā)引導(dǎo)下學(xué)會(huì)學(xué)習(xí)、樂(lè)于學(xué)習(xí),感受數(shù)學(xué)學(xué)科的人文思想,使學(xué)生在學(xué)習(xí)中培養(yǎng)堅(jiān)強(qiáng)的意志品質(zhì)、形成良好的道江西中公教師考試網(wǎng)祝您備考成功!點(diǎn)擊查看江西教師公告匯總
德情感。為了更好地體現(xiàn)課堂教學(xué)中“教師為主導(dǎo),學(xué)生為主體”的教學(xué)關(guān)系和“以人為本,以學(xué)定教”的教學(xué)理念,在本節(jié)課的教學(xué)過(guò)程中,我將緊緊圍繞教師組織——啟發(fā)引導(dǎo),學(xué)生探究——交流發(fā)現(xiàn),組織開(kāi)展教學(xué)活動(dòng)。我設(shè)計(jì)了①創(chuàng)設(shè)情景——引入新課,②交流探究——發(fā)現(xiàn)規(guī)律,③啟發(fā)引導(dǎo)——形成結(jié)論,④練習(xí)小結(jié)——深化鞏固,⑤思維拓展——提高能力,五個(gè)環(huán)環(huán)相扣、層層深入的教學(xué)環(huán)節(jié),在教學(xué)中注意關(guān)注整個(gè)過(guò)程和全體學(xué)生,充分調(diào)動(dòng)學(xué)生積極參與教學(xué)過(guò)程的每個(gè)環(huán)節(jié)。
三、教學(xué)過(guò)程分析:
1.創(chuàng)設(shè)情景——引入新課。我們常說(shuō)“興趣是最好的老師”,長(zhǎng)期以來(lái),學(xué)生對(duì)學(xué)習(xí)數(shù)學(xué)缺乏興趣,甚至失去信心,一個(gè)重要的原因,是老師在教學(xué)中不重視學(xué)生對(duì)學(xué)習(xí)的情感體驗(yàn),教學(xué)應(yīng)該充分考慮學(xué)生的情感和需要,想方設(shè)法讓學(xué)生在學(xué)習(xí)中樹(shù)立信心,感受學(xué)習(xí)的樂(lè)趣。根據(jù)教材內(nèi)容的安排,我以學(xué)生熟悉的畫(huà)一次函數(shù)圖象、求一次方程和一次不等式的解為背景知識(shí)切入,設(shè)置一個(gè)練習(xí)題組,一方面讓學(xué)生總結(jié)復(fù)習(xí)已有知識(shí),為后面學(xué)習(xí)二次不等式的解法打下基礎(chǔ),做好鋪墊,另一方面,使學(xué)生在自己熟悉的問(wèn)題中首先獲得解題成功的快樂(lè)體驗(yàn),然后以2004年江蘇省的一道高考試題為引子,引入本節(jié)課的新授內(nèi)容。對(duì)于本題,引導(dǎo)學(xué)生,利用上面解練習(xí)題組1的方法,畫(huà)出二次函數(shù)圖象來(lái)解答。二次函數(shù)是初中數(shù)學(xué)的重要內(nèi)容,本題又給出了函數(shù)圖象上許多點(diǎn),相信學(xué)生畫(huà)出圖象應(yīng)該不成問(wèn)題,只要教師適當(dāng)點(diǎn)撥,學(xué)生不難得到正確答案。以高考試題為背景引入新課,可以提高學(xué)生興趣,抓住學(xué)生眼球,吸引學(xué)生注意力,還可以讓學(xué)生實(shí)實(shí)在在感受到,高考題就在我們的課本中,就在我們平常的練習(xí)中。
2.探究交流——發(fā)現(xiàn)規(guī)律。從特殊到一般是我們發(fā)現(xiàn)問(wèn)題、尋求規(guī)律、揭示問(wèn)題本質(zhì)最常用的方法之一。我把課本例題1、2編為練習(xí)題組(一),交由學(xué)生用上面解高考題的方法——圖象法去解,學(xué)生由于熟知二次函數(shù)圖象,求解應(yīng)該不會(huì)有太大的問(wèn)題。在這個(gè)過(guò)程中,教師要啟發(fā)引導(dǎo)學(xué)生注意對(duì)比兩題的異同,組織引導(dǎo)學(xué)生展開(kāi)交流討論,探討第(2)題能不能先把二次項(xiàng)系數(shù)化正以后再構(gòu)造函數(shù)畫(huà)圖求解。然后達(dá)成共識(shí),如果二次項(xiàng)系數(shù)為負(fù)數(shù)時(shí),先做等價(jià)轉(zhuǎn)化,把二次項(xiàng)系數(shù)化為正數(shù)再解,課本19頁(yè)例
