欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      《乘法分配律》數(shù)學(xué)課教學(xué)反思

      時間:2019-05-15 11:23:23下載本文作者:會員上傳
      簡介:寫寫幫文庫小編為你整理了多篇相關(guān)的《《乘法分配律》數(shù)學(xué)課教學(xué)反思》,但愿對你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫還可以找到更多《《乘法分配律》數(shù)學(xué)課教學(xué)反思》。

      第一篇:《乘法分配律》數(shù)學(xué)課教學(xué)反思

      《新課程標(biāo)準(zhǔn)》把以“學(xué)生發(fā)展為本”作為新課程的基本理念。提出“有效的數(shù)學(xué)學(xué)習(xí)活動不能單純地依賴模仿與記憶,動手實(shí)踐、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式”。然而,這些新的教學(xué)理念在實(shí)際的課堂教學(xué)中如何體現(xiàn)呢?

      幾年來,我在轉(zhuǎn)變學(xué)生的學(xué)習(xí)方式方面進(jìn)行了積極探索。下面,就“乘法分配律”一教學(xué)片斷,談?wù)勛约簩θ绾无D(zhuǎn)變學(xué)生學(xué)習(xí)方式的。

      [教學(xué)片斷]

      師:(出示課件)樹勛中心小學(xué)購買舞蹈服裝,每件上衣65元,每條褲子35元,購買12套衣服一共要多少元?(能用不同的方法幫助他們算算嗎?)

      生:(65 35)×12=1200(元)

      生:65×12 35×12=1200(元)

      師:每個算式的結(jié)果都是1200元,那么這兩個算式有什么關(guān)系?

      生:(65 35)×12=65×12 35×1

      2師:剛才我們是通過計(jì)算發(fā)現(xiàn)兩個算式相等的,大家能根據(jù)題意說說兩個算式為什么相等嗎?

      (學(xué)生小組討論)

      (過了一會兒,有幾個同學(xué)舉起了小手,教師指名回答。)

      生:我們小組認(rèn)為:我們知道一件上衣和一條褲子合起來叫一套衣服,就是65元和35元的和,買12套衣服的價錢就是12個65元和12個35元的和;每件上衣65元,12件上衣的價錢就是12個65元,每條褲子35元,12條褲子就是12個35元,合起來也是12套衣服的價錢,所以(65 35)×12=65×12 35×12。

      師:哪位同學(xué)聽懂了他說的意思?請用簡單的語言說一遍。

      生:12個65加12個35等于12個65與35的和。

      師:請同桌互相說一遍。

      師:照這樣,你能再寫出幾組這樣的等式嗎?(學(xué)生獨(dú)立思考。)

      (過一會兒,一只只小手舉起來了,教師指名回答。)

      生1:(15 25)×8=15×8 25×8。

      生2:8×(24 40)=8×24 8×40。

      生3:(12 18)×15=12×15 18×15。

      ……

      師:同桌檢查一下,對方寫的等式兩邊是否相等?

      師:同學(xué)們仔細(xì)觀察,對比上面的等式左右兩邊的式子有什么特征?你從中發(fā)現(xiàn)什么規(guī)律?小組內(nèi)的同學(xué)可以互相商量、討論。

      過了5分鐘左右,舉起了幾只小手。

      生1:我們小組發(fā)現(xiàn):等號左邊的式子不是兩個數(shù)的和乘一個數(shù)就是一個數(shù)乘兩個數(shù)的和,等右左邊的式子都是括號內(nèi)的兩個數(shù)與括號外的那個數(shù)相乘,最后把兩個積相加起來。

      生2:我們小組從乘法的意義理解發(fā)現(xiàn):比如(15 25)×8=()×8()×8。因?yàn)?5和25的和等于40,左邊的式子可以理解為40個8,右邊的式子可以理解為15個8加25個8一共是40個8,所以40個8等于15個8加25個8。

      ……

      師;同學(xué)們剛才觀察非常仔細(xì),都代表本組講出了你們發(fā)現(xiàn)的規(guī)律。

      師:像(65 35)×12=65×12 35×12這樣的等式,你能寫出多少個?

      生:無數(shù)個。

      師:你們能不能像乘法交換律和乘法結(jié)合律那樣也用一個字母式子來表示呢?

      學(xué)生嘗試用字母表示乘法分配律,教師巡視。

      生1:我用的字母式子是(a b)×c=a×c b×c。

      生2:我用的字母式子是c×(a b)=c×a c×b。

      生3:我用的和生1相同。

      ……

      師:你們真棒!你們發(fā)現(xiàn)的“兩個數(shù)的和與一個數(shù)相乘,可以用兩個加數(shù)分別與這個數(shù)相乘,再把兩個積相加,結(jié)果不變?!笔浅朔ㄟ\(yùn)算中的一條定律,叫乘法分配律。乘法分配律常表示為(a b)×c=a×c b×c。

      師:現(xiàn)在讓大家用上面的字母式子記住乘法分配律,你們可以嗎?

      生:哈哈!這太簡單了!

      教后反思:

      1、關(guān)注學(xué)生已有的知識經(jīng)驗(yàn)

      以學(xué)生身邊熟悉的情境為教學(xué)的切入點(diǎn),激發(fā)學(xué)生主動學(xué)習(xí)的需要,為學(xué)生創(chuàng)設(shè)了與生活環(huán)境、知識背景密切相關(guān)的感興趣的學(xué)習(xí)情境——為樹勛中心小學(xué)購買舞蹈服裝。通過兩種算式的比較,喚醒了學(xué)生已有的知識經(jīng)驗(yàn),使學(xué)生初步感知乘法分配律。讓學(xué)生始終處于主動探索知識的最佳狀態(tài),促使學(xué)生對原有知識進(jìn)行更新、深化、突破、超越。

      2、提供自主探索的機(jī)會

      一堂數(shù)學(xué)課可以有不同種教法,怎樣教才能在數(shù)學(xué)活動中培養(yǎng)學(xué)生的創(chuàng)新能力呢?我覺得,最重要的是保證學(xué)生的主體地位,提供自主探索的機(jī)會。在探索乘法運(yùn)算律的過程中,提出的問題有易到難,層層遞進(jìn),不僅為學(xué)生提供了自主探索的時間和空間,使學(xué)生經(jīng)歷乘法運(yùn)算律的產(chǎn)生和形成過程,而且讓學(xué)生發(fā)現(xiàn)其中的數(shù)學(xué)規(guī)律與奧秘,從而激發(fā)學(xué)生對數(shù)學(xué)深層次的熱愛。

      3、展示知識的發(fā)生過程,引導(dǎo)學(xué)生積極主動探究

      現(xiàn)代教育觀認(rèn)為:課堂教學(xué)不只是知識的傳授過程,更是學(xué)生的發(fā)展過程。從數(shù)學(xué)學(xué)科的特點(diǎn)看,學(xué)生所學(xué)的數(shù)學(xué)知識是前人思維的結(jié)果。學(xué)習(xí)這些知識,不是簡單地吸收,而必須通過自己的思維,把前人的思維結(jié)果轉(zhuǎn)化為自己的思維結(jié)果。教師的任務(wù)是引導(dǎo)和幫助學(xué)生去進(jìn)行再創(chuàng)造,而不是把現(xiàn)成的結(jié)論灌輸給學(xué)生。讓學(xué)生在探索未知領(lǐng)域的過程中,付出與前人發(fā)現(xiàn)這些知識所曾經(jīng)付出的大體相同的智力代價,從而有效地實(shí)現(xiàn)知識訓(xùn)練智力的價值。例如在“乘法分配律”教學(xué)中,我先讓學(xué)生根據(jù)提供的問題,用不同的方法解決,從而發(fā)現(xiàn)(65 35)×12=65×12 35×12這個等式,讓學(xué)生觀察,初步感知“乘法分配律。然后照樣子寫出幾組這樣的等式,引導(dǎo)學(xué)生再觀察,讓學(xué)生說明自己

      發(fā)現(xiàn)的規(guī)律、并用不同的方法來表示這個規(guī)律。這樣學(xué)生經(jīng)歷了“觀察、初步發(fā)現(xiàn)、舉例驗(yàn)證、再觀察、發(fā)現(xiàn)規(guī)律、概括歸納”這樣一個知識形成過程。不僅要讓學(xué)生獲得了數(shù)學(xué)基礎(chǔ)知識和基本技能,而且讓學(xué)生學(xué)習(xí)科學(xué)探究的方法,以培養(yǎng)學(xué)生

      主動探究、發(fā)現(xiàn)知識的能力。

      4.讓學(xué)生不斷在“反思”中學(xué)習(xí),“體驗(yàn)”中學(xué)習(xí)

      建構(gòu)主義強(qiáng)調(diào),學(xué)習(xí)不是簡單地讓學(xué)習(xí)者占有別人的知識,而是學(xué)習(xí)者主動地建構(gòu)自己的知識經(jīng)驗(yàn),形成自己的見解。在學(xué)習(xí)過程中學(xué)習(xí)者不僅要不斷監(jiān)視自己對知識的理解程度,判斷自己的進(jìn)展與目標(biāo)的差距,采取各種增進(jìn)和幫助思考的策略,而且還要不斷地反思自己的學(xué)習(xí)過程。由于數(shù)學(xué)對象的抽象性、數(shù)學(xué)活動的探索性決定了小學(xué)生不可能一次性地直接把握數(shù)學(xué)活動的本質(zhì),必須要經(jīng)過多次的反復(fù)思考、深入研究和自我調(diào)整才可能洞察數(shù)學(xué)活動的本質(zhì)特征。就小學(xué)數(shù)學(xué)課堂教學(xué)而言,反思的內(nèi)容主要有:對自己的思考過程進(jìn)行反思,對解題思路、分析過程、運(yùn)算過程、語言的表述進(jìn)行反思,對所涉及的數(shù)學(xué)思想方法反思等。在數(shù)學(xué)活動中,當(dāng)學(xué)生在探索過程中遇到障礙或出現(xiàn)錯誤時,教師可以提出一些針對性的、具有啟發(fā)性的問題引導(dǎo)學(xué)生主動地反思探索過程;當(dāng)數(shù)學(xué)活動結(jié)束后,要引導(dǎo)學(xué)生反思整個探索過程和所獲得結(jié)論的合理性,以獲得成功的體驗(yàn)。在“乘法分配律”教學(xué)中,我先向?qū)W生我先讓學(xué)生根據(jù)提供的問題,用不同的方法解決,從而發(fā)現(xiàn)(65 35)×12=65×12 35×12這個等式,讓學(xué)生觀察,是讓學(xué)生初步感知這個規(guī)律。同時也體現(xiàn)了教學(xué)的差異性,給沒有發(fā)現(xiàn)規(guī)律的同學(xué)以再次發(fā)現(xiàn)的機(jī)會。然后照樣子寫出幾組這樣的等式,引導(dǎo)學(xué)生再觀察,讓學(xué)生說明自己發(fā)現(xiàn)的規(guī)律、并用不同的方法來表示這個規(guī)律,來加深學(xué)生的數(shù)學(xué)體驗(yàn)。又如,學(xué)習(xí)了“乘法分配律”后,教師可讓學(xué)生反思:“乘法分配律”是怎樣總結(jié)出來的?從中你受到了什么啟發(fā)?什么知識與“乘法分配律”有聯(lián)系?學(xué)了“乘法分配律”后有什么用?這樣既豐富了學(xué)生的數(shù)學(xué)體驗(yàn),又提高了學(xué)生的“反思”的意識和能力。

