欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      《勾股定理》的教學(xué)反思(精選五篇)

      時(shí)間:2019-05-15 11:41:18下載本文作者:會(huì)員上傳
      簡(jiǎn)介:寫(xiě)寫(xiě)幫文庫(kù)小編為你整理了多篇相關(guān)的《《勾股定理》的教學(xué)反思》,但愿對(duì)你工作學(xué)習(xí)有幫助,當(dāng)然你在寫(xiě)寫(xiě)幫文庫(kù)還可以找到更多《《勾股定理》的教學(xué)反思》。

      第一篇:《勾股定理》的教學(xué)反思

      三角學(xué)里有一個(gè)很重要的定理,我國(guó)稱(chēng)它為勾股定理,又叫商高定理。因?yàn)椤吨荀滤憬?jīng)》提到,商高說(shuō)過(guò)“勾三股四弦五”的話(huà)。

      實(shí)際上,它是我國(guó)古代勞動(dòng)人民通過(guò)長(zhǎng)期測(cè)量經(jīng)驗(yàn)發(fā)現(xiàn)的。他們發(fā)現(xiàn):當(dāng)直角三角形短的直角邊(勾)是3,長(zhǎng)的直角邊(股)是4的時(shí)候,直角的對(duì)邊(弦)正好是5。而。

      這是勾股定理的一個(gè)特例。以后又通過(guò)長(zhǎng)期的測(cè)量實(shí)踐,發(fā)現(xiàn)只要是直角三角形,它的三邊都有這么個(gè)關(guān)系。即

      與它們相當(dāng)?shù)恼麛?shù)有許多組

      《周髀算經(jīng)》上還說(shuō),夏禹在實(shí)際測(cè)量中已經(jīng)初步運(yùn)用這個(gè)定理。這本書(shū)上還記載,有個(gè)叫陳子的數(shù)學(xué)家,應(yīng)用這個(gè)定理來(lái)測(cè)量太陽(yáng)的高度、太陽(yáng)的直徑和天地的長(zhǎng)闊等。

      5000年前的埃及人,也知道這一定理的特例,也就是勾

      3、股

      4、弦5,并用它來(lái)測(cè)定直角。以后才漸漸推廣到普遍的情況。

      金字塔的底部,四正四方,正對(duì)準(zhǔn)東西南北,可見(jiàn)方向測(cè)得很準(zhǔn),四角又是嚴(yán)格的直角。而要量得直角,當(dāng)然可以采用作垂直線(xiàn)的方法,但是如果將勾股定理反過(guò)來(lái),也就是說(shuō):只要三角形的三邊是3、4、5,或者符合的公式,那么弦邊對(duì)面的角一定是直角。

      到了公元前540年,希臘數(shù)學(xué)家畢達(dá)哥拉斯注意到了直角三角形三邊是3、4、5,或者是5、12、13的時(shí)候,有這么個(gè)關(guān)系:。

      他想:是不是所有直角三角形的三邊都符合這個(gè)規(guī)律?反過(guò)來(lái),三邊符合這個(gè)規(guī)律的,是不是直角三角形?

      他搜集了許多例子,結(jié)果都對(duì)這兩個(gè)問(wèn)題作了肯定的回答。他高興非常,殺了一百頭牛來(lái)祝賀。

      以后,西方人就將這個(gè)定理稱(chēng)為畢達(dá)哥拉斯定教學(xué)反思《《勾股定理》教學(xué)反思》一文

      第二篇:勾股定理教學(xué)反思

      勾股定理教學(xué)反思

      數(shù)學(xué)組 李杰

      勾股定理是中學(xué)數(shù)學(xué)幾個(gè)重要定理之一,它揭示了直角三角形三邊之間的數(shù)量關(guān)系,它緊密聯(lián)系了數(shù)學(xué)中兩個(gè)最基本的量——數(shù)與形,能夠把形的特征(三角形中一個(gè)角是直角)轉(zhuǎn)化成數(shù)量關(guān)系(兩條直角邊的平方和等于斜邊的平方)勾股定理是一壇陳年佳釀,品之芬芳,余味無(wú)窮,堪稱(chēng)數(shù)形結(jié)合的典范,在理論上占有重要地位.。同時(shí)勾股定理的探索和證明蘊(yùn)含著豐富的數(shù)學(xué)思想和研究方法,是培養(yǎng)學(xué)生思維品質(zhì)的載體。它對(duì)數(shù)學(xué)發(fā)展具有重要作用。

      本節(jié)課的基本教學(xué)思路:情境導(dǎo)入-探索結(jié)論-驗(yàn)證結(jié)論-初步應(yīng)用結(jié)論-應(yīng)用結(jié)論解決實(shí)際問(wèn)題.具體而言:

      利用愉快的拼圖游戲、創(chuàng)設(shè)出一種愉悅的學(xué)習(xí)情境,誘發(fā)學(xué)生的學(xué)習(xí)情趣;讓學(xué)生時(shí)常感受到“數(shù)學(xué)真奇妙!”,從而產(chǎn)生“我也想試一試!”的心理。讓學(xué)生享受數(shù)學(xué)的有趣。

      借助生活情境,使學(xué)生體會(huì)到我們的生活中蘊(yùn)涵著豐富的數(shù)學(xué)問(wèn)題,感受數(shù)學(xué)學(xué)習(xí)在生活中的作用。讓學(xué)生享受數(shù)學(xué)的有用。

      讓學(xué)生享受數(shù)學(xué)的精彩:創(chuàng)設(shè)一切機(jī)會(huì)讓學(xué)生學(xué)會(huì)思考,樂(lè)于思考、善于思考,在教學(xué)中有意識(shí)地安排一些問(wèn)題讓學(xué)生多途徑思考,發(fā)現(xiàn)答案有多種多樣;讓他們體味出更多的精彩!享受數(shù)學(xué)的成功:“教育教學(xué)的本質(zhì)就是幫助學(xué)生成功?!币淮纬晒Φ臋C(jī)會(huì)卻可以十倍地增強(qiáng)學(xué)生的信心;因此,課堂上教師應(yīng)毫不吝嗇自己鼓勵(lì)的眼神、贊許的話(huà)語(yǔ)。

      教學(xué)重點(diǎn)

      勾股定理的探索過(guò)程.

      教學(xué)難點(diǎn)

      將邊不在格線(xiàn)上的圖形轉(zhuǎn)化為邊在格線(xiàn)上的圖形,為便于計(jì)算圖形面積.采用拼接,割補(bǔ),平移的方法突破難點(diǎn)。學(xué)生易于接受,體現(xiàn)轉(zhuǎn)化劃歸解決問(wèn)題的思想。

      導(dǎo)入新課,是課堂教學(xué)的重要一環(huán)?!昂玫拈_(kāi)始是成功的一半”,在課的起始階段,迅速集中學(xué)生的注意力,把他們的思緒帶進(jìn)特定的學(xué)習(xí)情境中,為激發(fā)學(xué)生濃厚的學(xué)習(xí)興趣和強(qiáng)烈的求知欲,我創(chuàng)設(shè)了一個(gè)大樹(shù)被臺(tái)風(fēng)吹斷的情景。

      在探究直角三角形三邊關(guān)系時(shí),通過(guò)網(wǎng)格中的直角邊長(zhǎng)為1的等腰直角三角形來(lái)分析,分析以邊為邊長(zhǎng)的正方形面積之間的關(guān)系,因?yàn)閳D形特殊,學(xué)生容易從中得出關(guān)系。然后在將圖形換為直角邊長(zhǎng)為3、4的情形,引導(dǎo)分析關(guān)系,再推廣到一般的情形,最終得到結(jié)論。這里的做法由特殊到一般。步步推進(jìn),使學(xué)生易于接受。教學(xué)中我以教師為主導(dǎo),以學(xué)生為主體,以知識(shí)為載體,以培養(yǎng)能力為重點(diǎn)。為學(xué)生創(chuàng)設(shè)“做數(shù)學(xué)、玩數(shù)學(xué)”的教學(xué)情境,讓學(xué)生從“學(xué)會(huì)”到“會(huì)學(xué)”,從“會(huì)學(xué)”到“樂(lè)學(xué)”。、轉(zhuǎn)變教學(xué)方式,讓學(xué)生探索、研究、體會(huì)學(xué)習(xí)過(guò)程。

      除了探究出勾股定理的內(nèi)容以外,本節(jié)課還適時(shí)地向?qū)W生展現(xiàn)勾股定理的歷史,激發(fā)學(xué)生愛(ài)國(guó)熱情,培養(yǎng)學(xué)生的民族自豪感和探索創(chuàng)新的精神.