3、例4作為題組(二),繼續(xù)讓學(xué)生用上面的圖象法,由學(xué)生自己求解,這時(shí)我及時(shí)提示學(xué)生注意這兩題與題組(一)中兩題的不同(例
1、例2對(duì)應(yīng)方程都有兩個(gè)不等實(shí)根,例3對(duì)應(yīng)方程有兩相等實(shí)根,例4對(duì)應(yīng)方程無(wú)實(shí)根)。兩個(gè)題組的練習(xí)之后,可以尋求解二次不等式的一般規(guī)律。
3.啟發(fā)引導(dǎo)——形成結(jié)論。前面兩個(gè)題組的四個(gè)小題,基本涵蓋了一般一元二次不等式解的各種情況,進(jìn)一步啟發(fā)引導(dǎo)學(xué)生將特殊、具體題目的結(jié)論做一般化總結(jié),與學(xué)生一江西中公教師考試網(wǎng)祝您備考成功!點(diǎn)擊查看江西教師公告匯總
起就 △>0,△<0,△=0 的三種情況,總結(jié)二次不等式ax2+bx+c>0或ax2+bx+c<0(a>0)的解的情況應(yīng)該水到渠成。至此,學(xué)生可以感受到,解二次不等式只須①將二次項(xiàng)系數(shù)化為正數(shù),②求解二次方程 ax2+bx+c=0 的根。③根據(jù)①后的二次不等式的符號(hào)寫(xiě)出解集即可,必要時(shí)也可以結(jié)合圖象寫(xiě)解集。這樣我們就得到了二次不等式的另外一種解法(可稱(chēng)為“三步曲”法)。
4.訓(xùn)練小結(jié)——鞏固深化。為了鞏固和加深二次不等式的兩種解法,接下來(lái)及時(shí)組織學(xué)生進(jìn)行課堂練習(xí),完成課本21頁(yè)練習(xí)1-4題。本環(huán)節(jié)請(qǐng)不同層次的學(xué)生在黑板上書(shū)寫(xiě)解題過(guò)程,之后師生共同糾正問(wèn)題,規(guī)范解題過(guò)程的書(shū)寫(xiě)。
5.延伸拓寬——提高能力。課堂教學(xué)既要面向全體學(xué)生,又應(yīng)關(guān)注學(xué)生的個(gè)體差異。體現(xiàn)分類(lèi)推進(jìn),分層教學(xué)的原則。為此,我又設(shè)計(jì)了一個(gè)提高練習(xí)題組,共有三道備選題目,以供程度較好學(xué)有余力的學(xué)生能夠更好的展示自己的解題能力,取得更進(jìn)一步的提高。
四、課堂意外預(yù)案:
新課程理念下的教學(xué)更多的關(guān)注學(xué)生自主探究、關(guān)注學(xué)生的個(gè)性發(fā)展,鼓勵(lì)學(xué)生勇于提出問(wèn)題,培養(yǎng)學(xué)生思維的批評(píng)性。在課堂上學(xué)生往往會(huì)提出讓老師感到“意外”的問(wèn)題,我在平時(shí)的教學(xué)中重視對(duì)“課堂意外預(yù)案”的探索和思考,備課時(shí)盡量設(shè)想課堂中可能會(huì)出現(xiàn)的各種情況,做到有備無(wú)患,以免在課堂中學(xué)生提出讓自己出乎意料的問(wèn)題,使自己陷入被動(dòng)尷尬境地。結(jié)合以往經(jīng)驗(yàn),在本節(jié)課,我提出兩個(gè)“意外預(yù)案”。
1.學(xué)生在做課本練習(xí)1(x+2)(x-3)>0 時(shí),可能會(huì)問(wèn)到轉(zhuǎn)化為不等式組{或{ 求解對(duì)不對(duì)。學(xué)生提出的問(wèn)題,想法非常好,應(yīng)給予肯定和鼓勵(lì),這與下節(jié)簡(jiǎn)單分式不等式和高次不等式的解法有關(guān),是解不等式的另一種解法——等價(jià)轉(zhuǎn)化法,不在本節(jié)課之列。