      本課中注意引導(dǎo)了學(xué)生在數(shù)學(xué)活動中體驗(yàn)數(shù)學(xué),在數(shù)學(xué)中感悟數(shù)學(xué),實(shí)現(xiàn)了運(yùn)算律的抽象化與外化運(yùn)用的認(rèn)知飛躍,同時也體驗(yàn)到了學(xué)習(xí)數(shù)學(xué)的樂趣。

      第二篇:《乘法分配律》教學(xué)反思

      《乘法分配律》教學(xué)反思1

      本節(jié)課的教學(xué)我主要以幾何直觀為切入點(diǎn),引導(dǎo)學(xué)生通過畫一畫,算一算等學(xué)習(xí)活動,小組合作,共同經(jīng)歷乘法分配的探究過程,借助圖形探知、理解乘法分配律。

      1、問題情境的創(chuàng)設(shè)需更貼近學(xué)生的生活。

      試講過后與大家的感覺一樣,學(xué)生對設(shè)計(jì)草莓大棚的這個話題不是特別感興趣,接受工作室友們提出的寶貴意見后,想把情境創(chuàng)設(shè)改為設(shè)計(jì)學(xué)校的操場。由于學(xué)校里孩子們數(shù)量每年都在增加,孩子們喜歡的小操場越來越擠,想要擴(kuò)建這個長方形的小操場,怎么辦呢?這個話題與孩子們的生活息息相關(guān),應(yīng)該比上一次設(shè)計(jì)的話題更容易引起他們的關(guān)注。

      2、教學(xué)的設(shè)計(jì)要尊重已有的知識經(jīng)驗(yàn)。

      本節(jié)課設(shè)計(jì)一始,所需的計(jì)算方法與原來學(xué)過的計(jì)算長方形面積有關(guān)。長方形的面積長乘寬,即使個別學(xué)生忘記也很容易喚醒。我鼓勵學(xué)生大膽去猜想, 在計(jì)算之前先要在頭腦中勾勒出長方形的模樣,激發(fā)學(xué)生在畫圖中梳理題中的數(shù)學(xué)信息。接下來的三次探究過程,先是教師設(shè)定長方形增加的長,再次是學(xué)生自己設(shè)定長度,再到后來自己設(shè)定三個量,給學(xué)生充分的想象和發(fā)揮空間,發(fā)揮學(xué)生主體的主動作用,即使學(xué)生在研究中遇到困難,有小組合作交流討論環(huán)節(jié)也使學(xué)生之間有了互相學(xué)習(xí)和提高的過程。

      學(xué)生在已有的知識經(jīng)驗(yàn)的基礎(chǔ)上,一起來研究抽象的算式,尋找它們各自的特點(diǎn),從而概括它們的規(guī)律。在得出結(jié)論的過程中,有的.同學(xué)用到了文字說明,也有同學(xué)是符號表示,還有的是字母表示,無論出現(xiàn)得出的哪種結(jié)論,老師都予以肯定和表揚(yáng),目的是讓學(xué)生從自己的數(shù)學(xué)現(xiàn)實(shí)出發(fā),去嘗試解決問題,又能使不同思維水平的學(xué)生得到相應(yīng)的滿足,獲得相應(yīng)的成功體驗(yàn)。

      在學(xué)生展示匯報(bào)的過程中,雖然字母表示的方法更清晰,大家更喜歡,但課后覺得能用文字表述其實(shí)是更難的一件事,對這樣的孩子應(yīng)該在課堂上再多給學(xué)生一些鼓勵與肯定,學(xué)生的學(xué)習(xí)興趣會更濃,他們學(xué)到的東西可能也會更多。

      3、在具體操作中完成由具體到抽象的思維演練。

      孩子們自己填寫的數(shù)字各不相同,在不同的計(jì)算方法和有不同的計(jì)算結(jié)果中,使學(xué)生感受到大量在實(shí)例計(jì)算后,大膽地完成了由猜想到驗(yàn)證的過程。猜想是科學(xué)發(fā)現(xiàn)的前奏。學(xué)生的學(xué)習(xí)活動中不能沒有猜想,否則,主體性探究活動便缺少了內(nèi)在的動力,自主學(xué)習(xí)的過程也成了失去目標(biāo)的無意義操作。接下來的舉例就成了驗(yàn)證猜想的必需,無論猜想的結(jié)論是“是”還是“非”,學(xué)生的思維一直是活躍著的,對學(xué)生都是有意義的。這個過程是教會學(xué)生學(xué)習(xí)與掌握探索方法的過程,是培養(yǎng)學(xué)生學(xué)習(xí)品格的過程。

      在研究的過程中,如何利用小組合作資源,把研究中遇到困難的,興趣保持不下去的同學(xué)的積極性再調(diào)動一下就更好了。

      課堂學(xué)習(xí)的過程,一切以師生間,生生間建立的平等交流這個平臺才得以順得完成,教學(xué)過程是師生共創(chuàng)共生的過程,師生成為共同建構(gòu)學(xué)習(xí)的參與者。在上述的教學(xué)活動中,教師讓學(xué)生充分經(jīng)歷學(xué)習(xí)過程,調(diào)動學(xué)生學(xué)習(xí)的熱情:想象——猜想——舉例——驗(yàn)證,在欣賞學(xué)生的“閃光”處給學(xué)生“點(diǎn)撥”。師生在課堂交流中才得以共同成長。

      《乘法分配律》教學(xué)反思2

      師:(出示掛圖)仔細(xì)觀察,從圖中你獲得哪些信息?

      買這些衣服,戚老師一共要付多少元呢?你能用兩種方法列出綜合算式嗎?

      生:(65+35)×12=1200(元)

      生:65×12+35×12=1200(元)

      師:每個算式的結(jié)果都是1200元,那么這兩個算式有什么關(guān)系?

      生:(65+35)×12=65×12+35×12

      師:剛才我們是通過計(jì)算發(fā)現(xiàn)兩個算式相等的,大家能根據(jù)題意說說兩個算式為什么相等嗎?

      (學(xué)生小組討論)

      師:指名學(xué)生回答。

      生:一件上衣和一條褲子合起來叫一套衣服,就是65元和35元的和,買12套衣服的價錢就是12個65元和12個35元的和;每件上衣65元,12件上衣的價錢就是12個65元,每條褲子35元,12條褲子就是12個35元,合起來也是12套衣服的價錢,所以(65+35)×12=65×12+35×12。

      師:說得真棒,誰能概括地說一說。

      生:12個65加12個35等于12個65與35的和。

      師:請同桌互相說一遍。

      師:照這樣,你能再寫出幾組這樣的等式嗎?(學(xué)生獨(dú)立思考。)

      (過一會兒,一只只小手舉起來了,教師指名回答。)

      生1:(15+25)×8=15×8+25×8。

      生2:a×(5+2)=a×5+a×2。

      生3:(+▲)×■=×■+▲×■。

      ……

      師:同桌檢查一下,對方寫的等式兩邊是否相等?

      師:同學(xué)們仔細(xì)觀察,對比上面的等式左右兩邊的式子有什么特征?你從中發(fā)現(xiàn)什么規(guī)律?小組內(nèi)的同學(xué)可以互相商量、討論。

      生1:我們小組發(fā)現(xiàn):等號左邊的式子不是兩個數(shù)的和乘一個數(shù)就是一個數(shù)乘兩個數(shù)的和,等右左邊的式子都是括號內(nèi)的兩個數(shù)與括號外的'那個數(shù)相乘,最后把兩個積相加起來。

      生2:我們小組從乘法的意義理解發(fā)現(xiàn):比如(15+25)×8=×8+(

      )×8。因?yàn)?5和25的和等于40,左邊的式子可以理解為40個8,右邊的式子可以理解為15個8加25個8一共是40個8,所以40個8等于15個8加25個8。

      ……

      師;同學(xué)們剛才觀察非常仔細(xì),都代表本組講出了你們發(fā)現(xiàn)的規(guī)律。

      師:像(65+35)×12=65×12+35×12這樣的等式,你能寫出多少個?

      生:無數(shù)個。

      師:你們能不能像乘法交換律和乘法結(jié)合律那樣也用一個字母式子來表示呢?

      學(xué)生嘗試用字母表示乘法分配律,教師巡視。

      生:a×(5+2)=a×5+a×2。

      生:(+▲)×■=×■+▲×■

      生(a+b)×c=a×c+b×c。

      ……

      師:你們真棒!今天我們發(fā)現(xiàn)的規(guī)律就是乘

      法分配律。乘法分配律常表示為(a+b)×c=a×c+b×c。

      你們能用自己的話說說什么是乘法分配律嗎?