      練習(xí)設(shè)計(jì)我立足鞏固,著眼發(fā)展,兼顧差異,滿(mǎn)足學(xué)生渴望發(fā)展要求。在教學(xué)應(yīng)用勾股定理時(shí),老是運(yùn)用公式計(jì)算,學(xué)生感覺(jué)會(huì)比較厭倦,為了吸引學(xué)生注意力,活躍課堂氣氛,拓寬學(xué)生思路,運(yùn)用多媒體出示了一道實(shí)際問(wèn)題:即學(xué)校草地問(wèn)題。同學(xué)們一看,興趣來(lái)了。使數(shù)學(xué)教學(xué)變得生機(jī)勃勃,學(xué)生喜歡數(shù)學(xué),熱愛(ài)數(shù)學(xué)。即鞏固了知識(shí),又對(duì)學(xué)生進(jìn)行了品德教育。一舉兩得。

      第三篇:八年級(jí)勾股定理教學(xué)反思

      八年級(jí)勾股定理教學(xué)反思

      八年級(jí)勾股定理教學(xué)反思 1

      在講解勾股定理的結(jié)論時(shí),為了讓學(xué)生更好地理解和掌握勾股定理的探索過(guò)程,先讓學(xué)生自己進(jìn)行探索,然后同學(xué)進(jìn)行討論,最后上臺(tái)演示。這樣可以加深學(xué)生的參與,也讓師生間、生生間有了互動(dòng)。然后老師再利用電腦演示直角三角形中勾股定理的探索過(guò)程。反復(fù)演示幾遍,讓學(xué)生自己感覺(jué)并最后體會(huì)到勾股定理的結(jié)論。通過(guò)動(dòng)畫(huà)演示體會(huì)到解決問(wèn)題的方法是多種多樣,使得這課的重難點(diǎn)輕易地突破,大大提高了教學(xué)效率,培養(yǎng)了學(xué)生的解決問(wèn)題的能力和創(chuàng)新能力。學(xué)生在這一過(guò)程中各顯神通,都得到了解決問(wèn)題的滿(mǎn)足感和自豪感。

      在教學(xué)應(yīng)用勾股定理時(shí),老是運(yùn)用公式計(jì)算,學(xué)生感覺(jué)比較厭倦,為了吸引學(xué)生注意力,活躍課堂氣氛,拓寬學(xué)生思路,運(yùn)用多媒體出示了一道“智慧爺爺”出的思考題:即折竹抵地問(wèn)題。同學(xué)們一看,興趣來(lái)了。最后讓學(xué)生互相討論,就這樣讓學(xué)生在開(kāi)放自由的情況下解決了該題,同時(shí)培養(yǎng)了學(xué)生的想像力。

      最后介紹了勾股定理的歷史,并且推薦了一些網(wǎng)站,讓學(xué)生下課之后進(jìn)行查閱、了解。只是為了方便學(xué)生到更廣闊的知識(shí)海洋中去尋找知識(shí)寶藏,利用網(wǎng)絡(luò)檢索相關(guān)信息,充實(shí)、豐富、拓展課堂學(xué)習(xí)資源,提供各種學(xué)習(xí)方式,讓學(xué)生學(xué)會(huì)選擇、整理、重組、再用這些更廣泛的資源。這種對(duì)網(wǎng)絡(luò)資源的重新組織,使學(xué)生對(duì)知識(shí)的需求由窄到寬,有力的促進(jìn)了自主學(xué)習(xí)。這樣學(xué)生不僅能在課堂上學(xué)習(xí)到知識(shí),還讓他們有了怎樣學(xué)習(xí)知識(shí)的方法。這就達(dá)到了新課標(biāo)新理念的預(yù)定目標(biāo)。

      數(shù)學(xué)有與其他學(xué)科不同的特點(diǎn),自然科學(xué)常發(fā)生新理論代替舊理論的情形,但數(shù)學(xué)不會(huì)如此。數(shù)學(xué)學(xué)習(xí)是數(shù)學(xué)發(fā)展史的縮影,是一個(gè)累進(jìn)過(guò)程。勾股定理是人類(lèi)幾千年的文化遺產(chǎn),是經(jīng)典的定理,擁有科學(xué)簡(jiǎn)潔的數(shù)學(xué)語(yǔ)言。而數(shù)學(xué)教學(xué)的核心不是知識(shí)本身,而是數(shù)學(xué)的思維方式。認(rèn)識(shí)是個(gè)人獨(dú)特的構(gòu)造結(jié)果,人的思維活動(dòng)有強(qiáng)烈的個(gè)性特征。每個(gè)學(xué)生都有自己的生活背景、家庭環(huán)境,這種特定的文化氛圍,導(dǎo)致不同的學(xué)生有不同的思維方式和解決問(wèn)題的策略。學(xué)生已有豐富的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),特別是運(yùn)用數(shù)學(xué)解決問(wèn)題的策略。學(xué)生只有用自己創(chuàng)造與體驗(yàn)的方法來(lái)學(xué)習(xí)數(shù)學(xué),才能真正地掌握數(shù)學(xué)。因而數(shù)學(xué)教學(xué)要展現(xiàn)數(shù)學(xué)的思維過(guò)程,要學(xué)生領(lǐng)會(huì)和實(shí)現(xiàn)數(shù)學(xué)化,自己去“發(fā)現(xiàn)”結(jié)果。這一課的學(xué)習(xí)就主要通過(guò)讓學(xué)生自主地探索知識(shí),從而將其轉(zhuǎn)化為自己的,真正做到了先激發(fā)興趣,再合作交流,最后展示成果的自主學(xué)習(xí)。這堂課將信息技術(shù)融入利于創(chuàng)設(shè)教學(xué)環(huán)境,教學(xué)模式將從以教師講授為主轉(zhuǎn)為以學(xué)生動(dòng)腦動(dòng)手自主研究、小組學(xué)習(xí)討論交流為主,把數(shù)學(xué)課堂轉(zhuǎn)為“數(shù)學(xué)實(shí)驗(yàn)室”,學(xué)生通過(guò)自己的活動(dòng)得出結(jié)論、使創(chuàng)新精神與實(shí)踐能力得到了發(fā)展。

      八年級(jí)勾股定理教學(xué)反思 2

      新課程改革要求我們:將數(shù)學(xué)教學(xué)置身于學(xué)生自主探究與合作交流的數(shù)學(xué)活動(dòng)中,將知識(shí)的獲取與能力的培養(yǎng)置身于學(xué)生形式各異的探索經(jīng)歷中,關(guān)注學(xué)生探索過(guò)程中的情感體驗(yàn),并發(fā)展實(shí)踐能力及創(chuàng)新意識(shí),為學(xué)生的終身學(xué)習(xí)及可持續(xù)發(fā)展奠定堅(jiān)實(shí)的基礎(chǔ)。

      首先講解勾股定理的重要性,讓學(xué)生明白勾股定理是中學(xué)數(shù)學(xué)幾個(gè)重要定理之一,它揭示了直角三角形三邊之間的數(shù)量關(guān)系,既是直角三角形性質(zhì)的拓展,也是后續(xù)學(xué)習(xí)“解直角三角形”的基礎(chǔ)。它緊密聯(lián)系了數(shù)學(xué)中兩個(gè)最基本的量——數(shù)與形,能夠把形的特征(三角形中一個(gè)角是直角)轉(zhuǎn)化成數(shù)量關(guān)系(三邊之間滿(mǎn)足a2+ b2= c2)堪稱(chēng)數(shù)形結(jié)合的典范,在理論上占有重要地位,從而激發(fā)學(xué)生的求知欲。

      一、精心編制數(shù)學(xué)教學(xué)目標(biāo)知識(shí)與技能:1.讓學(xué)生在經(jīng)歷探索定理的過(guò)程中,理解并掌握勾股定理的內(nèi)容;2.掌握勾股定理的證明及介紹相關(guān)史料;3.學(xué)生能對(duì)勾股定理進(jìn)行簡(jiǎn)單計(jì)算。

      過(guò)程與方法:在探索勾股定理的過(guò)程中,讓學(xué)生經(jīng)歷“觀(guān)察—猜想—?dú)w納—驗(yàn)證”的數(shù)學(xué)思想,發(fā)展合情推理能力,并體會(huì)數(shù)形結(jié)合和特殊到一般的思想方法。

      情感態(tài)度與價(jià)值觀(guān):體會(huì)數(shù)學(xué)文化的價(jià)值,通過(guò)介紹中國(guó)古代勾股方面的成就,激發(fā)學(xué)生熱愛(ài)祖國(guó)與熱愛(ài)祖國(guó)悠久文化的思想感情,培養(yǎng)他們的民族自豪感,激發(fā)學(xué)生發(fā)奮學(xué)習(xí)。

      二、優(yōu)化數(shù)學(xué)教學(xué)內(nèi)容的呈現(xiàn)方式(一)創(chuàng)設(shè)問(wèn)題情境,引導(dǎo)學(xué)生思考,激發(fā)學(xué)習(xí)興趣。

      1.2002年國(guó)際數(shù)學(xué)家大會(huì)在北京舉行的意義。

      2.電腦顯示:ICM20xx會(huì)標(biāo)。

      3. 會(huì)標(biāo)設(shè)計(jì)與趙爽弦圖。

      4. 趙爽弦圖與《周髀算經(jīng)》中的“商高問(wèn)題”。

      (二)通過(guò)學(xué)生動(dòng)手操作,觀(guān)察分析,實(shí)踐猜想,合作交流,人人參與活動(dòng),體驗(yàn)并感悟“圖形”和“數(shù)量”之間的相互聯(lián)系。

      1.觀(guān)察網(wǎng)格上的圖形:分別以直角三角形的三邊向外作正方形,三個(gè)正方形的面積關(guān)系。再利用幾何畫(huà)板演示,引導(dǎo)學(xué)生去觀(guān)察,大膽的猜測(cè)。

      2.引導(dǎo)學(xué)生將正方形的面積與三角形的邊長(zhǎng)聯(lián)系起來(lái),讓學(xué)生進(jìn)行分析、歸納,鼓勵(lì)學(xué)生用用語(yǔ)言表達(dá)自己的發(fā)現(xiàn)。采取“個(gè)人思考——小組活動(dòng)——全班交流”的形式。

      3.讓學(xué)生自己任畫(huà)一個(gè)直角三角形,再次驗(yàn)證自己的發(fā)現(xiàn),在此基礎(chǔ)上得到直角三角形三邊的關(guān)系。

      4.電腦演示:銳角三角形、鈍角三角形三邊的平方關(guān)系,從而進(jìn)一步認(rèn)識(shí)直角三角形三邊的關(guān)系。

      5.通過(guò)幾個(gè)練習(xí),了解直角三角形三邊關(guān)系的作用。

      (三)繼續(xù)動(dòng)手操作實(shí)踐,思考探究,拼圖驗(yàn)證猜想。

      1.學(xué)生動(dòng)手用準(zhǔn)備好的四個(gè)直角三角形拼弦圖。

      2.利用弦圖來(lái)驗(yàn)證勾股定理。采取“個(gè)人思考——小組活動(dòng)——全班交流”的形式。

      (四)拓展延伸,發(fā)揮作為千古第一定理的文化價(jià)值。

      1.簡(jiǎn)單介紹勾股定理的文化價(jià)值。

      2.閱讀:勾股定理成為地球人與“外星人”聯(lián)系的“使者”。

      3.電腦演示:欣賞勾股樹(shù)。

      4.推薦進(jìn)一步課外學(xué)習(xí)的網(wǎng)址。

      5.與課頭的“ICM20xx”在中國(guó)舉行的意義首尾呼應(yīng),進(jìn)一步激發(fā)學(xué)生追求遠(yuǎn)大目標(biāo),奮發(fā)學(xué)習(xí)。