2.根據(jù)以往的經(jīng)驗(yàn),在解(x-1)(x+2)>1一類(lèi)的不等式的時(shí)候,由于受方程(x+1)(x+2)=0 可轉(zhuǎn)化為x-1=0或x+2=0求解的影響,有可能會(huì)出現(xiàn)將不等式轉(zhuǎn)化為不等式組{來(lái)求解的錯(cuò)誤做法,教師要關(guān)注學(xué)生,及時(shí)發(fā)現(xiàn)問(wèn)題并給予糾正,指出上面的轉(zhuǎn)化不是等價(jià)轉(zhuǎn)化。
江西中公教師考試網(wǎng)祝您備考成功!點(diǎn)擊查看江西教師公告匯總
第二篇:3.2一元二次不等式及其解法教案
3.2一元二次不等式及其解法(3課時(shí))
(一)教學(xué)目標(biāo)
1.知識(shí)與技能:從實(shí)際問(wèn)題中建立一元二次不等式,解一元二次不等式;應(yīng)用一元二次不等式解決日常生活中的實(shí)際問(wèn)題;能用一個(gè)程序框圖把求解一般一元二次不等式的過(guò)程表示出來(lái);
2.過(guò)程與方法:通過(guò)學(xué)生感興趣的上網(wǎng)問(wèn)題引入一元二次不等式的有關(guān)概念,通過(guò)讓學(xué)生比較兩種不同的收費(fèi)方式,抽象出不等關(guān)系;利用計(jì)算機(jī)將數(shù)學(xué)知識(shí)用程序表示出來(lái);
3.情態(tài)與價(jià)值:培養(yǎng)學(xué)生通過(guò)日常生活中的例子,找到數(shù)學(xué)知識(shí)規(guī)率,從而在實(shí)際生活問(wèn)題中數(shù)形結(jié)合的應(yīng)用以及計(jì)算機(jī)在數(shù)學(xué)中的應(yīng)用。
(二)教學(xué)重、難點(diǎn)
重點(diǎn):從實(shí)際問(wèn)題中抽象出一元二次不等式模型,圍繞一元二次不等式的解法展開(kāi),突出體現(xiàn)數(shù)形結(jié)合的思想;
難點(diǎn):理解二次函數(shù)、一元二次方程與一元二次不等式解集的關(guān)系。
(四)教學(xué)設(shè)想
[創(chuàng)設(shè)情景] 通過(guò)讓學(xué)生閱讀第84頁(yè)的上網(wǎng)問(wèn)題,得出一個(gè)關(guān)于x的一元二次不等式,即
x2?5x?0
[探索研究] 首先考察不等式x?5x?0與二次函數(shù)y?x2?5x以及一元二次方程x?5x?0的 關(guān)系。
容易知道,方程x?5x?0有兩個(gè)實(shí)根:x1?0,x2?5
由二次函數(shù)的零點(diǎn)與相應(yīng)的一元二次方程根的關(guān)系,知x1?0,x2?5是二次函數(shù)222y?x2?5x的兩個(gè)零點(diǎn)。通過(guò)學(xué)生畫(huà)出的二次函數(shù)y?x2?5x的圖象,觀察而知,當(dāng)x?0,x?5時(shí),函數(shù)圖象位于x軸上方,此時(shí)y?0,即x?5x?0;
2當(dāng)0?x?5時(shí),函數(shù)圖象位于x軸下方,此時(shí)y?0,即x?5x?0。
22所以,一元二次不等式x?5x?0的解集是x0?x?5
??從而解決了以上的上網(wǎng)問(wèn)題。
[總結(jié)歸納] 上述方法可以推廣到求一般的一元二次不等式ax?bx?c?0或
2ax2?bx?c?0(a?0)的解集:可分??0,??0,??0三種情況來(lái)討論。
引導(dǎo)學(xué)生將第86頁(yè)的表格填充完整。
[例題分析]:
一.分析、講解例2和例3,練習(xí):第89頁(yè)1.(1)、(3)、(5);2.(1)、(3)二.分析、講解例1和例4 練習(xí):第90頁(yè)(A組)第5題,(B組)第4題。[知識(shí)拓展]:
下面利用計(jì)算器,用一個(gè)程序框圖把求解一般一元二次不等式的過(guò)程表示出來(lái):
下面是具有一般形式ax?bx?c?0(a?0)對(duì)應(yīng)的一元二次方程
2ax2?bx?c?0(a?0)的求根程序:
input “a,b,c=”;a,b,c d=b*b-4*a*c p=-b/(2*a)q=sqr(abs(d))/(2*a)if d<0 then print “the result is R” else x1=p-q x2=p+q if x1=x2 then print “the result is {x/x<> “;p,”}” else print “the result is {x/x> “;x2, “or x<”;x1,”}” endif endif end 練習(xí):(B組)第3題。[新知小結(jié)]:
1.從實(shí)際問(wèn)題中建立一元二次不等式,解一元二次不等式; 2.應(yīng)用一元二次不等式解決日常生活中的實(shí)際問(wèn)題;
3.能用一個(gè)程序框圖把求解一般一元二次不等式的過(guò)程表示出來(lái):
[課后作業(yè)]:習(xí)題3.2(A組)第1、2、6題;(B組)第1、2題。
第三篇:一元二次不等式及其解法公開(kāi)課教案(精)
公開(kāi)課教案
課題:3.2一元二次不等式及其解法 授課時(shí)間: 年月日(星期第節(jié)授課班級(jí): 執(zhí)教者: 指導(dǎo)教師:項(xiàng)目?jī)?nèi)容
一、學(xué)習(xí)目標(biāo)1.會(huì)通過(guò)函數(shù)圖像知道一元二次不等式與相應(yīng)的二次函數(shù)、一元二次方程的聯(lián)系;2.會(huì)解一元二次不等式;
二、重點(diǎn)與難點(diǎn)重點(diǎn):解一元二次不等式;難點(diǎn):對(duì)一元二次不等式與相應(yīng)的二次函數(shù)、一元二次方程的聯(lián)系的理解。
三、教學(xué)過(guò)程教學(xué)導(dǎo)航與學(xué)生平臺(tái) 設(shè)計(jì)意 圖
(一板書(shū)課題(二出示目標(biāo)(三自學(xué)指導(dǎo)
(四先學(xué)(一板書(shū)課題:3.2一元二次不等式及其解法(二通過(guò)投影揭示本節(jié)課的學(xué)習(xí)目標(biāo)以及學(xué)習(xí)重難點(diǎn)。(三自學(xué)指導(dǎo)(四先學(xué)
自學(xué)課本76-77頁(yè)內(nèi)容,并完成自學(xué)指導(dǎo)。1.一元二次不等式的定義
一般地,只含有,并且未知數(shù)的最高次數(shù)是的整式不等式,叫做一元二次不等式.2.一元二次不等式的解集的定義
一般地,使某個(gè)一元二次不等式成立的x的值叫做這個(gè)不等式的解,一元二次不等式的所有解組成的集合叫做這個(gè)一元二次不等式的解集。
3.一元二次不等式的一般形式: 20 ax bx c ++>(0 a>或20 ax bx c ++<(0 a> 4.探究一元二次不等式2760 x x-+>的解集
(1一元二次方程2760 x x
-+=的根與二次函數(shù)276 y x x =-+的零點(diǎn)的關(guān)系: ①求解方程2760 x x-+=的根 ②畫(huà)出函數(shù)276 y x x =-+的圖像并求出該函數(shù)的零點(diǎn)
結(jié)論:一元二次方程的 就是所對(duì)應(yīng)的一元二次函數(shù)的。當(dāng)x 取 時(shí),y>0? 當(dāng)x 取 時(shí),y<0?(3由圖象得: 不等式2 760x x-+> 的解集為;不等式2760x x-+< 的解集為;5.根據(jù)上述方法,請(qǐng)將下表填充完整。24b ac ?=-0?> 0?= 0?< 2y ax bx c
當(dāng)x 取 時(shí),y=0?(2