      指名學(xué)生回答。

      師小結(jié):兩個數(shù)的和乘第三個數(shù),可以把兩個數(shù)分別和第三個數(shù)相乘,再求和。

      教后反思:

      1、關(guān)注學(xué)生已有的知識經(jīng)驗(yàn)

      以學(xué)生身邊熟悉的情境為教學(xué)的切入點(diǎn),激發(fā)學(xué)生主動學(xué)習(xí)的需要,為學(xué)生創(chuàng)設(shè)了與生活環(huán)境、知識背景密切相關(guān)的感興趣的學(xué)習(xí)情境,通過兩種算式的比較,喚醒了學(xué)生已有的知識經(jīng)驗(yàn),使學(xué)生初步感知乘法分配律。讓學(xué)生始終處于主動探索知識的最佳狀態(tài),促使學(xué)生對原有知識進(jìn)行更新、深化、突破、超越。

      2、提供自主探索的機(jī)會

      一堂數(shù)學(xué)課可以有不同種教法,怎樣教才能在數(shù)學(xué)活動中培養(yǎng)學(xué)生的創(chuàng)新能力呢?我覺得,最重要的是保證學(xué)生的主體地位,提供自主探索的機(jī)會。在探索乘法運(yùn)算律的過程中,提出的問題有易到難,層層遞進(jìn),不僅為學(xué)生提供了自主探索的時間和空間,使學(xué)生經(jīng)歷乘法運(yùn)算律的產(chǎn)生和形成過程,而且讓學(xué)生發(fā)現(xiàn)其中的數(shù)學(xué)規(guī)律與奧秘,從而激發(fā)學(xué)生對數(shù)學(xué)深層次的熱愛。

      在日常生活中,數(shù)學(xué)真是無處不在,處處留心皆學(xué)問。如果學(xué)生們能處處留心數(shù)學(xué)問題,并運(yùn)用數(shù)學(xué)知識去解決這些實(shí)際問題;能夠在認(rèn)真觀察的基礎(chǔ)上,根據(jù)數(shù)字的特點(diǎn),靈活地選擇運(yùn)算定律,找到適合自己的最佳的簡算方法,那么自己的教學(xué)就成功了。盡管在課堂上也許還不能夠全部掌握簡算的知識,只要在日常的學(xué)習(xí)和生活計(jì)算的過程中,能夠?qū)W會善于觀察,自覺運(yùn)用,就能達(dá)到熟能生巧的效果,學(xué)習(xí)成績與學(xué)習(xí)能力也會有很大程度的提升。

      《乘法分配律》教學(xué)反思3

      這是我對自己上的有關(guān)乘法分配律的一課的教學(xué)反思,我讓她們每次上完課都寫一寫反思,我想這樣她才能真正從實(shí)習(xí)中有所收獲。她的教學(xué)反思如下:

      乘法分配律不僅是本章的難點(diǎn)也是四年級學(xué)習(xí)的重點(diǎn)和難點(diǎn)。它是學(xué)生學(xué)生學(xué)習(xí)了加法交換律、加法結(jié)合律及乘法交換律、乘法結(jié)合律的基礎(chǔ)上教學(xué)的,是一節(jié)比較抽象的概念課,它的重點(diǎn)是讓學(xué)生感知乘法分配律,知道什么是乘法分配律,難點(diǎn)是理解乘法分配律的意義,并會用乘法分配律進(jìn)行一些簡便運(yùn)算。因此在教學(xué)過程中,怎樣引導(dǎo)學(xué)生成為重中之重。我的教學(xué)思路大體為以下幾點(diǎn):

      第一:在開始的課上,與學(xué)生一起回憶了乘法交換律與乘法結(jié)合律,做到溫故而知新,不至于學(xué)生了解乘法分配律時與前兩個運(yùn)算定律相混。

      第二:通過詢問學(xué)生關(guān)于校服的問題引入需要解決的問題,在此環(huán)節(jié)中,我詢問了學(xué)生們現(xiàn)在的校服是什么樣子的,接著呈現(xiàn)了,事先準(zhǔn)備好的班級同學(xué)穿校服的照片,這樣,學(xué)生們就會體會到,這堂課與他們息息相關(guān),然后我又問他們想擁有什么樣的校服,接著又呈現(xiàn)了搜索到的幾張關(guān)于校服的個性圖片,于是探討乘法分配律之旅,轟轟烈烈的開始了。

      第二:教材中此出問題的主題圖是關(guān)于植樹的問題,但考慮到學(xué)生的理解能力有限,我將題目改成校服上衣價錢,校服褲子價錢與總價錢的問題,這樣一來,更貼近學(xué)生生活。

      第三:讓學(xué)生列示計(jì)算的同時請兩名同學(xué)上黑板做題,這樣就節(jié)省了一些時間,但仍有不足。

      不足及改進(jìn):

      第一:學(xué)生在黑板上書寫很是不規(guī)范,占去了黑板的很大空間,導(dǎo)致我在詢問其他同學(xué)答題步驟及板書時無處可寫,黑板書寫有些許亂。

      第二:在兩名同學(xué)書寫完下去之后,我接著就詢問了其他同學(xué)的不同做法,于是學(xué)生只要有一點(diǎn)計(jì)算步驟不同的就舉手回答,導(dǎo)致回答不完,但各種方法又相似,黑板羅列太多,學(xué)生分不清主次。我想如果在來那名同學(xué)書寫完后,先不讓他們下去,而是留在講臺上解釋自己的先算什么后算什么,這樣下面的同學(xué)也就曉得自己的解題步驟到底屬于哪一種,從而也可以節(jié)省部分時間。

      第三:在解釋乘法分配律意義方面不清楚,幾種理解方法過于著急地解釋給學(xué)生,導(dǎo)致學(xué)生聽得的'迷迷糊糊。在這方面,我應(yīng)該更加清晰地理清自己的思路,該怎樣循序漸進(jìn)的向?qū)W生解釋這種運(yùn)算方法的意義。如先理解在題意中先算什么后算什么,再脫離情境觀察數(shù)的特點(diǎn),先算的誰和誰的積又算誰和誰的積,最后再怎樣,自然而然,學(xué)生會發(fā)現(xiàn)有共同的數(shù),進(jìn)而引導(dǎo)理解30個45加上20個45等于50個45。

      總之乘法分配律確實(shí)并不是很好理解,再加上老師不太能抓住重點(diǎn),雖然課前我一再給她講這地方那地方如何引導(dǎo)和如何講,但是她還是被學(xué)生給帶偏了,講解的不透徹,再加上不會維持學(xué)生聽課,所以學(xué)生掌握的不是很好。事后我又講了練習(xí)課加以鞏固,但是先入為主,并且也不像例題講的那么詳細(xì),還是有幾個孩子比較糊涂。所以單元測試中乘法分配律出錯最多。

      《乘法分配律》教學(xué)反思4

      首先結(jié)合學(xué)生熟悉的問題情境,幫助學(xué)生體會運(yùn)算定律的現(xiàn)實(shí)背景。接著設(shè)計(jì)“懸念”,拋出四組題目,把學(xué)生引到“兩算式的結(jié)果相等”的情況中來。先請學(xué)生猜想,而后驗(yàn)證,再請學(xué)生編題,讓每一個學(xué)生都不由自主地參與到研究中來。在編題過程中,很多學(xué)生都交出了正確的'“答卷”,增強(qiáng)了他們學(xué)習(xí)的自信心和繼續(xù)研究的欲望。接著,請同學(xué)在生活中尋找驗(yàn)證的方法,以四人小組為研究單位,學(xué)生的思維活動一下子活躍起來,紛紛探究其中的奧秘。小組討論的方式,更促使學(xué)生之間進(jìn)行思維交流,激發(fā)學(xué)生希望獲得成功的動機(jī)。通過實(shí)踐、討論,揭示了乘法分配律。再通過用自己喜歡的方式來表述乘法分配律加以內(nèi)化。這樣做,學(xué)生學(xué)得積極、學(xué)得主動、學(xué)得快樂,自己動手編題、自己動腦探索,從數(shù)量關(guān)系變化的多次類比中悟出規(guī)律,“扶”得少,學(xué)生創(chuàng)造得多,學(xué)生學(xué)會的不僅僅是一條規(guī)律,更重要的是,學(xué)生學(xué)會了自主自動,學(xué)會了進(jìn)行合作,學(xué)會了獨(dú)立思考,學(xué)生學(xué)得輕松,學(xué)得主動。

      通過這節(jié)課的教學(xué)我感受到:認(rèn)真鉆研教材,深入挖掘教材中的寶貴資源,會使教材的內(nèi)涵更有廣度和深度,也為培養(yǎng)和發(fā)展學(xué)生思維的靈活性,提供了更廣闊的空間。

      《乘法分配律》教學(xué)反思5

      乘法分配律是四年級學(xué)習(xí)的重點(diǎn),也是難點(diǎn)之一。它是在學(xué)生學(xué)習(xí)了加法交換律、加法結(jié)合律及乘法交換律、乘法結(jié)合律的基礎(chǔ)上教學(xué)的,是一節(jié)比較抽象的概念課,教學(xué)是我根據(jù)教學(xué)內(nèi)容的特點(diǎn),為學(xué)生提供多種探究方法,激發(fā)學(xué)生的自主意識。

      一、在對本節(jié)課的教學(xué)目標(biāo)上,我定位在:

      (1)通過學(xué)生比賽列式計(jì)算解決情景問題后,觀察、比較、分析理解乘法分配律的含義,教師引導(dǎo)學(xué)生概括出乘法分配律的內(nèi)容。

      (2)初步感受乘法分配律能使一些計(jì)算簡便。

      (3)培養(yǎng)學(xué)生分析、推理、概括的思維能力。

      二、結(jié)合自己所教案例,對本節(jié)課教學(xué)策略進(jìn)行以下幾點(diǎn)簡要分析:

      1、總體上我的教學(xué)思路是由具體——抽象——具體。

      在學(xué)生已有的知識經(jīng)驗(yàn)的基礎(chǔ)上,一起來研究抽象的算式,尋找它們各自的特點(diǎn),從而概括它們的規(guī)律。在尋找規(guī)律的過程中,有同學(xué)是橫向觀察,也有同學(xué)是縱向觀察,老師都予以肯定和表揚(yáng),目的是讓學(xué)生從自己的數(shù)學(xué)現(xiàn)實(shí)出發(fā),去嘗試解決問題,又能使不同思維水平的學(xué)生得到相應(yīng)的滿足,獲得相應(yīng)的成功體驗(yàn)。

      2、從學(xué)生已有知識出發(fā)。

      教師要深入了解各層次學(xué)生思維實(shí)際,提供充分的信息,為各層次學(xué)生參與探索學(xué)習(xí)活動創(chuàng)造條件,沒有學(xué)生主體的主動參與,不會有學(xué)生主體的主動發(fā)展,教師若不了解學(xué)生實(shí)際,一下子把學(xué)習(xí)目標(biāo)定得很高,勢必會造成部分學(xué)生高不可攀而坐等觀望,失去信心浪費(fèi)寶貴的學(xué)習(xí)時間。以往教學(xué)該課時都是以計(jì)算引入,有復(fù)習(xí)舊知,也有比一比誰的`計(jì)算能力強(qiáng)開場。我想是不是可以拋開計(jì)算,帶著愉快的心情進(jìn)課堂,因此,我在一開始設(shè)計(jì)了一個植樹的情境,讓學(xué)生在一個寬松愉悅的環(huán)境中,走進(jìn)生活,開始學(xué)習(xí)新知。這樣所設(shè)的起點(diǎn)較低,學(xué)生比較容易接受。