      本節(jié)課開(kāi)始我利用了導(dǎo)語(yǔ)中的在北京召開(kāi)的20xx年國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),其圖案為“弦圖”,激發(fā)學(xué)生的興趣。同時(shí)出示勾股定理的圖形,讓學(xué)生猜想直角三角形三邊之間的關(guān)系。然后利用正方形網(wǎng)格驗(yàn)證猜想的正確性,還利用教具在黑板上拼圖,啟發(fā)學(xué)生用面積法得出a2+ b2= c2在講解勾股定理的結(jié)論時(shí),為了讓學(xué)生更好地理解和掌握勾股定理的探索過(guò)程,先讓學(xué)生自己進(jìn)行探索,然后同學(xué)進(jìn)行討論,最后上臺(tái)演示。這樣可以加深學(xué)生的參與,也讓師生間、生生間有了互動(dòng)。然后老師利用多種證法讓學(xué)生參與勾股定理的探索過(guò)程,讓學(xué)生自己感覺(jué)并最后體會(huì)到勾股定理的結(jié)論,使得這課的重難點(diǎn)輕易地突破,大大提高教學(xué)效率,培養(yǎng)了學(xué)生的解決問(wèn)題的能力和創(chuàng)新能力。

      八年級(jí)勾股定理教學(xué)反思 3

      《勾股定理》一章檢測(cè)結(jié)果出來(lái)了,學(xué)生考績(jī)很不理想,很多不該錯(cuò)的題做錯(cuò)了。是什么原因致使錯(cuò)誤頻出呢?我輾轉(zhuǎn)反側(cè)。

      一是沒(méi)有把握好勾股定理的適用范圍。勾股定理只適用直角三角形,而不適用鈍角三角形和銳角三角形。例如:在△ABC中,AC=3,BC=4,有的同學(xué)直接根據(jù)勾股定理得:AB=5。這是因?yàn)榕c勾股定理的條件相似,已知三角形的兩邊,求第三邊,滿(mǎn)足能利用勾股定理解決問(wèn)題的特征之一,卻忽略特征之二:勾股定理只適用直角三角形。

      二是沒(méi)有弄清楚待求的直角三角形的第三邊是斜邊還是直角邊。例如:已知直角三角形兩直角邊的長(zhǎng)分別是4c和5c,求第三邊的長(zhǎng)。很多同學(xué)可能是受勾股數(shù)“3,4,5”的影響,錯(cuò)把結(jié)果寫(xiě)成了3c,其實(shí)這里的第三邊是斜邊.

      三是缺乏分類(lèi)思想,考慮問(wèn)題不全面,導(dǎo)致解答錯(cuò)誤。例如:已知直角三角形兩邊長(zhǎng)分別是1、4,求第三邊的長(zhǎng)。這里的第三邊有可能是斜邊也有可能是直角邊,所以結(jié)果應(yīng)該有兩個(gè),但好多同學(xué)都填了一個(gè)答案。又如:在△ABC中,AB=15,AC=13,高AD=12,求△ABC的面積。此題應(yīng)考慮三角形是銳角三角形,還是鈍角三角形兩種情況,否則會(huì)漏解。

      四是利用直角三角形的判別條件時(shí),沒(méi)有分清較短邊和較長(zhǎng)邊。例如:已知三角形的三邊長(zhǎng)分別為a=0.6,b=1,c=0.8,問(wèn)這個(gè)三角形是直角三角形嗎?有的同學(xué)認(rèn)為此三角形不是直角三角形,其實(shí)這個(gè)三角形是以b為斜邊的直角三角形。

      五是缺少方程思想和轉(zhuǎn)化思想,使綜合類(lèi)試題痛失分?jǐn)?shù)。

      六是書(shū)寫(xiě)不規(guī)范。例如:運(yùn)用直角三角形的判別條件,判別一個(gè)三角形是否為直角三角形的過(guò)程中,有的同學(xué)寫(xiě)出一句“由勾股定理得”的不恰當(dāng)?shù)臄⑹觥?/p>

      針對(duì)上述問(wèn)題,痛定思痛,感悟頗多:

      第一,教學(xué)不可削弱技能的訓(xùn)練。要學(xué)生真正掌握某個(gè)知識(shí),如果缺少相應(yīng)技能的訓(xùn)練是不科學(xué)的。正如教人開(kāi)車(chē)的教練把開(kāi)車(chē)的要點(diǎn)、技巧講清楚,然后叫學(xué)車(chē)的學(xué)生馬上開(kāi)車(chē)去考試一樣。試問(wèn):當(dāng)教師在講臺(tái)上滔滔不絕地講解時(shí),能否保證每一個(gè)學(xué)生都專(zhuān)心去聽(tīng)?能否保證每一個(gè)專(zhuān)心去聽(tīng)的學(xué)生都聽(tīng)得明白?能否保證每一個(gè)聽(tīng)得明白的學(xué)生都能解同一類(lèi)題目?可見(jiàn):“課堂上教師講,學(xué)生聽(tīng),聽(tīng)就會(huì)懂,懂就會(huì)做。”只是教師一廂情愿的做法,教師只有不滿(mǎn)足于自己的“講清楚”,在課堂上幫助學(xué)生獨(dú)立完成,并進(jìn)行一定量的訓(xùn)練,才能實(shí)現(xiàn)教學(xué)的有效性。

      第二,巧設(shè)錯(cuò)誤案例,讓學(xué)生辨錯(cuò)、糾錯(cuò),即學(xué)生對(duì)教師的有意“示錯(cuò)”進(jìn)行分析、判斷,提高防錯(cuò)能力。在教學(xué)中,教師有時(shí)可恰到好處,有意地把估計(jì)學(xué)生易錯(cuò)的做法顯示給學(xué)生,以引起學(xué)生的注意,然后通過(guò)師生共同分析錯(cuò)因,加以糾錯(cuò),達(dá)到及時(shí)、有效預(yù)防,并避免學(xué)生出現(xiàn)類(lèi)似錯(cuò)誤的目的。這樣,可防患于未然,并提高學(xué)生分析、判斷、解決問(wèn)題的能力。

      第三,教學(xué)應(yīng)注重?cái)?shù)學(xué)思想和方法傳授。理解掌握各種數(shù)學(xué)思想和方法是形成數(shù)學(xué)技能技巧,提高數(shù)學(xué)能力的前提。 學(xué)生學(xué)習(xí)數(shù)學(xué),學(xué)會(huì)是基礎(chǔ),會(huì)學(xué)是目的,教是為了不教。教學(xué)中,在加強(qiáng)技能訓(xùn)練的同時(shí),要強(qiáng)化數(shù)學(xué)思想和數(shù)學(xué)方法的教學(xué),做到講方法聯(lián)系思想,以思想指導(dǎo)方法,使二者相互交融,相得益彰。此外,在教學(xué)中培養(yǎng)學(xué)生的“問(wèn)題意識(shí)”,激勵(lì)學(xué)生善于發(fā)現(xiàn)問(wèn)題、思考問(wèn)題,并能運(yùn)用數(shù)學(xué)方法去解決廣泛的多種多樣的實(shí)際問(wèn)題,以便增強(qiáng)學(xué)生探究新知識(shí)、新方法的創(chuàng)造能力。

      第四,教學(xué)應(yīng)加大綜合訓(xùn)練的力度。目前的綜合題已經(jīng)由單純的知識(shí)疊加型轉(zhuǎn)化為知識(shí)、方法和能力綜合型尤其是創(chuàng)新能力型試題,具有知識(shí)容量大、解題方法多、能力要求高、突顯數(shù)學(xué)思想方法的運(yùn)用以及創(chuàng)新意識(shí)等特點(diǎn)。教學(xué)時(shí)應(yīng)抓好“三轉(zhuǎn)”能力的培養(yǎng):(1)語(yǔ)言轉(zhuǎn)換能力。每道數(shù)學(xué)綜合題都是由一些特定的文字語(yǔ)言、符號(hào)語(yǔ)言、圖形語(yǔ)言所組成,解綜合題往往需要較強(qiáng)的語(yǔ)言轉(zhuǎn)換能力,能把普通語(yǔ)言轉(zhuǎn)換成數(shù)學(xué)語(yǔ)言。(2)概念轉(zhuǎn)換能力:綜合題的轉(zhuǎn)譯常常需要較強(qiáng)的數(shù)學(xué)概念的轉(zhuǎn)換能力。(3)數(shù)形轉(zhuǎn)換能力。解題中的數(shù)形結(jié)合,就是對(duì)題目的條件和結(jié)論既分析其代數(shù)含義又分析其幾何意義,力圖在代數(shù)與幾何的結(jié)合上找出解題思路。只有如此,方可找到解決綜合題的突破口。

      第五,教學(xué)勿忘發(fā)揮板書(shū)的特有功能。板書(shū)通過(guò)學(xué)生的視角器官傳遞信息,比語(yǔ)言富有直觀(guān)性。條例清晰,層次分明,邏輯嚴(yán)謹(jǐn)?shù)慕獯疬^(guò)程的板演,不但便于學(xué)生理解、掌握知識(shí),還會(huì)給學(xué)生起到示范作用。

      相信通過(guò)反思教學(xué),優(yōu)化方法,細(xì)化過(guò)程,一定能取得事半功倍之效。

      八年級(jí)勾股定理教學(xué)反思 4

      勾股定理整章書(shū)的內(nèi)容很少,就勾股定理和勾股定理的逆定理,這節(jié)課是勾股定理的第一課時(shí),本節(jié)課主要是和學(xué)生一起探究勾股地理的認(rèn)識(shí)。在教學(xué)的過(guò)程中感覺(jué)有幾個(gè)方面需要轉(zhuǎn)變的。