=++(0a >的圖像 20 ax bx c ++=(0a >的根 沒(méi)有實(shí)數(shù)根 20 ax bx c ++>(0a >的解集 2 ax bx c ++<(0a >的解集 20 ax bx c ++≥(0a >的解集 20 ax bx c ++≤(0a >的解集 思考:對(duì)于一元二次不等式
20ax bx c ++>(0a ≠或20ax bx c ++<(0a ≠ 當(dāng)二次項(xiàng)系數(shù)0a <時(shí)應(yīng)如何求解? 總結(jié):解一元二次不等式的一般步驟是: 一看:看二次項(xiàng)系數(shù)是否為正,若為負(fù)化為正。
二算:算△及對(duì)應(yīng)方程的根。
三寫(xiě):由對(duì)應(yīng)方程的根,結(jié)合不等號(hào)的方向,根據(jù)函數(shù)圖象寫(xiě)出不等式的解集。
自學(xué)檢測(cè): 解不等式:(12x 2-3x-2>0;(2-x 2+3x-2>0;(34x 2-4x+1≤0;(4x 2-2x+2>0.(五后教
1.幫助學(xué)生解決自學(xué)過(guò)程中存在的問(wèn)題,以及本節(jié)的重、難點(diǎn)及注意事項(xiàng).2.更正當(dāng)堂檢測(cè)存在的問(wèn)題(先由學(xué)生檢查更正,更正時(shí)用紅色粉筆把認(rèn)為錯(cuò)誤的部分用斜線畫(huà)掉,在旁邊更正,保留原有答案,最后師再針對(duì)存在的問(wèn)題進(jìn)行講解
過(guò)渡:下面我們一起看板演的內(nèi)容。3.新知延伸 解下列不等式 1.一元二次不等式的定義 2.一元二次不等式的解集的定義 3.一元二次不等式的一般形式: 20ax bx c ++>(0a >或20ax bx c ++<(0a > 4.解一元二次不等式的一般步驟 課后作業(yè): 課本p80 練習(xí)1.(1、(2、(3、(5 課時(shí)訓(xùn)練16(五后教(六、課堂總結(jié)(七、作業(yè)布置
四、板書(shū)設(shè)計(jì)
1.一元二次不等式的定義 2.一元二次不等式的解集的定義 3.一元二次不等式的一般形式: 20 ax bx c ++>(0 a>或20 ax bx c ++<(0 a> 4.解一元二次不等式的一般步驟
五、教后記(教學(xué)反思)
第四篇:含參數(shù)的一元二次不等式及其解法教案(本站推薦)
含參數(shù)的一元二次不等式及其解法教案
三維目標(biāo): 1.知識(shí)與技能
掌握一元二次不等式的解法,在此基礎(chǔ)上理解含有字母參數(shù)的一元二次不等式的解法.2.過(guò)程與方法
通過(guò)體驗(yàn)解題的過(guò)程,提高學(xué)生的邏輯分析能力.3.情感態(tài)度價(jià)值觀
通過(guò)分類(lèi)討論的過(guò)程培養(yǎng)學(xué)生思維的嚴(yán)密性.教學(xué)重點(diǎn): 含有參數(shù)一元二次不等式的解法.教學(xué)難點(diǎn): 分類(lèi)討論標(biāo)準(zhǔn)的劃分.教學(xué)過(guò)程: 一.知識(shí)回顧
1.完成一元二次方程、一元二次函數(shù)、一元二次不等式間的關(guān)系表 2.檢測(cè)學(xué)生一元二次不等式的解法掌握情況。
二、探索研究 例1
解關(guān)于x的不等式ax2?5ax?6a?0(a?R)分析:對(duì)于含有參數(shù)的不等式,教師引導(dǎo)學(xué)生從以下幾個(gè)方面探究,教給學(xué)生探究的方法和方向。
探究1:這個(gè)不等式是一元二次不等式嗎?
探究2:當(dāng)a取何值時(shí)為二次不等式;a取何值時(shí)為非二次不等式? 探究3:是二次不等式時(shí),它所對(duì)應(yīng)的二次函數(shù)的開(kāi)口方向是? 探究4:由上可知,我們應(yīng)該分哪幾類(lèi)去解這個(gè)不等式? 探究5:a<0時(shí),該不等式的解集是? 探究6:a=0時(shí),該不等式的解集是? 探究7:a>0時(shí)該不等式的解集是?