      3、鼓勵學(xué)生大膽猜想。

      猜想是科學(xué)發(fā)現(xiàn)的前奏。學(xué)生的學(xué)習(xí)活動中同樣不能沒有猜想,否則,主體性探究 活動便缺少了內(nèi)在的動力,自主學(xué)習(xí)的過程也成了失去目標(biāo)的無意義操作。學(xué)生看到加法交換律和加法結(jié)合律,從直觀上產(chǎn)生了關(guān)于乘法運(yùn)算定律的猜想。于是,接下來的舉例就成了驗(yàn)證猜想的必需,無論猜想的結(jié)論是“是”還是“非”,學(xué)生的思維一直是活躍著的,對學(xué)生都是有意義的。這個過程是教會學(xué)生 學(xué)習(xí)與掌握探索方法的過程,是培養(yǎng)學(xué)生學(xué)習(xí)品格的過程。

      4、師生平等交流。

      教學(xué)過程是師生共創(chuàng)共生的過程,新課程確定的培養(yǎng)目標(biāo)和所倡導(dǎo)的學(xué)習(xí)方式要求 教師必須轉(zhuǎn)換角色。改變已有的教學(xué)行為,教師必須從“師道尊嚴(yán)”的架子中走出來,與學(xué)生平等地參與教學(xué),成為共同建構(gòu)學(xué)習(xí)的參與者。在以上教學(xué)片斷中,教 師讓學(xué)生充分經(jīng)歷學(xué)習(xí)過程,調(diào)動學(xué)生學(xué)習(xí)的熱情:猜想——傾聽——舉例——驗(yàn)證,在 欣賞學(xué)生的“閃光”處給學(xué)生“點(diǎn)撥”。教師沒有過多的講授,也沒有花大量的時間去 刻意的創(chuàng)設(shè)教學(xué)情境,只是做喚醒學(xué)生主體意識的工作,引導(dǎo)學(xué)生大膽猜想,大膽表達(dá)。學(xué)生借助已有的知識經(jīng)驗(yàn),自主解決新問題,使學(xué)生的主體地位得以體現(xiàn)。

      5、將學(xué)生放在主體位置。

      把學(xué)生放在主動探索知識規(guī)律的主體位置上,讓學(xué)生能自由地利用自己的知識經(jīng)驗(yàn)、思維方式去嘗試解決問題。在探究這一系列的等式有什么共同點(diǎn)的活動中,學(xué)生涌現(xiàn)出的各種說法,說明學(xué)生的智力潛能是巨大的。所以我在這里花了較多的時間,讓學(xué)生多說,談?wù)劯髯圆煌目捶?,說說自己的新發(fā)現(xiàn),教師盡可能少說,為的就是要還給學(xué)生自由探索的時間和空間,從而能使學(xué)生的主動性、自主性和創(chuàng)造性得到充分的發(fā)揮。

      三、教學(xué)中的不足和改進(jìn)之處:

      在教學(xué)過程中,也有不盡人意的地方,如雖然本節(jié)課在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上還不夠,因此在歸納乘法分配律的內(nèi)容時,學(xué)生難以完整地總結(jié)出乘法分配律,另外還有部分學(xué)困生對乘法分配律不太理解,運(yùn)用時問題較多等,今后的工作中,要多向以下幾個方面努力:

      1、多聽課,多學(xué)習(xí)。尤其是優(yōu)秀教師的課,學(xué)習(xí)他們的新思想、新方法,改善課堂教學(xué),提高課堂教學(xué)藝術(shù)和課堂效率。

      2、加強(qiáng)同科組教師之間的溝通和交流,相互學(xué)習(xí),取長補(bǔ)短,共同進(jìn)步。

      3、認(rèn)真鉆研教材,把握好教材的重點(diǎn)、難點(diǎn)、關(guān)鍵點(diǎn)、易混點(diǎn),上課時才能做到心中有數(shù),游刃有余。

      《乘法分配律》教學(xué)反思6

      《乘法分配律》是四年級第七單元的內(nèi)容,在此之前,學(xué)生上個學(xué)期已經(jīng)學(xué)過了加法交換律和結(jié)合律、乘法交換律和結(jié)合律,同時這個學(xué)期第四單元混合運(yùn)算中也運(yùn)用了學(xué)過的運(yùn)算律進(jìn)行簡便的計(jì)算,上課之前,我以為學(xué)生對這一部分的知識并不陌生,所以就簡單地設(shè)計(jì)了復(fù)習(xí),回顧學(xué)過的運(yùn)算律,再讓學(xué)生發(fā)現(xiàn)運(yùn)算律在簡便計(jì)算中的運(yùn)用,接著就出示了上課的例題,讓學(xué)生從例題中尋找乘法分配律的影子,再通過舉例,比較發(fā)現(xiàn)乘法分配律并用字母表示出來,基本完成本節(jié)課的新授。通過鞏固練習(xí)讓學(xué)生認(rèn)識乘法分配律在計(jì)算和實(shí)際生活問題中的運(yùn)用。上課之前,我以為學(xué)生會跟著我的思路走,會很順利的上完整節(jié)課。但上完課,我發(fā)現(xiàn)我自己的課堂出現(xiàn)了很多的問題,總結(jié)了一下,我感覺自己在很多方面做得很不到位。

      開始的時候,學(xué)生回顧運(yùn)算律的時候出現(xiàn)了小的問題,讓我有一點(diǎn)束手無策,導(dǎo)致后面的復(fù)習(xí)題忘記出示,課堂環(huán)節(jié)被遺漏。

      教學(xué)新課的時候,學(xué)生的列式不是我想要的算式的形式,我就直接寫出我想要的算式的形式了,其實(shí)這個時候可以用乘法交換律變成我想要的形式,同時,我也在想,知識應(yīng)該是靈活的,我也應(yīng)該寫出學(xué)生說出的那種形式,因?yàn)檫@是學(xué)生自己列出來的式子,他自己肯定能理解的,但課上我的做法就有點(diǎn)急于求成,有點(diǎn)生搬硬套了。

      小組討論的時候也出現(xiàn)了很多的問題,本來我認(rèn)為這節(jié)課學(xué)生應(yīng)該很快地發(fā)現(xiàn)等式兩邊的特點(diǎn)的,也能很快地說出它們的共同點(diǎn)的,但上課的時候,小組討論中我發(fā)現(xiàn),學(xué)生根本不知道該如何發(fā)現(xiàn)這些算式的共同點(diǎn),即使有些同學(xué)發(fā)現(xiàn)了一些特點(diǎn)也不知道該如何表達(dá)出來,課后反思了,我發(fā)現(xiàn)自己的問題設(shè)計(jì)的不好,學(xué)生不能明白地知道該從哪里入手,是比較數(shù)字上面的'關(guān)系,還是觀察式子上的關(guān)系,還是看符號上的關(guān)系,所以導(dǎo)致學(xué)生不知道該怎么說,還有一點(diǎn)重要的原因是我在討論之前比較例題中的等式的時候沒有清楚地講到讓學(xué)生觀察等式的運(yùn)算順序,導(dǎo)致學(xué)生不會說。另一方面,對于將等式抽象成一個字母表示的式子本身不是什么難事,但還要講出抽象的過程,對于四年級的學(xué)生有一點(diǎn)難度,學(xué)生能感覺出來就是這樣寫,但說的有理有據(jù)真的很困難。所以在我們的教學(xué)中,我們要考慮到學(xué)生的認(rèn)知水平,讓學(xué)生說出他應(yīng)該有的想法就很好了,以后的教學(xué)中我們應(yīng)盡量讓學(xué)生進(jìn)行小組討論說出自己的想法,同時也要注意小組討論的程度問題,提出適合學(xué)生的、有效的問題是很有必要的。

      練習(xí)中,要更多地關(guān)注學(xué)生的能力發(fā)展,要讓學(xué)生說出自己的想法,把每一題的設(shè)計(jì)意圖理解清楚,根據(jù)題意正確地進(jìn)行計(jì)算,并掌握做題的方法。

      一節(jié)課下來發(fā)現(xiàn)自己出現(xiàn)了很多很多的問題,希望在以后的教學(xué)中能慢慢地減少這樣問題的出現(xiàn)。

      《乘法分配律》教學(xué)反思7

      ①1355+5587=55(13+87)=5513+5587

      ②8(125+9)=8125+9

      ③(100-7)25=10025+725

      ④9947=(100-1)47=10047-1

      ⑤35201=35(201-1)

      ⑥79125=125(80-1)=12580+1251

      ⑦79125=125(80-1)=12580-1

      ⑧1252532=1258+425

      ⑨88125=808125

      ⑩24335=(245)33=10033

      學(xué)生對于乘法分配律和結(jié)合律極容易混淆,而且符號容易抄錯。針對這些情況,在教學(xué)中應(yīng)該注意什么呢?

      1、乘法分配律的教學(xué)既要注重它的外形結(jié)構(gòu)特點(diǎn),也要同時注重其內(nèi)涵。

      教學(xué)時我們往往注重等式兩邊的外形特點(diǎn),即a(b+c)=ab+ac缺乏從乘法意義角度的理解。這時教師可提出為什么兩個算式是相等的?這里不僅從解題的角度理解,如(2+7)3=23+73是相等的',還有從乘法的意義的角度理解,即左邊表示出3個9,右邊也表示出3個9,所以(2+7)3=23+73

      2、注意區(qū)分乘法結(jié)合律與乘法分配律的特點(diǎn),多進(jìn)行對比練習(xí)。

      乘法結(jié)合律的特征是幾個數(shù)連乘,而乘法分配律的特征是兩個數(shù)的和乘一個數(shù)或兩個積的和。在練習(xí)題中(40+4)25與(404)25這種題學(xué)生特別容易出錯。為了更好地掌握,可多進(jìn)行一些對比練習(xí),如進(jìn)行題組對比25(8+4)和2584;25125254和25125+258;每組算式有什么特征和區(qū)別?符合什么運(yùn)算定律?應(yīng)用什么運(yùn)算定律可以使計(jì)算簡便?為什么要這樣算?

      3、讓學(xué)生進(jìn)行一題多解的練習(xí),加深對乘法結(jié)合律和乘法分配律的理解

      如:12588;10189你能有幾種方法?12588①豎式計(jì)算②125811③125(80+8)④(100+25)88等等。10189①豎式計(jì)算②(100+1)89③101(100-1)④101(80+9)⑤101(90-1)等.對于不同解法,引導(dǎo)學(xué)生進(jìn)行對比分析,什么時候用乘法結(jié)合律簡便?什么時候用乘法分配律簡便?力爭達(dá)到用簡便計(jì)算法進(jìn)行計(jì)算成為學(xué)生一種自主行為,并能根據(jù)題目的特色靈活選擇適當(dāng)?shù)乃惴ǖ哪康?