      一 、轉(zhuǎn)變師生角色,讓學(xué)生自主學(xué)習(xí)。由于高效課堂中教學(xué)模式需要進(jìn)行學(xué)生自主討論交流學(xué)習(xí),在探究勾股定理的發(fā)現(xiàn)時(shí)分四人一小組由同學(xué)們合作探討作圖,去發(fā)現(xiàn)有的直角三角形的三邊具有這種關(guān)系,有的直角三角形不具有這種性質(zhì)。可仍然證明不了我們的猜想是否正確。之后用拼圖的方法再來(lái)驗(yàn)證一下。讓學(xué)生們拿出準(zhǔn)備好的直角三角形和正方形,利用拼圖和面積計(jì)算來(lái)證明 + = (學(xué)生分組討論。)學(xué)生展示拼圖方法,課件輔助演示。 新課標(biāo)下要求教師個(gè)人素質(zhì)越來(lái)越高,教師自身要不斷及時(shí)地學(xué)習(xí)學(xué)科專(zhuān)業(yè)知識(shí),接受新信息,對(duì)自己及時(shí)充電、更新,而且要具有幽默藝術(shù)的語(yǔ)言表達(dá)能力。既要有領(lǐng)導(dǎo)者的組織指導(dǎo)能力,更重要的是要有被學(xué)生欣賞佩服的魅力,只有學(xué)生配合你,信任你,喜歡你,教師才能輕松駕御課堂,做到應(yīng)付自如,高效率完成教學(xué)目標(biāo)。 “教師教,學(xué)生聽(tīng),教師問(wèn),學(xué)生答,教室出題,學(xué)生做”的傳統(tǒng)教學(xué)摸模式,已嚴(yán)重阻阻礙了現(xiàn)代教育的發(fā)展。這種教育模式,不但無(wú)法培養(yǎng)學(xué)生的實(shí)踐能力,而且會(huì)造成機(jī)械的學(xué)習(xí)知識(shí),形成懶惰、空洞的學(xué)習(xí)態(tài)度,形成數(shù)學(xué)的呆子,就像有的大學(xué)畢業(yè)生都不知道1平方米到底有多大?因此,高效課堂上要求老師一定要改變角色,把主動(dòng)權(quán)交給學(xué)生,讓學(xué)生提出問(wèn)題,動(dòng)手操作,小組討論,合作交流,把學(xué)生想到的,想說(shuō)的想法和認(rèn)識(shí)都讓他們盡情地表達(dá),然后教師再進(jìn)行點(diǎn)評(píng)與引導(dǎo),這樣做會(huì)有許多意外的收獲,而且能充分發(fā)揮挖掘每個(gè)學(xué)生的潛能,久而久之,學(xué)生的綜合能力就會(huì)與日劇增。

      二、轉(zhuǎn)變教學(xué)方式,讓學(xué)生探索、研究、體會(huì)學(xué)習(xí)過(guò)程。 學(xué)生學(xué)會(huì)了數(shù)學(xué)知識(shí),卻不會(huì)解決與之有關(guān)的實(shí)際問(wèn)題,造成了知識(shí)學(xué)習(xí)和知識(shí)應(yīng)用的脫節(jié),感受不到數(shù)學(xué)與生活的聯(lián)系,這是當(dāng)今課堂教學(xué)存在的普遍問(wèn)題,對(duì)于我們這兒的學(xué)生起點(diǎn)低、數(shù)學(xué)基礎(chǔ)差、實(shí)踐能力差,對(duì)學(xué)生的.各種能力培養(yǎng)非常不利的。課堂中要特別關(guān)注:

      1、關(guān)注學(xué)生是否積極參加探索勾股定理的活動(dòng),關(guān)注學(xué)生能否在活動(dòng)中積思考,能夠探索出解決問(wèn)題的方法,能否進(jìn)行積極的聯(lián)想(數(shù)形結(jié)合)以及學(xué)生能否有條理的表達(dá)活動(dòng)過(guò)程和所獲得的結(jié)論等;

      2、關(guān)注學(xué)生的拼圖過(guò)程,鼓勵(lì)學(xué)生結(jié)合自己所拼得的正方形驗(yàn)證勾股定理。

      3、學(xué)習(xí)的知識(shí)性:掌握勾股定理,體會(huì)數(shù)形結(jié)合的思想。

      三、提高教學(xué)科技含量,充分利用多媒體。 勾股定理知識(shí)屬于幾何內(nèi)容,而幾何圖形可以直觀(guān)地表示出來(lái),學(xué)生認(rèn)識(shí)圖形的初級(jí)階段中主要依靠形象思維。對(duì)幾何圖形的認(rèn)識(shí)始于觀(guān)察、測(cè)量、比較等直觀(guān)實(shí)驗(yàn)手段,現(xiàn)代兒童認(rèn)識(shí)幾何圖形亦如此,可以通過(guò)直觀(guān)實(shí)驗(yàn)了解幾何圖形,發(fā)現(xiàn)其中的規(guī)律。然而,因?yàn)閹缀螆D形本身具有抽象性和一般性,一種幾何概念可能包含無(wú)限多種不同的情形,例如有無(wú)數(shù)種形狀不同的三角形。對(duì)一種幾何概念所包含的一部分具體對(duì)象進(jìn)行直觀(guān)實(shí)驗(yàn)所得到的認(rèn)識(shí),一定適合其他情況驗(yàn)回答不了的問(wèn)題。因此,一般地,研究圖形的形狀、大小和位置。 培養(yǎng)邏輯推理能力,作了認(rèn)真的考慮和精心的設(shè)計(jì),把推理證明作為學(xué)生觀(guān)察、實(shí)驗(yàn)、探究得出結(jié)論的自然延續(xù)。教科書(shū)的幾何部分,要先后經(jīng)歷“說(shuō)點(diǎn)兒理”“說(shuō)理”“簡(jiǎn)單推理”幾個(gè)層次,有意識(shí)地逐步強(qiáng)化關(guān)于推理的初步訓(xùn)練,主要做法是在問(wèn)題的分析中強(qiáng)調(diào)求解過(guò)程所依據(jù)的道理,體現(xiàn)事出有因、言之有據(jù)的思維習(xí)慣。 由于信息技術(shù)的發(fā)展與普及,直觀(guān)實(shí)驗(yàn)手段在教學(xué)中日益增加,本節(jié)課利用我們學(xué)校建立了電教教室,通過(guò)制作課件對(duì)于幾何學(xué)的學(xué)習(xí)起到積極作用。

      八年級(jí)勾股定理教學(xué)反思 5

      勾股定理是中學(xué)數(shù)學(xué)幾個(gè)重要定理之一,它揭示了直角三角形三邊之間的數(shù)量關(guān)系,既是直角三角形性質(zhì)的拓展,也是后續(xù)學(xué)習(xí)“解直角三角形”的基礎(chǔ).它緊密聯(lián)系了數(shù)學(xué)中兩個(gè)最基本的量——數(shù)與形,能夠把形的特征(三角形中一個(gè)角是直角)轉(zhuǎn)化成數(shù)量關(guān)系(三邊之間滿(mǎn)足a2+b2=c2)堪稱(chēng)數(shù)形結(jié)合的典范,在理論上占有重要地位.

      八年級(jí)學(xué)生已具備一定的分析與歸納能力,初步掌握了探索圖形性質(zhì)的基本方法.但是學(xué)生對(duì)用割補(bǔ)方法和面積計(jì)算證明幾何命題的意識(shí)和能力存在障礙,對(duì)于如何將圖形與數(shù)有機(jī)的結(jié)合起來(lái)還很陌生.

      基于以上原因,本節(jié)課把學(xué)生的探索活動(dòng)放在首位,一方面要求學(xué)生在教師引導(dǎo)下自主探索,合作交流,另一方面要求學(xué)生對(duì)探究過(guò)程中用到的數(shù)學(xué)思想方法有一定的領(lǐng)悟和認(rèn)識(shí).從而教給學(xué)生探求知識(shí)的方法,教會(huì)學(xué)生獲取知識(shí)的本領(lǐng).并確立了如下的教學(xué)目標(biāo):

      1、學(xué)生經(jīng)歷從數(shù)到形再由形到數(shù)的轉(zhuǎn)化過(guò)程,經(jīng)歷探求三個(gè)正方形面積間的關(guān)系轉(zhuǎn)化為三邊數(shù)量關(guān)系的過(guò)程。并從過(guò)程中讓學(xué)生體會(huì)數(shù)形結(jié)合思想,發(fā)展將未知轉(zhuǎn)化為已知,由特殊推測(cè)一般的合情推理能力。

      2、讓學(xué)生經(jīng)歷圖形分割實(shí)驗(yàn)、計(jì)算面積的過(guò)程,嘗試從不同的角度尋求解決問(wèn)題的方法,并能有效地解決問(wèn)題,積累解決問(wèn)題的經(jīng)驗(yàn),在過(guò)程中養(yǎng)成獨(dú)立思考、合作交流的學(xué)習(xí)習(xí)慣;通過(guò)解決問(wèn)題增強(qiáng)自信心,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣。

      3、通過(guò)老師的介紹,體會(huì)一種新的證明的方法——面積證法。并在老師的介紹中感受勾股定理的豐富文化內(nèi)涵,激發(fā)生的熱愛(ài)祖國(guó)悠久文化的思想感情,培養(yǎng)他們的民族自豪感。

      教學(xué)難點(diǎn)將邊不在格線(xiàn)上的圖形轉(zhuǎn)化為邊在格線(xiàn)上的圖形,以便于計(jì)算圖形面積.