223例2 解關(guān)于x的不等式x?(a?a)x?a?0(a?R)解析:先讓學(xué)生自主探索,寫(xiě)出解決這種問(wèn)題的常規(guī)方法。若不等式對(duì)應(yīng)方程的根x1,x2中含有參數(shù),則須按x1,x2的大小來(lái)分類(lèi),即分x1
例3 已知a?R,解關(guān)于x的不等式ax2?(a?1)x?1?0引導(dǎo)學(xué)生用通法解含參數(shù)的不等式,把總結(jié)的規(guī)律推廣到一般情形。
三、探究總結(jié)(板書(shū)內(nèi)容)解含有參數(shù)的二次不等式 1.數(shù)學(xué)思想:分類(lèi)討論 2.解題步驟
(1)分類(lèi)(二次項(xiàng)系數(shù)a=0、判別式△=0(x1=x2)(2)畫(huà)圖,寫(xiě)解集(3)整合解集
四、成果驗(yàn)收
1.解關(guān)于x的不等式x2 ?(a?1)x?1?0 a
五、作業(yè)布置
已知常數(shù)a?R,解關(guān)于x的不等式:ax2?2x?a?0
第五篇:一元二次不等式及其解法教學(xué)設(shè)計(jì)
《一元二次不等式及其解法》
教 學(xué) 設(shè) 計(jì) 說(shuō) 明
《一元二次不等式及其解法》教學(xué)設(shè)計(jì)說(shuō)明
一.教學(xué)內(nèi)容分析:
1.本節(jié)課內(nèi)容在整個(gè)教材中的地位和作用.
必修五第三章不等式第二節(jié)一元二次不等式及其解法共有三個(gè)課時(shí),本節(jié)課是第一課時(shí),教學(xué)內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性.一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續(xù)和深化,對(duì)已學(xué)習(xí)過(guò)的集合知識(shí)的鞏固和運(yùn)用具有重要的作用.許多問(wèn)題的解決都會(huì)借助一元二次不等式的解法.因此,一元二次不等式的解法在整個(gè)高中數(shù)學(xué)教學(xué)中具有很強(qiáng)的基礎(chǔ)性,體現(xiàn)出很大的工具作用. 2.教學(xué)目標(biāo)定位.
根據(jù)教學(xué)大綱要求、高考考試大綱說(shuō)明、新課程標(biāo)準(zhǔn)精神、高一學(xué)生已有的知識(shí)儲(chǔ)備狀況和學(xué)生心理認(rèn)知特征,我確定了四個(gè)層面的教學(xué)目標(biāo).第一層面是面向全體學(xué)生的知識(shí)目標(biāo):熟練掌握一元二次不等式的解法,正確理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系.第二層面是能力目標(biāo),培養(yǎng)學(xué)生運(yùn)用數(shù)形結(jié)合與分類(lèi)討論等數(shù)學(xué)思想方法解決問(wèn)題的能力,提高運(yùn)算和作圖能力.第三層面是德育目標(biāo),通過(guò)對(duì)解不等式過(guò)程中等與不等對(duì)立統(tǒng)一關(guān)系的認(rèn)識(shí),向?qū)W生逐步滲透辨證唯物主義思想.第四層面是情感目標(biāo),在教師的啟發(fā)引導(dǎo)下,學(xué)生自主探究,交流討論,培養(yǎng)學(xué)生的合作意識(shí)和創(chuàng)新精神. 3.教學(xué)重點(diǎn)、難點(diǎn)確定.
本節(jié)課是在復(fù)習(xí)了一元二次方程和二次函數(shù)之后,利用二次函數(shù)的圖象研究一元二次不等式的解法.只要學(xué)生能夠理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系,并利用其關(guān)系解不等式即可.因此,我確定本節(jié)課的教學(xué)重點(diǎn)為一元二次不等式的解法,關(guān)鍵是一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系. 二.教法學(xué)法分析:
數(shù)學(xué)是發(fā)展學(xué)生思維、培養(yǎng)學(xué)生良好意志品質(zhì)和美好情感的重要學(xué)科,在教學(xué)中,我們不僅要使學(xué)生獲得知識(shí)、提高解題能力,還要讓學(xué)生在教師的啟發(fā)引導(dǎo)下學(xué)會(huì)學(xué)習(xí)、樂(lè)于學(xué)習(xí),感受數(shù)學(xué)學(xué)科的人文思想,使學(xué)生在學(xué)習(xí)中培養(yǎng)堅(jiān)強(qiáng)的意志品質(zhì)、形成良好的道德情感.為了更好地體現(xiàn)課堂教學(xué)中“教師為主導(dǎo),學(xué)生為主體”的教學(xué)關(guān)系和“以人為本,以學(xué)定教”的教學(xué)理念,在本節(jié)課的教學(xué)過(guò)程中,將緊緊圍繞教師組織——啟發(fā)引導(dǎo),學(xué)生探究——交流發(fā)現(xiàn),組織開(kāi)展教學(xué)活動(dòng).我設(shè)計(jì)了①回憶舊知,服務(wù)新知,②創(chuàng)設(shè)情境,提出問(wèn)題,③合作交流,探究新知,④數(shù)學(xué)運(yùn)用,深化認(rèn)知,⑤練習(xí)檢測(cè),反饋新知,⑥談?wù)勈斋@,強(qiáng)化思想,⑦布置作業(yè),實(shí)踐新知,環(huán)環(huán)相扣、層層深入的教學(xué)環(huán)節(jié),在教學(xué)中注意關(guān)注整個(gè)過(guò)程和全體學(xué)生,充分調(diào)動(dòng)學(xué)生積極參與教學(xué)過(guò)程的每個(gè)環(huán)節(jié). 三.教學(xué)過(guò)程分析:
(一)聯(lián)系舊知,構(gòu)建新知
設(shè)置一系列的問(wèn)題喚起學(xué)生對(duì)舊知識(shí)的回憶. 問(wèn)題1:一元二次方程的解法有哪些呢?