      4、多練

      針對題目多次練習(xí)。練習(xí)時注意練習(xí)量和時間的安排。剛開始可以天天練習(xí),過段時間以后可以一兩天練習(xí)一次,再到一周練習(xí)一次,典型題型課選擇(40+4)25;(404)25;6325+6375;65103-653;5699+66;48102;4899等。

      對于比較特殊的題目可以間斷性練習(xí),對優(yōu)生提出掌握的要求,如:3698+72;6825+68+6874;3212525等。

      只有在理解的基礎(chǔ)上反復(fù)練習(xí),才能使孩子對于乘法分配律牢固掌握,我將在反思過程中制定出切實(shí)可行的計(jì)劃,盡快使孩子消化吸收。

      《乘法分配律》教學(xué)反思8

      這兩天學(xué)習(xí)乘法分配律,孩子們的普遍感覺是比乘法的交換律和結(jié)合律應(yīng)用起來難一些。作業(yè)中的錯誤也很多,主要錯在一下幾點(diǎn):

      1、78×(100+5)

      =78×100+5…………這種錯誤在于學(xué)生沒有教好的理解

      乘法分配律:括號外面的數(shù)要分別乘括號內(nèi)的兩個數(shù),再把兩個積相加。

      2、85×99+85

      =85×(99+85)…………這種錯誤的原因在于個別孩子

      對式子中的數(shù)據(jù)理解不好,不明白加號后面的

      85表示的是1個85,可以看成85×1。

      3、104×25

      =(100+4)×25

      =104×25…………這種錯誤的原因在于有的孩子對乘法分配律的引用不熟練,變式之后又按照順序進(jìn)行計(jì)算,回到了原式。

      4、76×54+76×47-76

      =76×(54+47)-76…………有這種做法的孩子屬于對乘法分配律的應(yīng)用不夠靈活,當(dāng)遇到部分積較多的時候,不能較好的'應(yīng)用分配律進(jìn)行簡便算。

      5、25×32×125

      =(25×4)+(8×125)…………個別學(xué)生在做題時有一種慣性,學(xué)完乘法分配律之后,所有的題目都用分配律進(jìn)行計(jì)算,不能靈活的選用運(yùn)算律進(jìn)行簡便計(jì)算。

      綜合學(xué)生出現(xiàn)的錯誤之處,可見大部分孩子對運(yùn)算律能夠較

      好的理解,只是在應(yīng)用時不能夠靈活的應(yīng)用。直接應(yīng)用規(guī)律進(jìn)行簡便算的能準(zhǔn)確理解,而需要變式的題目則不能較好的應(yīng)用,也有個別孩子因?yàn)槔斫獠磺宥粫?yīng)用。根據(jù)學(xué)生的情況,我采用相應(yīng)的措施,以便讓孩子們真正理解,靈活應(yīng)用。

      一、個別指導(dǎo)。

      對分配律不理解的孩子,我進(jìn)行個別的指導(dǎo)。具體是舉一些相關(guān)的實(shí)際問題,讓孩子用兩種不同的方法進(jìn)行解題,在解題、比較的基礎(chǔ)上理解兩部分積表示的意義,理解括號外的數(shù)要分別乘括號內(nèi)兩個數(shù)的道理,這樣借助具體事例,形象的進(jìn)行理解、概括,有助于學(xué)生對乘法分配律的掌握。

      二、對比練習(xí)。

      針對有的孩子把分配律和結(jié)合律混淆的情況,我設(shè)計(jì)針對性的練習(xí),讓孩子在練習(xí)中記性比較、分析,從而掌握。如:

      25×3×17×4 25×3+17×25

      比較兩個算式的不同之處,說說算是中分別有什么運(yùn)算,運(yùn)用什么運(yùn)算律才能簡便計(jì)算,這樣在比較的過程中學(xué)生能夠慢慢區(qū)分乘法結(jié)合律與乘法分配律的不同,繼而再靈活應(yīng)用規(guī)律進(jìn)行計(jì)算。

      三、針對練習(xí)。

      針對學(xué)生不能靈活應(yīng)用規(guī)律進(jìn)行計(jì)算的問題,我設(shè)計(jì)針對性的練習(xí),讓孩子在練習(xí)中說說自己的想法,比一比怎么計(jì)算更加簡便,這樣在比較、練習(xí)的過程中進(jìn)一步掌握簡便計(jì)算的方法。

      如:125×48

      因?yàn)閯倢W(xué)過乘法分配律,學(xué)生在計(jì)算125×48時,也應(yīng)用分配律:125×40+125×8,針對這樣的情況,我讓學(xué)生再想一想還有沒有其它簡便計(jì)算的方法,引導(dǎo)學(xué)生用乘法結(jié)合律進(jìn)行簡便計(jì)算:125×8×6,再比一比:哪種方法更簡便?這樣在比較的過程中引導(dǎo)學(xué)生體會:用簡便方法進(jìn)行計(jì)算時,一定要先觀察題目中各個數(shù)的特點(diǎn),根據(jù)題目的特點(diǎn)選擇合適的運(yùn)算律進(jìn)行簡便計(jì)算,這樣才能保證計(jì)算的簡便與正確。

      通過對孩子錯因的分析與相應(yīng)的指導(dǎo)、練習(xí),孩子們對乘法的運(yùn)算律理解掌握也越來越好,作業(yè)的錯誤明顯減少??磥恚灰覀兩朴诜治?、引導(dǎo),只要我們對孩子有耐心、有信心,孩子們就一定能夠?qū)W會、學(xué)好!

      《乘法分配律》教學(xué)反思9

      乘法分配律是教學(xué)的難點(diǎn)也是重點(diǎn)。這節(jié)課采用從生活中的問題入手,利用學(xué)生感興趣的具體情境展開。這節(jié)課我力圖將教學(xué)生學(xué)會知識,變?yōu)橹笇?dǎo)學(xué)生會學(xué)知識,將重視結(jié)論的記憶變?yōu)橹匾晫W(xué)生獲取結(jié)論的體驗(yàn)和感悟,將模仿式的學(xué)習(xí)變?yōu)樘骄渴降膶W(xué)習(xí)。學(xué)生經(jīng)歷了“觀察、初步發(fā)現(xiàn)、舉例驗(yàn)證、再觀察、發(fā)現(xiàn)規(guī)律、概括歸納”這樣一個知識形成過程。這樣不僅讓學(xué)生獲得了數(shù)學(xué)基礎(chǔ)知識和基本技能,而且更能培養(yǎng)學(xué)生主動探究、發(fā)現(xiàn)知識的能力?;仡櫿麄€教學(xué)過程,這節(jié)課的亮點(diǎn)體現(xiàn)在以下幾個方面:

      一、從身邊引入熟悉的生活問題,激趣探究

      我們在教學(xué)中要為學(xué)生創(chuàng)設(shè)大量生動、具體、鮮活的生活情境,讓學(xué)生感到數(shù)學(xué)就是從身邊的生活中來的,激發(fā)學(xué)生學(xué)習(xí)的熱情。在教學(xué)時,我先創(chuàng)設(shè)情景,提出問題:“一共有多少名學(xué)生參加這次植樹活動?”。讓學(xué)生根據(jù)提供的條件,用不同的方法解決,從而發(fā)現(xiàn)(4+2)×25=4×25+2×25這個等式。然后請學(xué)生觀察,這個等式兩邊的運(yùn)算順序,使學(xué)生初步感知“乘法分配律”。再讓學(xué)生“觀察這個等式左右兩邊的不同之處”,再次感知“乘法分配律”。我利用情景,讓學(xué)生充分的感知“乘法分配律”,為后來“乘法分配律”的探究提供了有力的保障。

      二、為學(xué)生提供了自己獨(dú)立探究的機(jī)會

      數(shù)學(xué)教學(xué)應(yīng)該是數(shù)學(xué)教學(xué)的活動。傳統(tǒng)的.教學(xué)活動往往只重視結(jié)論的記憶,而這節(jié)課我把學(xué)生的活動定位在感悟和體驗(yàn)上,引導(dǎo)學(xué)生用數(shù)學(xué)思維方式去發(fā)現(xiàn),去探索。尤其是在學(xué)生初步感悟到兩種算法相等關(guān)系的基礎(chǔ)上,繼續(xù)為學(xué)生創(chuàng)造一個思考的情景。我要求學(xué)生觀察得到的兩個等式,提出“你有什么發(fā)現(xiàn)?”。此時學(xué)生對“乘法分配律”已有了自己的一點(diǎn)點(diǎn)感知,我馬上要求學(xué)生模仿等式,自己再寫幾個類似的等式。使學(xué)生自己的模仿中,自然而然地完成猜測與驗(yàn)證,形成比較“模糊”的認(rèn)識。

      三、為學(xué)生的學(xué)習(xí)方式的轉(zhuǎn)變創(chuàng)設(shè)了條件

      模仿學(xué)習(xí),學(xué)生“知其然,而不知其所以然”,知識容易遺忘,而且不能靈活應(yīng)用。改變學(xué)生的學(xué)習(xí)方式,讓學(xué)生進(jìn)行探索性的學(xué)習(xí),不能是一句空話。在這節(jié)課上,我抓住學(xué)生的已有感知,立刻提出“觀察這一組等式,你能發(fā)現(xiàn)其中的奧秘嗎?”。這樣,給學(xué)生提供了豐富的感知材料和具有挑戰(zhàn)性的研究材料,提供猜測與驗(yàn)證,辨析與交流的空間,把學(xué)習(xí)的主動權(quán)力還給學(xué)生。學(xué)生的學(xué)習(xí)熱情高了,自然激起了探究的火花。學(xué)生的學(xué)習(xí)方式不再是單一的、枯燥的,整個教學(xué)過程都采用了讓學(xué)生觀察思考、自主探究、合作交流的學(xué)習(xí)方式。我想:只有改變學(xué)習(xí)方式,才能提高學(xué)生發(fā)現(xiàn)問題、分析問題和解決問題的能力。

      《乘法分配律》教學(xué)反思10

      我對教材內(nèi)容、學(xué)情進(jìn)行了認(rèn)真的分析之后,確定了教學(xué)目標(biāo):通過小組合作探索乘法分配律的活動,進(jìn)一步體驗(yàn)探索規(guī)律的過程,并能用字母表示;經(jīng)歷共同探索的過程,培養(yǎng)解決實(shí)際問題和數(shù)學(xué)交流的能力;會用乘法分配律進(jìn)行一些簡便計(jì)算。通過學(xué)生自主研究、小組討論、全班交流以及講學(xué)練相結(jié)合,設(shè)計(jì)相應(yīng)的練習(xí)題,逐步理解抽象的乘法分配律。

      通過教研組全體老師的努力,我們設(shè)計(jì)了比較合理的前置性小研究。

      在本節(jié)課的教學(xué)過程中,學(xué)生通過對“前置性小研究”的探索研究,能會用兩種方法去解決同一問題,并且能講出自己的思路;能夠觀察出并說出兩道算式的特點(diǎn),能夠觀察出兩道算式的結(jié)果是相同的;能夠按照算式的特點(diǎn)進(jìn)行舉例;能夠自己說出規(guī)律,總結(jié)規(guī)律;能夠用求結(jié)果和乘法的意義去驗(yàn)證這條規(guī)律的正確性、普遍性;能夠運(yùn)用乘法分配律解決實(shí)際的問題,在做題的同時感受乘法分配律給計(jì)算帶來的方便。