      本節(jié)課根據(jù)學(xué)生的認(rèn)知結(jié)構(gòu)采用“觀(guān)察--猜想--歸納--驗(yàn)證--應(yīng)用”的教學(xué)方法,這一流程體現(xiàn)了知識(shí)發(fā)生、形成和發(fā)展的過(guò)程,讓學(xué)生體會(huì)到觀(guān)察、猜想、歸納、驗(yàn)證的思想和數(shù)形結(jié)合的思想.另外,我在探索的過(guò)程中補(bǔ)充了一個(gè)倒水實(shí)驗(yàn),(放片子)我個(gè)人覺(jué)得效果很好,它讓學(xué)生深刻的體會(huì)到了,不是所有三角形三邊都有a2+b2=c2的關(guān)系,只有直角三角形三邊才存在這種關(guān)系,并且實(shí)驗(yàn)很具有直觀(guān)性,便于學(xué)生理解,而且是在學(xué)生的學(xué)習(xí)疲勞期出現(xiàn),達(dá)到了再次點(diǎn)燃學(xué)生學(xué)習(xí)熱情的目的,一舉多得。

      除了探究出勾股定理的內(nèi)容以外,本節(jié)課還適時(shí)地向?qū)W生展現(xiàn)勾股定理的歷史,特別是通過(guò)介紹我國(guó)古代在勾股定理研究和運(yùn)用方面的成就,激發(fā)學(xué)生愛(ài)國(guó)熱情,培養(yǎng)學(xué)生的民族自豪感和探索創(chuàng)新的精神.練習(xí)反饋中既有勾股定理的基本應(yīng)用,還有貼近學(xué)生生活的實(shí)例,既讓學(xué)生感受到學(xué)習(xí)知識(shí)應(yīng)用于生活的成就感,又使學(xué)生深刻了解勾股定理的廣泛應(yīng)用.讓學(xué)生總結(jié)本堂課的收獲,從內(nèi)容,到數(shù)學(xué)思想方法,到獲取知識(shí)的途徑等方面.給學(xué)生自由的空間,鼓勵(lì)學(xué)生多說(shuō).這樣引導(dǎo)學(xué)生從多角度對(duì)本節(jié)課歸納總結(jié),感悟點(diǎn)滴,使學(xué)生將知識(shí)系統(tǒng)化,提高學(xué)生素質(zhì),鍛煉學(xué)生的綜合及表達(dá)能力.作業(yè)為了達(dá)到提高鞏固的目的,期望學(xué)生能主動(dòng)地探求對(duì)勾股定理更深入的認(rèn)識(shí)、拓展學(xué)生的視野.

      八年級(jí)勾股定理教學(xué)反思 6

      時(shí)光稍縱即逝,轉(zhuǎn)眼間一個(gè)新的學(xué)期又要結(jié)束了,回顧已逝的教學(xué)時(shí)光,可謂百味俱全,其間有一節(jié)課我上得最投入、最值得回憶與反思。

      記得那是期末的展示匯報(bào)課,(主任說(shuō)可能會(huì)有校外的教師來(lái)聽(tīng)課。)我當(dāng)時(shí)很有壓力,晚上也難以入睡。我選的是《勾股定理》一課。為了上好這節(jié)課,我反復(fù)研究了去洋思學(xué)習(xí)的一些記錄,努力用新理念新手段來(lái)打造我的這節(jié)課。當(dāng)我滿(mǎn)懷信心地上完這節(jié)課時(shí),我心情愉悅,因?yàn)槲医虘B(tài)自然得體,與學(xué)生合作默契,基本上獲得了教學(xué)的成功。

      1、從生活出發(fā)的教學(xué)讓學(xué)生感受到學(xué)習(xí)的快樂(lè)

      在“勾股定理”這節(jié)課中,一開(kāi)始引入情景:

      平平湖水清可鑒,荷花半尺出水面。

      忽來(lái)一陣狂風(fēng)急,吹倒荷花水中偃。

      湖面之上不復(fù)見(jiàn),入秋漁翁始發(fā)現(xiàn)。

      花離根二尺遠(yuǎn),試問(wèn)水深尺若干。

      知識(shí)回味:復(fù)習(xí)勾股定理及它的公式變形,然后是幾組簡(jiǎn)單的計(jì)算。

      2、走進(jìn)生活:

      以裝修房子為主線(xiàn),設(shè)計(jì)木板能否通過(guò)門(mén)框,梯子底端滑出多少,求螞蟻爬的最短距離,這些都是勾股定理應(yīng)用的典型例題。

      3、名題欣賞:

      首尾呼應(yīng),用“代數(shù)方法”解決“幾何問(wèn)題”。印度數(shù)學(xué)家婆什迦羅(1141—1225年)提出的“荷花問(wèn)題”比我國(guó)的“引葭赴岸”問(wèn)題晚了一千多年?!耙绺鞍丁眴?wèn)題,是我國(guó)數(shù)學(xué)經(jīng)典著作《九章算術(shù)》中的一道名題。《九章算術(shù)》約成書(shū)于公元一世紀(jì)。該書(shū)的第九章,即勾股章,詳細(xì)討論了用勾股定理解決應(yīng)用問(wèn)題的方法。這一章的第6題,就是“引葭赴岸”問(wèn)題,題目是:“今有池一丈,葭生其中央,出水一尺。引葭赴岸,適與岸齊。問(wèn)水深、葭長(zhǎng)各幾何?” “荷花問(wèn)題”的解法與“引葭赴岸”問(wèn)題一樣。它的出現(xiàn)卻足以證明,舉世公認(rèn)的古典數(shù)學(xué)名著《九章算術(shù)》傳入了印度?!毒耪滤阈g(shù)》中的勾股定理應(yīng)用方面的內(nèi)容,涉及范圍之廣,解法之精巧,都是在世界上遙遙領(lǐng)先的,為推動(dòng)世界數(shù)學(xué)的發(fā)展作出了貢獻(xiàn)。鼓勵(lì)學(xué)生可以自己利用課余時(shí)間查閱相關(guān)資料,豐富知識(shí)。

      4、在教學(xué)應(yīng)用勾股定理時(shí),老是運(yùn)用公式計(jì)算,學(xué)生感覺(jué)比較厭倦,為了吸引學(xué)生注意力,活躍課堂氣氛,拓寬學(xué)生思路,運(yùn)用多媒體出示了一道“智慧爺爺”出的思考題:

      即折竹抵地問(wèn)題。并且將問(wèn)題用動(dòng)畫(huà)的形式展現(xiàn)出來(lái),不僅將問(wèn)題形象化,又提高了學(xué)生的學(xué)習(xí)興趣。同時(shí)將實(shí)際的問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題的過(guò)程用直觀(guān)的圖形表示,在降低難度的同時(shí)又鼓勵(lì)了學(xué)生能夠看到身邊的數(shù)學(xué),從而做到學(xué)以致用。最后讓學(xué)生互相討論,就這樣讓學(xué)生在開(kāi)放自由的情況下解決了該題,同時(shí)培養(yǎng)了學(xué)生之間的合作。

      5、最后介紹了勾股定理的歷史,并且推薦了一些網(wǎng)站,讓學(xué)生下課之后進(jìn)行查閱、了解。

      這是為了方便學(xué)生到更廣闊的知識(shí)海洋中去尋找知識(shí)寶藏,利用網(wǎng)絡(luò)檢索相關(guān)信息,充實(shí)、豐富、拓展課堂學(xué)習(xí)資源,提供各種學(xué)習(xí)方式,讓學(xué)生學(xué)會(huì)選擇、整理、重組、再用這些更廣泛的資源。這種對(duì)網(wǎng)絡(luò)資源的重新組織,使學(xué)生對(duì)知識(shí)的需求由窄到寬,有力的促進(jìn)了自主學(xué)習(xí)。這樣學(xué)生不僅能在課堂上學(xué)習(xí)到知識(shí),還讓他們有了怎樣學(xué)習(xí)知識(shí)的方法。這就達(dá)到了新課標(biāo)新理念的預(yù)定目標(biāo)。

      通過(guò)本節(jié)課的教學(xué),學(xué)生在勾股定理的學(xué)習(xí)中能感受“數(shù)形結(jié)合”和“轉(zhuǎn)化”的數(shù)學(xué)思想,體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值和滲透數(shù)學(xué)思想給解題帶來(lái)的便利;感受人類(lèi)文明的力量,了解勾股定理的重要性。真正做到了先激發(fā)興趣,再合作交流,最后展示成果的自主學(xué)習(xí)。這堂課將信息技術(shù)融入課堂,有利于創(chuàng)設(shè)教學(xué)環(huán)境,教學(xué)模式將從以教師講授為主轉(zhuǎn)為以學(xué)生動(dòng)腦動(dòng)手自主研究、小組學(xué)習(xí)討論交流為主,把數(shù)學(xué)課堂轉(zhuǎn)為“數(shù)學(xué)實(shí)驗(yàn)室”,學(xué)生通過(guò)自己的活動(dòng)得出結(jié)論、使創(chuàng)新精神與實(shí)踐能力得到了發(fā)展。不足之處:學(xué)生合作意識(shí)不強(qiáng),討論氣氛不夠活躍;計(jì)算不熟練,書(shū)寫(xiě)不規(guī)范。

      八年級(jí)勾股定理教學(xué)反思 7

      一、教學(xué)的成功體驗(yàn)

      《數(shù)學(xué)課程標(biāo)準(zhǔn)》明確指出:“有效的數(shù)學(xué)活動(dòng)不能單純地依賴(lài)于模仿與記憶,學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式是動(dòng)手實(shí)踐、自主探索與合作交流,以促進(jìn)學(xué)生自主、全面、可持續(xù)發(fā)展”.數(shù)學(xué)教學(xué)是數(shù)學(xué)活動(dòng)的教學(xué),是師生之間、學(xué)生之間相互交往、積極互動(dòng)、共同發(fā)展的過(guò)程,是“溝通”與“合作”的過(guò)程.本節(jié)課我結(jié)合勾股定理的歷史和畢答哥拉斯的發(fā)現(xiàn)直角三角形的特性自然地引入了課題,讓學(xué)生親身體驗(yàn)到數(shù)學(xué)知識(shí)來(lái)源于實(shí)踐,從而激發(fā)學(xué)生的學(xué)習(xí)積極性.為學(xué)生提供了大量的操作、思考和交流的學(xué)習(xí)機(jī)會(huì),通過(guò)“觀(guān)察“——“操作”——“交流”發(fā)現(xiàn)勾股定理。層層深入,逐步體會(huì)數(shù)學(xué)知識(shí)的產(chǎn)生、形成、發(fā)展與應(yīng)用過(guò)程.通過(guò)引導(dǎo)學(xué)生在具體操作活動(dòng)中進(jìn)行獨(dú)立思考,鼓勵(lì)學(xué)生發(fā)表自己的見(jiàn)解,學(xué)生自主地發(fā)現(xiàn)問(wèn)題、探索問(wèn)題、獲得結(jié)論的學(xué)習(xí)方式,有利于學(xué)生在活動(dòng)中思考,在思考中活動(dòng).