(意圖:讓學(xué)生回顧一元二次方程的解法,為解一元二次不等式做準(zhǔn)備.)
問(wèn)題2:同學(xué)們還記得二次函數(shù)嗎?二次函數(shù)的形式是怎樣的?你記得二次函數(shù)的性質(zhì)嗎?
(意圖:引導(dǎo)學(xué)生從圖象的角度出發(fā),并啟發(fā)學(xué)生二次函數(shù)的圖象是一條拋物線,其開(kāi)口方向由二次項(xiàng)系數(shù)決定,為突出重點(diǎn)做準(zhǔn)備)
(二)創(chuàng)設(shè)情景,提出問(wèn)題
1、讓學(xué)生動(dòng)手畫(huà)直角坐標(biāo)系,然后沿x軸方向上下對(duì)折這張紙,觀察它們的值有什么特點(diǎn)?
22、請(qǐng)?jiān)趧偛诺淖鴺?biāo)系中畫(huà)出y=x-7x+6的圖像 問(wèn)題1:
(1)x軸上方有無(wú)圖像?若有請(qǐng)用紅線描出。這部分圖像對(duì)應(yīng)的y值如何?(2)x軸下方有無(wú)圖像?若有請(qǐng)用藍(lán)線描出。這部分圖像對(duì)應(yīng)的y值如何?(3)紅線與藍(lán)線有無(wú)交點(diǎn)?若有請(qǐng)用綠色標(biāo)出。
(4)你能找出上述各種情況的x的取值范圍嗎?請(qǐng)?jiān)趫D中寫(xiě)出。
問(wèn)題2:你能說(shuō)一說(shuō)這兩個(gè)不等式有何共同特點(diǎn)么?(1)含有一個(gè)未知數(shù)x;
(2)未知數(shù)的最高次數(shù)為2。通過(guò)兩問(wèn)題得出一元二次不等式的概念:一般地,只含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)為2的不等式,叫做一元二次不等式。
問(wèn)題3:判斷下列式子是不是一元二次不等式?
問(wèn)題4:一元二次函數(shù)、一元二次方程之間有何聯(lián)系呢?
一元二次方程的解即一元二次函數(shù)圖象與x軸交點(diǎn)的橫坐標(biāo),也就是說(shuō)方程的解即對(duì)應(yīng)函數(shù)的零點(diǎn)。
問(wèn)題5:一元二次不等式如何求解呢?
(三)合作交流,探究新知
1. 探究一元二次不等式x2?x?2?0的解.
容易知道:一元二次方程x2?x?2?0的有兩個(gè)實(shí)數(shù)根:x1??1或x2?2. 二次函數(shù)y?x2?x?2與x軸有兩個(gè)交點(diǎn):??1,0?和?2,0?. 思考1:觀察圖象一元二次方程的根與二次函數(shù)之間有什么關(guān)系? 思考2:觀察圖象,當(dāng)x為何值時(shí),y?0;
當(dāng)x為何值時(shí),y?0; 當(dāng)x為何值時(shí),y?0.