      當(dāng)然,本節(jié)課的教育教學(xué)過程,也是有不足的地方。我認(rèn)為:

      1、教師在施教的過程中,經(jīng)常性的打斷學(xué)生的發(fā)言。其實(shí)這是很不好的習(xí)慣。課下陳靖嫣對我說:“老師,你一打斷我,我就不知道怎么說了?!蔽易约阂惨庾R到了這個問題。我覺得在“生本課堂”中教師,應(yīng)該有這樣一種意識,那就是“等”的意識。等學(xué)生表達(dá)完他的所有想法之后,他們在遇到“瓶頸”的時候,老師可以經(jīng)過有智慧的引導(dǎo),幫助他們度過“難過”??墒俏覀兒芏鄷r候,經(jīng)常犯的錯誤是,學(xué)生只要一有點(diǎn)小問題,老師馬上就出馬,這樣是極不好的做法。像本次課中,我有好幾次打斷了陳靖嫣同學(xué)的匯報(bào),也打斷了王孟陽同學(xué)的匯報(bào),還有好幾次打斷了同學(xué)們的交流活動。

      對于這種打斷可能在心里帶著很僥幸的心理,認(rèn)為我必須在規(guī)定的時間完成某些教學(xué)任務(wù),不能讓本節(jié)課“節(jié)外生枝”??墒?,這種心理違背了“生本課堂”的基本教學(xué)理念。

      2、教師在引導(dǎo)的過程中,不能照顧到學(xué)生的想法。像:徐昊同學(xué)和李厚杰同學(xué)在課堂上,表達(dá)了自己的想法。可是我在施教的過程中,沒有給予足夠的重視??赡軐τ诒竟?jié)課的教學(xué),他們的想法,是在浪費(fèi)時間??墒牵业倪@種做法,卻不能照顧到他們的后續(xù)發(fā)展。我覺得在處理這個事件的時候,我應(yīng)該既不能讓本節(jié)課“跑偏”,也不能澆滅他們的“興趣之火”。這是需要有一定的教育智慧的。

      3、我覺得學(xué)生們的交流是不夠熱烈的'。根本的原因是:學(xué)生們的研究不夠到位,不會提出自己的疑問,不能對自己的疑問進(jìn)行探索研究。我覺得這都是老師在平時教學(xué)中,沒有給予足夠的指導(dǎo)的原因。

      還有很多的問題,也許是我沒有意識到的。

      結(jié)合本節(jié)課,關(guān)于生本課堂我有了很多的想法。

      我認(rèn)為真正的“生本課堂”是這樣的:

      教師在教學(xué)設(shè)計(jì)、教學(xué)過程等各個環(huán)節(jié),能體現(xiàn)學(xué)生的主體地位,從細(xì)節(jié)去體現(xiàn)。也是一種和諧的教育氛圍。教師和學(xué)生可以圍繞一個問題據(jù)理力爭,也可以在一節(jié)課中,實(shí)現(xiàn)多個知識點(diǎn)的“串聯(lián)”,也可能好幾節(jié)課我們突破不了一個知識點(diǎn)的講解。教師千萬要改變原先“計(jì)件工作”的模式,我們還原教育本來的色彩。它應(yīng)該是自然的,富有詩情畫意的。我們身在其中,師生應(yīng)該一起去營造一種氛圍,體會教育給我們帶來的幸和充實(shí)感。

      我立志讓我的課堂,成為我們幸福的源泉。

      《乘法分配律》教學(xué)反思11

      “乘法分配律”這堂課的主要教學(xué)目標(biāo)包括:知識目標(biāo):從學(xué)生已有的生活經(jīng)驗(yàn)出發(fā),通過觀察、類比、歸納、驗(yàn)證、運(yùn)用等方法理解和掌握乘法分配律(含字母表達(dá)式),并能正確地表述。能力目標(biāo):通過讓學(xué)生參與知識的形成過程,培養(yǎng)學(xué)生概括、分析、推理的能力,并滲透“從特殊到一般,再由一般到特殊”的認(rèn)識事物的方法,提高數(shù)學(xué)的應(yīng)用意識。情感目標(biāo):在學(xué)習(xí)過程中培養(yǎng)學(xué)生對數(shù)學(xué)現(xiàn)象的好奇心及主動探究的精神。從實(shí)際教學(xué)的情況來看,我自己認(rèn)為已基本達(dá)到了我課前所設(shè)定的目標(biāo),教學(xué)效果還是良好的。

      我覺得比較成功的地方有:

      1.利用學(xué)生已經(jīng)掌握的知識進(jìn)行遷移,從學(xué)生比較熟悉的生活實(shí)際問題引入,學(xué)生較易接受與理解

      2.能夠根據(jù)班級學(xué)生的實(shí)際情況,發(fā)揮好教師的引導(dǎo)與啟發(fā)作用,讓他們能在教師的提示、指導(dǎo)下,漸漸發(fā)現(xiàn)了幾組算式之間存在著的聯(lián)系,找到規(guī)律,再通過舉例,驗(yàn)證自己所找到的規(guī)律,并且再啟發(fā)他們說出了乘法分配律的字母表達(dá)式,培養(yǎng)了學(xué)生觀察、思考、分析的能力。

      3.在教學(xué)過程中,既讓學(xué)生有獨(dú)立觀察、思考、練習(xí)的機(jī)會,又安排了小組討論,讓每個同學(xué)都有發(fā)言的機(jī)會,讓全體學(xué)生的學(xué)習(xí)愿望都能得到滿足。因此,這堂課學(xué)生參與的積極性比較高,課堂氣氛比較活躍,從學(xué)生的.練習(xí)反饋情況來看,對這個內(nèi)容掌握較好。

      我認(rèn)為不足的地方在于:我在面向全體方面做的還不夠,個別不愛發(fā)言的同學(xué)表現(xiàn)自己的機(jī)會少,生活型的乘法分配律的題型練習(xí)量不夠,這也是我在以后教學(xué)當(dāng)中應(yīng)該改進(jìn)的地方。

      《乘法分配律》教學(xué)反思12

      怎樣才能化解乘法分配律的教學(xué)難點(diǎn),我想,最終還得在情境中體驗(yàn)從乘法的.意義上去理解。

      于是,我在教學(xué)時創(chuàng)設(shè)了許多的生活情境,讓學(xué)生多次的感悟和體驗(yàn),學(xué)生從意義上有了較好地理解,比如:6×12+4×12,可以讓學(xué)生理解成6個12加4個12共10個12,所以可以這樣得出:6×12+4×12=(6+4)×12。

      從意義上的理解使學(xué)生最終擺脫了因強(qiáng)記模式而不會解的題,如:99×99+99,學(xué)生可以輕松地說出99個99加上1個99,一共100個99,99×99+99=100×99=9900。

      《乘法分配律》教學(xué)反思13

      《乘法分配律》一直是四則運(yùn)算定律的一個難點(diǎn),學(xué)生最容易出錯。比如38與99相乘,就容易出現(xiàn)“只把38與100相乘后再減1”的錯誤。還有的學(xué)生在計(jì)算125×48時,會出現(xiàn)“125×(6×8)=125×6+125×8“這樣的錯誤。究其原因,還是未能真正理解乘法的含義和乘法的運(yùn)算定律。

      在教學(xué)中,我也想了很多辦法來解決這些問題,比如讓學(xué)生背乘法分配律的`含義,經(jīng)常讓學(xué)生做點(diǎn)這樣的易錯題??砂l(fā)現(xiàn)效果不是很明顯,尤其是有幾個孩子,一會就忘記了。后來,我想:還是必須從理解乘法的意義中去學(xué)會乘法分配律。于是,我就在輔導(dǎo)這幾名學(xué)生時,要求他們說出每一個算式表示的含義,再說一說自己做錯的算式的含義,從而在對比中來發(fā)現(xiàn)、理解自己的錯誤,明白了自己錯誤的原因后,再來思考正確的解題思路,經(jīng)過幾次這樣的訓(xùn)練,效果好多了。

      《乘法分配律》教學(xué)反思14

      學(xué)生對于乘法分配律和結(jié)合律極容易混淆,而且符號容易抄錯。針對這些情況,在教學(xué)中應(yīng)該注意什么呢?

      1、乘法分配律的教學(xué)既要注重它的外形結(jié)構(gòu)特點(diǎn),也要同時注重其內(nèi)涵。

      教學(xué)時我們往往注重等式兩邊的外形特點(diǎn),即a×(b+c)=a×b+a×c缺乏從乘法意義角度的理解。這時教師可提出為什么兩個算式是相等的?這里不僅從解題的角度理解,如(2+7)×3=+2×3+7×3是相等的,還有從乘法的意義的角度理解,即左邊表示出3個9,右邊也表示出3個9,所以(2+7)×3=2×3+7×3

      2、注意區(qū)分乘法結(jié)合律與乘法分配律的特點(diǎn),多進(jìn)行對比練習(xí)。

      乘法結(jié)合律的特征是幾個數(shù)連乘,而乘法分配律特征是兩個數(shù)的和乘以一個數(shù)或兩個積的'和。在練習(xí)題中(40+4)×25與(40×4)×25這種題學(xué)生特別容易出錯。為了更好地掌握,可多進(jìn)行一些對比練習(xí),如進(jìn)行題組對比25×(8+4)和25×8×4;25×125×25×4和25×125+25×8;每組算式有什么特征和區(qū)別?符合什么運(yùn)算定律?應(yīng)用什么運(yùn)算定律可以使計(jì)算簡便?為什么要這樣算?