      二、信息技術(shù)與學(xué)科的整合

      在信息社會(huì),信息技術(shù)與課程的整合必將帶來(lái)教育者的深刻變化.我充分地利用多媒體教學(xué),為學(xué)生創(chuàng)設(shè)了生動(dòng)、直觀(guān)的現(xiàn)實(shí)情景,具有強(qiáng)列的吸引力,能激發(fā)學(xué)生的學(xué)習(xí)欲望.心理學(xué)專(zhuān)家研究表明:運(yùn)動(dòng)的圖形比靜止的圖形更能引起學(xué)生的注意力.在傳統(tǒng)教學(xué)中,用筆、尺和圓規(guī)在紙上或黑板上畫(huà)出的圖形都是

      靜止圖形,同時(shí)圖形一旦畫(huà)出就被固定下來(lái),也就是失去了一般性,所以其中的數(shù)學(xué)規(guī)律也被掩蓋了,呈現(xiàn)給學(xué)生的數(shù)學(xué)知識(shí)也只能停留在感性認(rèn)識(shí)上.本節(jié)課我通過(guò)Flash動(dòng)畫(huà)演示結(jié)果和拼圖程以及呈現(xiàn)教學(xué)內(nèi)容。真正體現(xiàn)數(shù)學(xué)規(guī)律的應(yīng)用價(jià)值.把呈現(xiàn)給學(xué)生的數(shù)學(xué)知識(shí)從感性認(rèn)識(shí)提升到理性認(rèn)識(shí),實(shí)現(xiàn)一種質(zhì)的飛躍.

      八年級(jí)勾股定理教學(xué)反思 8

      對(duì)于“勾股定理的應(yīng)用”的反思和小結(jié)有以下幾個(gè)方面:

      1、課前準(zhǔn)備不充分:

      基礎(chǔ)題中是一些由正方形和直角三角形拼合而成的圖形(與希臘郵票設(shè)計(jì)原理相同),其中兩個(gè)正方形的面積分別是14和18,求最大的正方形的面積。

      分析:由勾股定理結(jié)論:直角三角形中兩直角邊的平方和等于斜邊的平方。

      其實(shí)質(zhì)即以直角三角形兩直角邊為邊長(zhǎng)的兩個(gè)正方形面積之和等于以斜邊為邊長(zhǎng)的正方形的面積。但學(xué)生竟然不知道。其二是課件準(zhǔn)備不充分,其中有一道例題的答案是跟著例題同時(shí)出現(xiàn)的,再去修改,又浪費(fèi)了一點(diǎn)時(shí)間。其三,用面積法求直角三角形的高,我認(rèn)為是一個(gè)非常簡(jiǎn)單的數(shù)學(xué)問(wèn)題,但在實(shí)際教學(xué)中,發(fā)現(xiàn)很多學(xué)生仍然很難理解,說(shuō)明我在備課時(shí)備學(xué)生不充分,沒(méi)有站在學(xué)生的角度去考慮問(wèn)題。

      2、課堂上的語(yǔ)言應(yīng)該簡(jiǎn)練。這是我上課的最大弱點(diǎn),我不敢放手讓學(xué)生去獨(dú)立思考問(wèn)題,會(huì)去重復(fù)題目意思,實(shí)際上不需要的,可以留時(shí)間讓學(xué)生去獨(dú)立思考。教師是無(wú)法代替學(xué)生自己的思考的,更不能代替幾十個(gè)有差異的學(xué)生的思維。課堂上老師放一放,學(xué)生得到的更多,老師放多少,學(xué)生就有多大的自主發(fā)展的空間。但這里的“放多少”是一門(mén)藝術(shù),我要好好向老教師學(xué)習(xí)!

      3、鼓勵(lì)學(xué)生的藝術(shù)。教師要鼓勵(lì)學(xué)生嘗試并尊重他們不完善的甚至錯(cuò)誤的意見(jiàn),經(jīng)常鼓勵(lì)他們大膽說(shuō)出自己的想法,大膽發(fā)表自己的見(jiàn)解,真正體現(xiàn)出學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人。

      4、啟發(fā)學(xué)生的技巧有待提高。啟發(fā)學(xué)生也是一門(mén)藝術(shù),我的課堂上有點(diǎn)啟而不發(fā)。課堂上應(yīng)該多了解學(xué)生。

      八年級(jí)勾股定理教學(xué)反思 9

      我用了4課時(shí)講授了八年級(jí)下冊(cè)數(shù)學(xué)人教版的第十八章第一節(jié)勾股定理,第一課時(shí)我主要講授的是勾股定理的探究和驗(yàn)證,并舉例計(jì)算有關(guān)直角三角形已知兩邊長(zhǎng)求第三邊的問(wèn)題;第二課時(shí)我主要講授了各種類(lèi)型的有關(guān)直角三角形邊長(zhǎng)或者面積相關(guān)問(wèn)題;第三課時(shí)講授了如何用勾股定理解決生活中的實(shí)際問(wèn)題;第四課時(shí)主要講授了怎樣在數(shù)軸上找出無(wú)理數(shù)對(duì)應(yīng)的點(diǎn)。這4個(gè)課時(shí)我采用的教學(xué)方法是:引導(dǎo)—探究—發(fā)現(xiàn)法;為學(xué)生設(shè)計(jì)的學(xué)習(xí)方法是:自主探究與合作交流相結(jié)合。

      第一課時(shí)的課堂教學(xué)中,我始終注意了調(diào)動(dòng)學(xué)生的積極性.興趣是最好的老師,所以無(wú)論是引入、拼圖,還是歷史回顧,我都注意去調(diào)動(dòng)學(xué)生,讓學(xué)生滿(mǎn)懷激情地投入到活動(dòng)中.因此,課堂效率較高.勾股定理作為“千古第一定理”,其魅力在于其歷史價(jià)值和應(yīng)用價(jià)值,因此我注意充分挖掘了其內(nèi)涵.特別是讓學(xué)生事先進(jìn)行調(diào)查,再在課堂上進(jìn)行展示,這極大地調(diào)動(dòng)了學(xué)生,既加深了對(duì)勾股定理文化的理解,又培養(yǎng)了他們收集、整理資料的能力.勾股定理的驗(yàn)證既是本節(jié)課的重點(diǎn),也是本節(jié)課的難點(diǎn),為了突破這一難點(diǎn),我設(shè)計(jì)了拼圖活動(dòng),并自制精巧的課件讓學(xué)生從形上感知,再層層設(shè)問(wèn),從面積(數(shù))入手,師生共同探究突破了本節(jié)課的難點(diǎn).

      第二課時(shí)我依據(jù)“學(xué)生是學(xué)習(xí)的主體”這一理念,在探索勾股定理的整個(gè)過(guò)程中,本節(jié)課始終采用學(xué)生自主探索和與同伴合作交流相結(jié)合的方式進(jìn)行主動(dòng)學(xué)習(xí)。教師只在學(xué)生遇到困難時(shí),進(jìn)行引導(dǎo)或組織學(xué)生通過(guò)討論來(lái)突破難點(diǎn)。為了讓學(xué)生在學(xué)習(xí)過(guò)程中自我發(fā)現(xiàn)勾股定理,本節(jié)課首先情景創(chuàng)設(shè)激發(fā)興趣,再通過(guò)幾個(gè)探究活動(dòng)引導(dǎo)學(xué)生從探究等腰直角三角形這一特殊情形入手,自然過(guò)渡到探究一般直角三角形,學(xué)生通過(guò)觀(guān)察圖形,計(jì)算面積,分析數(shù)據(jù),發(fā)現(xiàn)直角三角形三邊的關(guān)系,進(jìn)而得到勾股定理.

      第三課時(shí)在課堂教學(xué)中,始終注重學(xué)生的自主探究,由實(shí)例引入,激發(fā)了學(xué)生的學(xué)習(xí)興趣,然后通過(guò)動(dòng)手操作、大膽猜想、勇于驗(yàn)證等一系列自主探究、合作交流活動(dòng)得出定理,并運(yùn)用定理進(jìn)一步鞏固提高,切實(shí)體現(xiàn)了學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人的新課程理念。對(duì)于拼圖驗(yàn)證,學(xué)生還沒(méi)有接觸過(guò),所以,教學(xué)中,教師給予了學(xué)生適當(dāng)?shù)闹笇?dǎo)與鼓勵(lì),教師較好地充當(dāng)了學(xué)生數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者、合作者。另外教會(huì)學(xué)生思維,培養(yǎng)學(xué)生多種能力。課前查資料,培養(yǎng)了學(xué)生的自學(xué)能力及歸類(lèi)總結(jié)能力;課上的探究培養(yǎng)了學(xué)生的動(dòng)手動(dòng)腦的能力、觀(guān)察能力、猜想歸納總結(jié)的能力、合作交流的能力……但本節(jié)課拼圖驗(yàn)證的方法以前學(xué)生沒(méi)接觸過(guò),稍嫌吃力。因此,在今后的教學(xué)中還需要進(jìn)一步關(guān)注學(xué)生的實(shí)驗(yàn)操作活動(dòng),提高其實(shí)踐能力。

      第四課時(shí)我另外向?qū)W生介紹了勾股定理的證明方法:以趙爽的“弦圖”為代表,用幾何圖形的截、割、拼、補(bǔ),來(lái)證明代數(shù)式之間的恒等關(guān)系;以歐幾里得的證明方法為代表,運(yùn)用歐氏幾何的基本定理進(jìn)行證明;以劉徽的“青朱出入圖”為代表,“無(wú)字證明”。

      總的來(lái)看,學(xué)生掌握的情況比較好,都能夠達(dá)到預(yù)期要求,但介于有關(guān)勾股定理的類(lèi)型題很多,不能一一為學(xué)生講解,但我還是建議將北師大版本中的《螞蟻怎樣走最近》的類(lèi)型題加入本教材。