(設(shè)計(jì)意圖 : ①體現(xiàn)學(xué)生的主體性;②有利于加強(qiáng)對(duì)圖象的認(rèn)識(shí),從而加強(qiáng)數(shù)形結(jié)合的數(shù)學(xué)思想 ;③有利于加強(qiáng)學(xué)生理解一元二次不等式的解相關(guān)的三個(gè)因素;④為歸納解一元二次不等式做好準(zhǔn)備.根據(jù)前面探討的問(wèn)題引導(dǎo)學(xué)生歸納一元二次不等式的解.)
2. 探究一元二次不等式ax2?bx?c?0或ax2?bx?c?0?a?0?的解法. 組織討論:從上面的例子出發(fā),綜合學(xué)生的意見(jiàn),可以歸納出確定一元二次不等式的解集,關(guān)鍵要考慮:
2拋物線y?ax?bx?c與x軸的相關(guān)位置的情況,也就是一元二次方程2ax2?bx?c=0的根的情況,而一元二次方程根的情況是由判別式??b?4ac三 3 種取值情況(??0,??0,??0)來(lái)確定.
(設(shè)計(jì)意圖:這里我將運(yùn)用多媒體圖標(biāo)的形式來(lái)展現(xiàn)出其解法思路,學(xué)生有一個(gè)完整的邏輯思維,讓學(xué)生在探究中建立知識(shí)間的聯(lián)系,體會(huì)數(shù)形結(jié)合,強(qiáng)調(diào)突出本節(jié)的難點(diǎn).)
(四)數(shù)學(xué)運(yùn)用,深化認(rèn)知.
2例1.求不等式2x?3x?2?0的解集. 2變式為:求不等式2x?3x?2?0的解集.
2例2.解不等式?x?2x?3?0.
(設(shè)計(jì)意圖:先讓學(xué)生來(lái)解答例題,若教師巡視、指導(dǎo),講評(píng)學(xué)生完成情況,尋找學(xué)生中的閃光點(diǎn),給予熱情表?yè)P(yáng).)總結(jié):
解一元二次不等式的步驟:
一化:化二次項(xiàng)前的系數(shù)為正(a>0).二判:判斷對(duì)應(yīng)方程的根.三求:求對(duì)應(yīng)方程的根.四畫(huà):畫(huà)出對(duì)應(yīng)函數(shù)的圖象.五解集:根據(jù)圖象寫(xiě)出不等式的解集.(五)練習(xí)檢測(cè),鞏固收獲
(設(shè)計(jì)意圖:為了鞏固和加深一元二次不等式的解法,讓學(xué)生學(xué)以致用,接下來(lái)及時(shí)組織學(xué)生進(jìn)行課堂練習(xí).然后就學(xué)生在解題中出現(xiàn)的問(wèn)題共同糾正.)
(六)歸納小結(jié),強(qiáng)化思想
設(shè)計(jì)意圖:梳理本節(jié)課的知識(shí)點(diǎn),總結(jié)一元二次不等式解法的步驟:“一化,二判,三求根,四畫(huà)圖,五寫(xiě)解集”的口訣來(lái)幫助學(xué)生記憶和歸納,讓學(xué)生掌握嚴(yán)謹(jǐn)?shù)淖鲱}方法,知曉本節(jié)課的重難點(diǎn).
(七)布置作業(yè),拓展延伸
必做題:課本第80頁(yè)習(xí)題A組 1,2.選做題:(1)若關(guān)于m的一元二次方程x
2?(m?1)x?m?0有兩個(gè)不相 等的實(shí)數(shù)根,求m的取值范圍.2(2)已知不等式x?ax?b?0的解集為x2?x?3?,求a,b的
?值.(設(shè)計(jì)意圖:以作業(yè)的鞏固性和發(fā)展性為出發(fā)點(diǎn),我設(shè)計(jì)了必做題和選做題,必做題是對(duì)本節(jié)課內(nèi)容的反饋,選做題是對(duì)本節(jié)課知識(shí)的延伸,整體的設(shè)計(jì)意圖是反饋教學(xué),鞏固提高.)四.教學(xué)總結(jié)
本節(jié)課的所有內(nèi)容以習(xí)題的形式展現(xiàn)給學(xué)生,學(xué)生始終在解題中探究,在解題中發(fā)現(xiàn),學(xué)生參與教學(xué)的全過(guò)程,成為課堂教學(xué)的主體和學(xué)習(xí)的主人,而老師只須時(shí)刻關(guān)注學(xué)生的活動(dòng)過(guò)程,不時(shí)給予引導(dǎo),及時(shí)糾正.