      3、讓學(xué)生進(jìn)行一題多解的練習(xí),加深對乘法結(jié)合律和乘法分配律的理解

      如:125×88;101×89你能有幾種方法?125×88①豎式計(jì)算②125×8×11③125×(80+8)④(100+25)×88等等。101×89①豎式計(jì)算②(100+1)×89③101×(100-1)④101×(80+9)⑤101×(90-1)等。對于不同解法,引導(dǎo)學(xué)生進(jìn)行對比分析,什么時候用乘法結(jié)合律簡便?什么時候用乘法分配律簡便?力爭達(dá)到“用簡便計(jì)算法進(jìn)行計(jì)算”成為學(xué)生一種自主行為,并能根據(jù)題目的特色靈活選擇適當(dāng)?shù)乃惴ǖ哪康摹?/p>

      4、多練

      針對題目多次練習(xí)。練習(xí)時注意練習(xí)量和時間的安排。剛開始可以天天練習(xí),過段時間以后可以一兩天練習(xí)一次,再到一周練習(xí)一次,典型題型課選擇(40+4)x25;(40x4)x25;63x25+63x75;65x103-65x3;56x99+66;125x8;48x102;48x99等。+

      對于比較特殊的題目可以間斷性練習(xí),對優(yōu)生提出掌握的要求,如:36x98+72;68x25+68+68x74;32x125x25等。

      《乘法分配律》教學(xué)反思15

      一、讓學(xué)生從實(shí)質(zhì)上理解乘法分配律

      在乘法分配律的教學(xué)中,如果只求形式把握不求實(shí)質(zhì)理解,一方面從認(rèn)識的角度看是不嚴(yán)謹(jǐn)?shù)模ㄐ问缴系牟煌耆珰w納不一定得出真理),另一方面很容易造成學(xué)生不求甚解、囫圇吞棗的不良認(rèn)知習(xí)慣。如果滿足于從形式上掌握乘法分配律,對于學(xué)生的后續(xù)發(fā)展也極為不利。因此,在教學(xué)時先出示了這樣一道例題:一件茄克衫65元,一條褲子35元。王老師買5件茄克衫和5條褲子,一共要花多少元?學(xué)生用了兩種解答方法即:(65+35)×5=65×5+35×5。借助對同一實(shí)際問題的不同解決方法讓學(xué)生體會乘法分配律的合理性。

      二、突破乘法分配律的教學(xué)難點(diǎn)

      相對于乘法運(yùn)算中的'其他規(guī)律而言,乘法分配律的結(jié)構(gòu)是最復(fù)雜的,等式變形的能力是教學(xué)的難點(diǎn)。為了突破教學(xué)難點(diǎn),我設(shè)計(jì)了一系列的練習(xí)。

      1、在□里填數(shù),○里填運(yùn)算符號:如(25+45)×4=□○□○□○□……

      2、在相等的一組算式后面打“√”:如16×7+24×7(16+24)×7□……

      在這一組題目中教者重點(diǎn)評析了最后一道題:40×50+50×9040×(50+90)□。先讓學(xué)生說說著一題為什么不能打√,再根據(jù)乘法分配律的特征,分別寫出與左右算式相等的式子。通過練習(xí)學(xué)生對乘法分配律有了進(jìn)一步的認(rèn)識,又讓學(xué)生照上面的樣子寫出的幾個這樣的等式,最后歸納出了乘法分配律的字母表示:(a+b)×c=a×c+b×c。

      實(shí)際上課堂時學(xué)生對于能否找到反例的活動很感興趣,可以嘗試讓學(xué)生也提幾個反例,經(jīng)過討論逐個否決,在這樣的過程中,學(xué)生的等式變形能力能夠得到很大提高,有益于加深對乘法分配律的認(rèn)識。

      第三篇:乘法分配律教學(xué)反思

      《乘法分配律》課后反思---------明溪縣第二實(shí)驗(yàn)小學(xué):黃根明

      《乘法分配律》是本章的難點(diǎn),它不是單一的乘法運(yùn)算,還涉及到加法運(yùn)算。教材對于這部分內(nèi)容的處理方法與前面講乘法結(jié)合律的方法類似。在設(shè)計(jì)本教案的過程中,我一直抱著“以學(xué)生發(fā)展為本”的宗旨,試圖尋找一種在完成共同的學(xué)習(xí)任務(wù)、參與共同的學(xué)習(xí)活動過程中實(shí)現(xiàn)不同的人的數(shù)學(xué)水平得到不同發(fā)展的教學(xué)方式。結(jié)合自己所教案例,對本節(jié)課教學(xué)策略進(jìn)行以下幾點(diǎn)簡要分析:

      一、教師要深入了解各層次學(xué)生思維實(shí)際,提供充分的信息,為各層次學(xué)生參與探索學(xué)習(xí)活動創(chuàng)造條件,沒有學(xué)生主體的主動參與,不會有學(xué)生主體的主動發(fā)展,教師若不了解學(xué)生實(shí)際,一下子把學(xué)習(xí)目標(biāo)定得很高,勢必會造成部分學(xué)生高不可攀而坐等觀望,失去信心浪費(fèi)寶貴的學(xué)習(xí)時間。以往教學(xué)該課時都是以計(jì)算引入,有復(fù)習(xí)舊知,也有比一比誰的計(jì)算能力強(qiáng)開場。我想是不是可以拋開計(jì)算,帶著愉快的心情進(jìn)課堂,因此,我在一開始設(shè)計(jì)了一個購物的情境,讓學(xué)生在一個寬松愉悅的環(huán)境中,走進(jìn)生活,開始學(xué)習(xí)新知。這樣所設(shè)的起點(diǎn)較低,學(xué)生比較容易接受。

      二、讓學(xué)生根據(jù)自己的愛好,選擇自己喜歡的方法列出來的算式就比較開放。學(xué)生能自由發(fā)揮,對所學(xué)內(nèi)容很感興趣,氣氛熱烈。到通過計(jì)算發(fā)現(xiàn)兩個形式不一樣的算式,結(jié)果卻是一樣的。這都是在學(xué)生已有的知識經(jīng)驗(yàn)的基礎(chǔ)上得到的結(jié)論,是來自于學(xué)生已有的數(shù)學(xué)知識水平的。

      三、總體上我的教學(xué)思路是由具體——抽象——具體。在學(xué)生已有的知識經(jīng)驗(yàn)的基礎(chǔ)上,一起來研究抽象的算式,尋找它們各自的特點(diǎn),從而概括它們的規(guī)律。在尋找規(guī)律的過程中,有同學(xué)是橫向觀察,也有同學(xué)是縱向觀察,老師都予以肯定和表揚(yáng),目的是讓學(xué)生從自己的數(shù)學(xué)現(xiàn)實(shí)出發(fā),去嘗試解決問題,又能使不同思維水平的學(xué)生得到相應(yīng)的滿足,獲得相應(yīng)的成功體驗(yàn)。

      四、在學(xué)習(xí)中大膽放手,把學(xué)生放在主動探索知識規(guī)律的主體位置上,讓學(xué)生能自由地利用自己的知識經(jīng)驗(yàn)、思維方式去發(fā)現(xiàn)規(guī)律,驗(yàn)證規(guī)律,表示規(guī)律,歸納規(guī)律,應(yīng)用規(guī)律。

      在教學(xué)過程中,也有不盡人意的地方,如雖然本節(jié)課在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上還不夠,因此在歸納乘法分配律的內(nèi)容時,學(xué)生難以完整地總結(jié)出乘法分配律,另外還有部分學(xué)困生對乘法分配律不太理解,運(yùn)用時問題較多等。

      2015年3月22日

      第四篇:《乘法分配律》教學(xué)反思

      《乘法分配律》教學(xué)反思

      《乘法分配律》教學(xué)反思1

      乘法分配律是所有運(yùn)算律中形式變化較為復(fù)雜,且跨越加法和乘法兩級運(yùn)算的定律,對學(xué)生的記憶、理解與運(yùn)用都提出了較高的要求。教學(xué)中,教師需要在探析錯因、讀法糾正、變式訓(xùn)練上做足功夫,巧制策略。學(xué)生在正式接觸乘法分配律之前,學(xué)生陸續(xù)掌握了加法和乘法的交換律和結(jié)合律,并能熟練使用這些定律進(jìn)行簡單的運(yùn)算。照常理推測,同為等式恒等變換,借助已有的經(jīng)驗(yàn),學(xué)生對于乘法分配律應(yīng)該很容易接受。然而,實(shí)際情況卻不容樂觀,學(xué)生在運(yùn)用乘法分配律進(jìn)行簡算時出錯率較高。為此,教師應(yīng)巧制策略,幫助學(xué)生克服困難。

      如何幫學(xué)生建立數(shù)學(xué)模型,展現(xiàn)乘法分配律的性質(zhì),是教學(xué)的根本,也是學(xué)生理解的前提。要讓學(xué)生對乘法分配律有深刻準(zhǔn)確的記憶和理解,用最符合學(xué)生心理特征的方式進(jìn)行闡述才是上策。

      為此,我改進(jìn)了教學(xué)方式——切換讀法,化難為易。

      [例題]植樹節(jié)那天,學(xué)校組織二(1)班的學(xué)生植樹,上午植樹4小時,下午植樹2小時,平均每小時植樹25棵,問:植樹節(jié)那天,學(xué)生一共植樹多少棵?

      步驟1:學(xué)生列式多為“25×4+25×2”和“25×(4+2)”兩種式子。

      步驟2:簡述各算式的算理:25×4+25×2表示先分別求出半天的植樹數(shù),再求一天的植樹總數(shù);25×(4+2)表示先求植樹總時長,再求植樹總數(shù)。

      步驟3:引導(dǎo)學(xué)生從數(shù)字計(jì)算的.角度去理解:25×4+25×2表示兩個積的和,25×(4+2)表示兩個數(shù)的積。接著用一句話揭示它們的共同點(diǎn):4個25加上2個25等于6個25,6就是4與2的和。以實(shí)例為對象,換成通俗的說法,完美呈現(xiàn)了算式的內(nèi)涵,深化了學(xué)生的理解。

      步驟4:針對代數(shù)式表示的乘法分配律“a×c+b×c=(a+b)×c”,讓學(xué)生嘗試用通俗方式解讀,即a個c加上b個c等于(a+b)個c。

      實(shí)踐證明,滲入思維的讀法比機(jī)械復(fù)讀教學(xué)效果要好。

      《乘法分配律》教學(xué)反思2

      乘法分配律是在學(xué)生學(xué)習(xí)了加法交換律、加法結(jié)合律及乘法交換律、乘法結(jié)合律的基礎(chǔ)上教學(xué)的。乘法分配律也是學(xué)生較難理解與敘述的定律。如何教學(xué)能使學(xué)生較好的理解乘法分配律的內(nèi)涵,并能正確的運(yùn)用定律進(jìn)行簡便運(yùn)算呢?我做了一下幾點(diǎn)嘗試。

      一、創(chuàng)設(shè)師生競賽,激發(fā)學(xué)習(xí)欲望。

      上課教師先出示:(1)8×(125+11) (2)(100+1)×23

      (3 )648×5+352×5

      老師和同學(xué)們做一個比賽,王老師口算,你們用計(jì)算器算,看看誰能獲。

      結(jié)果教師又快又對,學(xué)生都很奇怪,教師順勢導(dǎo)入:同學(xué)們都特別想知道在比賽過程中,學(xué)生用計(jì)算器都沒有老師口算得快的原因嗎?是因?yàn)槔蠋熡诌\(yùn)用了乘法的一個法寶,知道了乘法的又一個定律可以使運(yùn)算簡便,你們想知道嗎?今天我們就來探究其中的奧秘。

      這樣的導(dǎo)入讓學(xué)生充滿了求知的欲望,激發(fā)了學(xué)習(xí)的熱情。

      二、設(shè)計(jì)思考問題,學(xué)生自主探究。

      出示例題后,學(xué)生獨(dú)立解答,然后教師出示思考問題,學(xué)生自主探究。

      討論:

      1、這兩種方法有什么不同?兩個算式的結(jié)果如何?用什么符號連接?