      八年級(jí)勾股定理教學(xué)反思 10

      根據(jù)學(xué)生的認(rèn)知結(jié)構(gòu)與教材地位,為了達(dá)到本節(jié)課的教學(xué)目標(biāo),我設(shè)計(jì)了以下幾個(gè)環(huán)節(jié):

      1.創(chuàng)設(shè)情境,提出猜想讓學(xué)生判斷兩位同學(xué)的畫(huà)法是否都能得到斜邊為10cm的直角三角形,通過(guò)對(duì)不同畫(huà)法的探究,溫故知新,為用構(gòu)造全等三角形的方法證明勾股定理的逆定理做好鋪墊.同時(shí),引導(dǎo)學(xué)生從特殊到一般提出猜想。

      2.證明猜想,得出新知。由于有前一環(huán)節(jié)的鋪墊,通過(guò)啟發(fā)、引導(dǎo)、討論,讓學(xué)生體會(huì)用構(gòu)造全等三角形的方法證明問(wèn)題的思想,突破定理證明這一難點(diǎn),并適時(shí)出示課題。

      3.應(yīng)用訓(xùn)練,鞏固新知為了鞏固新知,靈活運(yùn)用所學(xué)知識(shí)解決相應(yīng)問(wèn)題,提高學(xué)生的分析解題能力,我設(shè)計(jì)了三個(gè)層次的問(wèn)題,以達(dá)到教學(xué)目標(biāo).第一層次是讓學(xué)生直接運(yùn)用定理判斷三角形是否是直角三角形,掌握定理基本運(yùn)用;第二層次是強(qiáng)調(diào)已知三角形三邊長(zhǎng)或三邊關(guān)系,就有意識(shí)的判斷三角形是否是直角三角形,這樣既鞏固了勾股定理的逆定理的應(yīng)用,又為下一個(gè)層次做好了鋪墊;第三層次是靈活運(yùn)用勾股定理與逆定理解決圖形面積的計(jì)算問(wèn)題.根據(jù)學(xué)生原有的認(rèn)知結(jié)構(gòu),讓學(xué)生更好地體會(huì)分割的思想.設(shè)計(jì)的題型前后呼應(yīng),使知識(shí)有序推進(jìn),有助于學(xué)生的理解和掌握;讓學(xué)生通過(guò)合作、交流、反思、感悟的過(guò)程,激發(fā)學(xué)生探究新知的興趣,感受探索、合作的樂(lè)趣,并從中獲得成功的體驗(yàn).真正體現(xiàn)學(xué)生是學(xué)習(xí)的主人.。

      4.歸納小結(jié),形成體系讓學(xué)生交流學(xué)習(xí)的收獲、課堂經(jīng)歷的感受和對(duì)數(shù)學(xué)思想方法的感悟體會(huì)等.幫助學(xué)生內(nèi)化新知,優(yōu)化學(xué)生的認(rèn)知結(jié)構(gòu),形成能力,減輕課后負(fù)擔(dān)。

      5.布置作業(yè),課外延伸分層布置作業(yè),目的是讓不同的學(xué)生得到不同層次的發(fā)展

      八年級(jí)勾股定理教學(xué)反思 11

      今后的教學(xué)中:

      (1)立足教材,鉆研教學(xué)大綱的要求;試卷中較多題目是根據(jù)課本的題目改編而來(lái),從學(xué)生的考試情況來(lái)看課本的題目掌握不理想,這說(shuō)明在平時(shí)的教學(xué)中對(duì)書(shū)本的重視不夠,過(guò)多地追求課外題目的訓(xùn)練,但忽略學(xué)生實(shí)實(shí)在在地理解課本知識(shí),提高思維能力。課堂上盡量把課堂還給學(xué)生,讓學(xué)生積極參與到課堂中,多機(jī)會(huì)給學(xué)生展示,表演,講題,把思路和方法講出來(lái),使學(xué)生更清淅地理解題目,提升自己對(duì)數(shù)學(xué)的理解。多點(diǎn)讓學(xué)生獨(dú)立思考,發(fā)現(xiàn)問(wèn)題,解決問(wèn)題。

      (2)注重培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣。

      (3)加強(qiáng)例題示范教學(xué),培養(yǎng)學(xué)生解題書(shū)寫(xiě)表達(dá)。

      (4)多一些數(shù)學(xué)方法、數(shù)學(xué)思想的滲透,少一些知識(shí)的生搬硬套。

      (5)在數(shù)學(xué)教學(xué)過(guò)程中,課堂上系統(tǒng)地對(duì)數(shù)學(xué)知識(shí)進(jìn)行整理、歸納、溝通知識(shí)間的內(nèi)在聯(lián)系,形成縱向、橫向知識(shí)鏈,從知識(shí)的聯(lián)系和整體上把握基礎(chǔ)知識(shí)。

      (6)針對(duì)學(xué)生的兩極分化,加強(qiáng)課外作業(yè)布置的針對(duì)性。讓每個(gè)學(xué)生課外有適合的作業(yè)做,對(duì)不同層次的學(xué)生布置不同難度的作業(yè),提高課外學(xué)習(xí)的效率,減輕學(xué)生課外作業(yè)的負(fù)擔(dān)。正確看待學(xué)生學(xué)習(xí)數(shù)學(xué)的差異,克服兩極分化。數(shù)學(xué)課堂上多考慮、關(guān)照中下生,讓他們?cè)跀?shù)學(xué)課堂上聽(tīng)得進(jìn),肯用手。

      (7)教師在平時(shí)的課堂教學(xué)中必須致力于改變教師的教學(xué)行為和學(xué)生的學(xué)習(xí)方式,加強(qiáng)學(xué)法指導(dǎo),提高學(xué)生的閱讀能力,平時(shí)培養(yǎng)學(xué)生的自學(xué)能力,使學(xué)生實(shí)實(shí)在在地理解課本知識(shí),提高思維能力。平時(shí)要關(guān)注課本、關(guān)注運(yùn)算能力、關(guān)注教學(xué)中的薄弱環(huán)節(jié)。

      第四篇:勾股定理的教學(xué)反思

      《勾股定理》教學(xué)反思

      教者:廖德虎

      作為反映自然界基本規(guī)律的一條結(jié)論,勾股定理在數(shù)學(xué)發(fā)展中起過(guò)重要的作用,在現(xiàn)實(shí)世界中也有著廣泛的應(yīng)用。同時(shí),勾股定理的發(fā)現(xiàn)、驗(yàn)證和應(yīng)用蘊(yùn)涵著豐富的文化價(jià)值。因此,勾股定理是初中幾何教學(xué)中的重要內(nèi)容,我對(duì)本節(jié)課的教學(xué)過(guò)程是這樣設(shè)計(jì)的:

      1、欣賞圖片,激發(fā)興趣

      通過(guò)欣賞2002年在我國(guó)北京召開(kāi)的國(guó)際數(shù)學(xué)家大會(huì)的會(huì)徽?qǐng)D案,引出“趙爽弦圖”,讓學(xué)生了解我國(guó)古代輝煌的數(shù)學(xué)成就,引入課題。接下來(lái),讓學(xué)生欣賞傳說(shuō)故事:相傳2500年前,畢達(dá)格拉斯在朋友家做客時(shí),發(fā)現(xiàn)朋友家用磚鋪成的地面中反映了直角三角形三邊的某種數(shù)量關(guān)系。通過(guò)故事使學(xué)生明白:科學(xué)家的偉大成就多數(shù)都是在看似平淡無(wú)奇的現(xiàn)象中發(fā)現(xiàn)和研究出來(lái)的;生活中處處有數(shù)學(xué),我們應(yīng)該學(xué)會(huì)觀(guān)察、思考,將學(xué)習(xí)與生活緊密結(jié)合起來(lái)。這樣,一方面激發(fā)學(xué)生的求知欲望,另一方面,也對(duì)學(xué)生進(jìn)行了學(xué)習(xí)方法指導(dǎo)和解決問(wèn)題能力的培養(yǎng)。

      2、分析探究,得出猜想

      通過(guò)對(duì)地板圖形中的等腰直角三角形到一般直角三角形中三邊關(guān)系的探究,讓同學(xué)們體驗(yàn)由特殊到一般的探究過(guò)程,學(xué)習(xí)這種研究方法。同時(shí)在網(wǎng)格中求斜正方形面積的時(shí)候,利用割的方法把正方形轉(zhuǎn)化為四個(gè)直角三角形和中間一個(gè)小正方形(即趙爽圖),用補(bǔ)的方法構(gòu)成了一個(gè)大的正方形減去四個(gè)直角三角形,這樣做的目的也是為下面的證明做鋪墊。

      3、拼圖證明,得出定理

      先讓學(xué)生利用學(xué)具自己剪拼圖形,后利用圖形面積關(guān)系進(jìn)行證明。不論拼圖還是證明難度都比較大,組織學(xué)生開(kāi)展小組合作學(xué)習(xí)時(shí)。需要老師巡回輔導(dǎo),給予學(xué)生必要的幫助。

      本節(jié)課我讓為存在以下兩個(gè)方面的不足:

      1、課堂教學(xué)觀(guān)念要轉(zhuǎn)變

      新課標(biāo)的教學(xué)觀(guān)念是教師指導(dǎo)下的教學(xué),“數(shù)學(xué)教學(xué)活動(dòng)是數(shù)學(xué)活動(dòng)的教學(xué),是師生之間、學(xué)生之間交往互動(dòng)與共同發(fā)展的過(guò)程”的教學(xué),本節(jié)課的第三個(gè)環(huán)節(jié),即勾股定理的證明,雖然我盡量在指導(dǎo)下用“趙爽弦圖”驗(yàn)證勾股定理,但學(xué)生之間交往互動(dòng)不足,尤其中間這個(gè)小正方形的邊長(zhǎng)為什么是(a-b),可能有很多學(xué)生不懂。

      2、課堂教學(xué)程序不妥

      適應(yīng)于新課程標(biāo)準(zhǔn)的教學(xué)策略是:著力引導(dǎo)—主動(dòng)參與—有效建構(gòu)。柏拉圖曾說(shuō)過(guò):教育的根本目的就是使心靈達(dá)到完善的境地。這就是說(shuō)真正的教育應(yīng)當(dāng)是用知識(shí)的陶冶與智慧的激發(fā)來(lái)“照亮人的心靈”。由此可見(jiàn)教師的作用主要在于與學(xué)生的交往過(guò)程中對(duì)學(xué)生的引導(dǎo),為的是使學(xué)生積極主動(dòng)地參與,而形成有效的建構(gòu)性學(xué)習(xí)。但本節(jié)課學(xué)生主動(dòng)參與度不夠,在拼圖環(huán)節(jié),盡管前面也試著做了些鋪墊,但大部分小組只拼出了趙爽圖,而另一個(gè)圖卻只有個(gè)別小組拼出,這說(shuō)明課堂設(shè)計(jì)上沒(méi)有充分考慮學(xué)生的參與度,設(shè)計(jì)的問(wèn)題對(duì)學(xué)生的引導(dǎo)作用不大。

      第五篇:勾股定理的應(yīng)用的教學(xué)反思

      勾股定理的應(yīng)用的教學(xué)反思

      勾股定理的應(yīng)用的教學(xué)反思

      本節(jié)課是人教版數(shù)學(xué)八年級(jí)下冊(cè)第十七章第一節(jié)第二課時(shí)的內(nèi)容,是學(xué)生在學(xué)習(xí)了三角形的有關(guān)知識(shí),了解了直角三角形的概念,掌握了直角三角形的性質(zhì)和一個(gè)三角形是直角三角形的條件的基礎(chǔ)上學(xué)習(xí)勾股定理,加深對(duì)勾股定理的理解,提高學(xué)生對(duì)數(shù)形結(jié)合的應(yīng)用與理解。本節(jié)第一課時(shí)安排了對(duì)勾股定理的觀(guān)察、計(jì)算、猜想、證明及簡(jiǎn)單應(yīng)用的過(guò)程;第二課時(shí)是通過(guò)例題分析與講解,讓學(xué)生感受勾股定理在實(shí)際生活中的應(yīng)用,通過(guò)從實(shí)際問(wèn)題中抽象出直角三角形這一模型,強(qiáng)化轉(zhuǎn)化思想,培養(yǎng)學(xué)生解決問(wèn)題的意識(shí)和應(yīng)用能力。

      針對(duì)本班學(xué)生的特點(diǎn),學(xué)生知識(shí)水平、學(xué)習(xí)能力的差距,本節(jié)課安排了如下幾個(gè)環(huán)節(jié):

      一、復(fù)習(xí)引入

      對(duì)上節(jié)課勾股定理內(nèi)容進(jìn)行回顧,強(qiáng)調(diào)易錯(cuò)點(diǎn)。由于學(xué)生的注意力集中時(shí)間較短,學(xué)生知識(shí)水平低,引入內(nèi)容簡(jiǎn)短明了,花費(fèi)時(shí)間短。

      二、例題講解,鞏固練習(xí),總結(jié)數(shù)學(xué)思想方法

      活動(dòng)一:用對(duì)媒體展示搬運(yùn)工搬木板的問(wèn)題,讓學(xué)生以小組交流合作,如何將木板運(yùn)進(jìn)門(mén)內(nèi)?需要知道們的寬、高,還是其他的條件?學(xué)生展示交流結(jié)果,之后教師引導(dǎo)學(xué)生書(shū)寫(xiě)板書(shū)。整個(gè)活動(dòng)以學(xué)生為主體,教師及時(shí)的引導(dǎo)和強(qiáng)調(diào)。

      活動(dòng)二:解決例二梯子滑落的問(wèn)題。學(xué)生自主討論解決問(wèn)題,書(shū)寫(xiě)過(guò)程,之后投影學(xué)生書(shū)寫(xiě)過(guò)程,教師與學(xué)生一起合作修改解題過(guò)程。

      活動(dòng)三:學(xué)生討論總結(jié)如何將實(shí)際生活中的問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,然后利用勾股定理解決問(wèn)題。利用勾股定理的前提是什么?如何作輔助線(xiàn)構(gòu)造這一前提條件?在數(shù)學(xué)活動(dòng)中發(fā)展了學(xué)生的探究意識(shí)和合作交流的習(xí)慣;體會(huì)勾股定理的應(yīng)用價(jià)值,讓學(xué)生體會(huì)到數(shù)學(xué)來(lái)源于生活,又應(yīng)用到生活中去,在學(xué)習(xí)的過(guò)程中體會(huì)獲得成功的喜悅,提高了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和信心。

      二、鞏固練習(xí),熟練新知

      通過(guò)測(cè)量旗桿活動(dòng),發(fā)展學(xué)生的探究意識(shí),培養(yǎng)學(xué)生動(dòng)手操作的能力,增加學(xué)生應(yīng)用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的經(jīng)驗(yàn)和感受。

      在教學(xué)設(shè)計(jì)的實(shí)施中,也存在著一些問(wèn)題: 1.由于本班學(xué)生能力的差距,本想著通過(guò)學(xué)生幫帶活動(dòng),使學(xué)困生充分參與課堂,但在學(xué)生合作交流是由于學(xué)習(xí)能力強(qiáng)的學(xué)生,對(duì)問(wèn)題的分析解決所用時(shí)間短,而在整個(gè)環(huán)節(jié)設(shè)計(jì)中轉(zhuǎn)接的快,未給學(xué)困生充分的時(shí)間,導(dǎo)致部分學(xué)生未能真正的參與到課堂中來(lái)。

      2.課堂上質(zhì)疑追問(wèn)要起到好處,不要增加學(xué)生展示的難度,影響展示進(jìn)程出現(xiàn)中斷或偏離主題的現(xiàn)象。

      3.對(duì)學(xué)生課堂展示的評(píng)價(jià)方式應(yīng)體現(xiàn)生評(píng)生,師評(píng)生,及評(píng)價(jià)的針對(duì)性和及時(shí)性。

      下載《勾股定理》的教學(xué)反思(精選五篇)word格式文檔
      下載《勾股定理》的教學(xué)反思(精選五篇).doc
      將本文檔下載到自己電腦,方便修改和收藏,請(qǐng)勿使用迅雷等下載。
      點(diǎn)此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶(hù)自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會(huì)在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        勾股定理教學(xué)設(shè)計(jì)與教學(xué)反思

        勾股定理教學(xué)設(shè)計(jì)與教學(xué)反思 【教學(xué)目標(biāo)】 一、知識(shí)與能力目標(biāo) 1.了解勾股定理的歷史背景,體會(huì)勾股定理的探索過(guò)程. 2.掌握直角三角形中的三邊關(guān)系和三個(gè)內(nèi)角之間的關(guān)系。......

        勾股定理教學(xué)設(shè)計(jì)與教學(xué)反思

        勾股定理教學(xué)設(shè)計(jì)與教學(xué)反思 【教學(xué)目標(biāo)】一、知識(shí)目標(biāo) 1.了解勾股定理的歷史背景,體會(huì)勾股定理的探索過(guò)程. 2.掌握直角三角形中的三邊關(guān)系和三角之間的關(guān)系。二、數(shù)學(xué)思考......

        勾股定理的應(yīng)用教學(xué)反思

        勾股定理的應(yīng)用教學(xué)反思 勾股定理的應(yīng)用教學(xué)反思一、教師我的體會(huì):①、我根據(jù)學(xué)生實(shí)際情況認(rèn)真?zhèn)湔n這節(jié)課,書(shū)本總共兩個(gè)例題,且兩個(gè)例題都很難,如果一節(jié)課就講這兩題難題,那一方......

        《勾股定理的逆定理》的教學(xué)反思

        《勾股定理的逆定理》的教學(xué)反思一、本節(jié)課的成功之處:本節(jié)課以活動(dòng)為主線(xiàn),通過(guò)從估算到實(shí)驗(yàn)活動(dòng)結(jié)果的產(chǎn)生讓學(xué)生總結(jié)過(guò)程,最后回到解決生活中實(shí)際問(wèn)題,思路清晰,脈絡(luò)明了。例如......

        勾股定理教學(xué)反思(共5篇)

        人教版八年級(jí)數(shù)學(xué)下冊(cè)勾股定理教學(xué)反思 沈水林 在講解勾股定理的結(jié)論時(shí),為了讓學(xué)生更好地理解和掌握勾股定理的探索過(guò)程,先讓學(xué)生自己進(jìn)行探索,然后同學(xué)進(jìn)行討論,最后上臺(tái)演示。......

        數(shù)學(xué)《勾股定理》的教學(xué)反思

        勾股定理的探索和證明蘊(yùn)含著豐富的數(shù)學(xué)思想和數(shù)學(xué)方法,是培養(yǎng)學(xué)生良好思維品質(zhì)的最佳載體。它以簡(jiǎn)潔優(yōu)美的圖形結(jié)構(gòu),豐富深刻的內(nèi)涵刻畫(huà)了自然界的和諧統(tǒng)一的關(guān)系,是數(shù)形結(jié)合的......

        勾股定理復(fù)習(xí)課教學(xué)反思

        本節(jié)課首先由口答引入相關(guān)知識(shí)點(diǎn),激起本單元知識(shí)的初步回顧,再借小題夯實(shí)基礎(chǔ)知識(shí)點(diǎn),構(gòu)建本單元知識(shí)的結(jié)構(gòu)框架,然后運(yùn)用例題規(guī)范知識(shí)點(diǎn)應(yīng)用,梳理本單元的數(shù)學(xué)思想方法,接著......

        焦麗麗探索勾股定理教學(xué)反思

        勾股定理,愛(ài)拼進(jìn)行時(shí) ——探索勾股定理(第一課時(shí))教學(xué)反思 焦麗麗 我國(guó)是最早了解勾股定理的國(guó)家之一。早在三千多年前,周朝數(shù)學(xué)家商高就提出,將一根直尺折成一個(gè)直角,如果勾(短直......