      2、那么等號連接的這兩個算式有什么特點(diǎn)和聯(lián)系呢?請同學(xué)們帶著老師給出的三個問題展開討論。(課件出示問題)生A:我發(fā)現(xiàn)左邊括號外的那個數(shù),寫到右邊都要乘兩次。

      生B:兩個數(shù)的和同一個數(shù)相乘,可以把兩個加數(shù)分別同這個數(shù)相乘,再把兩個積相加,結(jié)果不變。

      整個教學(xué)過程通過學(xué)生觀察、比較、分析理解乘法分配律的含義,教師引導(dǎo)學(xué)生概括出乘法分配律的內(nèi)容。

      三、練習(xí)有坡度,前后有呼應(yīng)。

      在本課的練習(xí)設(shè)計(jì)上,我力求有針對性,有坡度,同時也注意知識的延伸。練習(xí)的形式多樣,課本上的填空題解決以后,設(shè)計(jì)了判斷題和練習(xí)題,把學(xué)生易出錯的.問題提前預(yù)設(shè)好,而且通過練習(xí)讓學(xué)生明白乘法分配律也可以兩個數(shù)的差,也可以是三個數(shù)的和,使學(xué)生對乘法分配律的內(nèi)容得到進(jìn)一步完整,也為后面利用乘法分配律進(jìn)行簡算打下伏筆。為了讓學(xué)生初步感受乘法分配律能使一些計(jì)算簡便,我特意把開始和老師比賽的題目讓學(xué)生運(yùn)用今天所學(xué)知識進(jìn)行計(jì)算,學(xué)生非常有興趣,在練習(xí)中培養(yǎng)了學(xué)生分析、推理、概括的思維能力。

      總之,在本堂課中新的教學(xué)理念有所體現(xiàn),是一節(jié)本色的數(shù)學(xué)課堂。但在具體的操作中還缺乏成熟的思考,自主探究環(huán)節(jié)對問題的設(shè)計(jì)不夠簡潔,還可以再做斟酌。實(shí)際分配律的揭示過程與教案設(shè)計(jì)順序有些出入,感覺效果沒有預(yù)想的好,上課時對于教案的熟悉程度還有待加強(qiáng)。

      《乘法分配律》教學(xué)反思3

      學(xué)生對于乘法分配律和結(jié)合律極容易混淆,而且符號容易抄錯。針對這些情況,在教學(xué)中應(yīng)該注意什么呢?

      1、乘法分配律的教學(xué)既要注重它的外形結(jié)構(gòu)特點(diǎn),也要同時注重其內(nèi)涵。

      教學(xué)時我們往往注重等式兩邊的外形特點(diǎn),即a×(b+c)=a×b+a×c缺乏從乘法意義角度的理解。這時教師可提出為什么兩個算式是相等的?這里不僅從解題的角度理解,如(2+7)×3=+2×3+7×3是相等的,還有從乘法的意義的角度理解,即左邊表示出3個9,右邊也表示出3個9,所以(2+7)×3=2×3+7×3

      2、注意區(qū)分乘法結(jié)合律與乘法分配律的特點(diǎn),多進(jìn)行對比練習(xí)。

      乘法結(jié)合律的特征是幾個數(shù)連乘,而乘法分配律特征是兩個數(shù)的和乘以一個數(shù)或兩個積的`和。在練習(xí)題中(40+4)×25與(40×4)×25這種題學(xué)生特別容易出錯。為了更好地掌握,可多進(jìn)行一些對比練習(xí),如進(jìn)行題組對比25×(8+4)和25×8×4;25×125×25×4和25×125+25×8;每組算式有什么特征和區(qū)別?符合什么運(yùn)算定律?應(yīng)用什么運(yùn)算定律可以使計(jì)算簡便?為什么要這樣算?

      3、讓學(xué)生進(jìn)行一題多解的練習(xí),加深對乘法結(jié)合律和乘法分配律的理解

      如:125×88;101×89你能有幾種方法?125×88①豎式計(jì)算②125×8×11③125×(80+8)④(100+25)×88等等。101×89①豎式計(jì)算②(100+1)×89③101×(100-1)④101×(80+9)⑤101×(90-1)等。對于不同解法,引導(dǎo)學(xué)生進(jìn)行對比分析,什么時候用乘法結(jié)合律簡便?什么時候用乘法分配律簡便?力爭達(dá)到“用簡便計(jì)算法進(jìn)行計(jì)算”成為學(xué)生一種自主行為,并能根據(jù)題目的特色靈活選擇適當(dāng)?shù)乃惴ǖ哪康摹?/p>

      4、多練

      針對題目多次練習(xí)。練習(xí)時注意練習(xí)量和時間的安排。剛開始可以天天練習(xí),過段時間以后可以一兩天練習(xí)一次,再到一周練習(xí)一次,典型題型課選擇(40+4)x25;(40x4)x25;63x25+63x75;65x103-65x3;56x99+66;125x8;48x102;48x99等。+

      對于比較特殊的題目可以間斷性練習(xí),對優(yōu)生提出掌握的要求,如:36x98+72;68x25+68+68x74;32x125x25等。

      《乘法分配律》教學(xué)反思4

      問題的探索

      1、小組合作,培養(yǎng)估計(jì)意識

      師:我們先來估計(jì)一下他們大約用了多少塊瓷磚好嗎?

      生:思考并回答,只要是學(xué)生說的合理就可以

      估計(jì)的方法很多:估計(jì)一行有10塊,一共有10行,10×10=100(塊)

      估計(jì)左邊有50塊,右邊有50塊,合起來一共有100塊。

      ……

      師:那到底誰的估計(jì)最合適呢?讓我們共同來研究一下好嗎?

      2、自主探索,驗(yàn)證估計(jì)的正確性

      師:請同學(xué)們用自己喜歡的方式做到練習(xí)本上。把你想到的算法都寫出來。

      先獨(dú)立思考,然后在小組內(nèi)交流一下。

      生:思考、交流

      師:看到剛才同學(xué)們積極思考的樣子,老師很想知道你們是怎么想的?誰想告訴老師和同學(xué)們?

      提醒其他學(xué)生認(rèn)真傾聽,同時對同伴的回答進(jìn)行補(bǔ)充。

      可能出現(xiàn)的結(jié)果:(1)(6+4)×9=10×9=90(塊)

      (2)6×9+4×9=54+36=90(塊)

      (3)6×9=54(塊)4×9=36(塊)54+36=90(塊)

      學(xué)生還有可能出現(xiàn)其它的不同的思考方法,但只要有理由老師都要進(jìn)行肯定。

      學(xué)生思考出的算式可以讓學(xué)生自己寫到黑板上,然后老師根據(jù)自己的需要邊總結(jié)邊調(diào)整出如下的板書:

      (1)(6+4)×9=10×9=90(塊)

      (2)6×9+4×9=54+36=90(塊

      師:通過計(jì)算我們可以看出工人師傅一共貼了90塊瓷磚,那誰估計(jì)的'答案最合適呢?掌聲鼓勵下自己。

      3、分析比較

      師:仔細(xì)觀察兩種方法有什么不同

      生:第一種方法是先求出一行有多少塊,再求一共有多少塊;第二種方法是先求出一面墻用了多少塊,再求出另一面墻用了多少塊,最后求一共用了多少塊。

      4、結(jié)論:

      師:我們來比較一下這兩個算式的結(jié)果如何?

      生:相等

      師:用什么符號連接(結(jié)果相等,用等號連接)

      (6+4)×9=6×9+4×9,(板書)

      教學(xué)反思:本節(jié)課的重點(diǎn)和難點(diǎn)是對規(guī)律的探索,在得出算式(6+4)×9=6×9+4×9以后,我沒有用例子讓學(xué)生很快的歸納出一個一般的結(jié)論,而是引導(dǎo)學(xué)生觀察、發(fā)現(xiàn)、猜想、舉例驗(yàn)證、歸納概括等,讓學(xué)生把靜態(tài)的知識結(jié)論轉(zhuǎn)化成動態(tài)的探索對象,使認(rèn)知任務(wù)本身有了一種誘發(fā)學(xué)生較高思維水平的潛力,給規(guī)律的探索過程注入了生命力。

      《乘法分配律》教學(xué)反思5

      乘法分配律是第三章的教學(xué)難點(diǎn)也是重點(diǎn)。這節(jié)課的設(shè)計(jì)。我是從學(xué)生的生活問題入手,利用與生活密切相關(guān)的情境圖植樹問題展開。這節(jié)課我力圖將教學(xué)生學(xué)會知識,變?yōu)橹笇?dǎo)學(xué)生會學(xué)知識。通過讓學(xué)生經(jīng)歷了“觀察、初步發(fā)現(xiàn)、舉例驗(yàn)證、再觀察、發(fā)現(xiàn)規(guī)律、概括歸納”這樣一個知識形成的過程?;仡櫿麄€教學(xué)過程,這節(jié)課的亮點(diǎn)主要體現(xiàn)在以下幾個方面:

      在教學(xué)中,通過這次植樹情境讓學(xué)生感到數(shù)學(xué)就是從身邊的生活中來的,激發(fā)學(xué)生學(xué)習(xí)的`熱情?!耙还灿卸嗌倜麑W(xué)生參加這次植樹活動?”。讓學(xué)生根據(jù)提供的條件,用不同的方法解決,從而發(fā)現(xiàn)(4+2)×25=4×25+2×25這個等式。然后請學(xué)生觀察,這個等式兩邊的運(yùn)算順序,使學(xué)生初步感知“乘法分配律”。再讓學(xué)生“觀察這個等式左右兩邊的不同之處”,再次感知“乘法分配律”。同時利用情景,讓學(xué)生充分的感知“乘法分配律”,為后來“乘法分配律”的探究提供了有力的保障。

      重點(diǎn)是理解算式的意義,我們在引導(dǎo)中進(jìn)行總結(jié)(4+2)個25的和也可以寫為25分別乘以4和2,再把他們的積相加的形式,接著讓同學(xué)們再次深化理解自己嘗試寫出幾個類似的算式,由于是網(wǎng)上教學(xué),沒辦法直接展示學(xué)生的算式,于是我在大屏幕上寫出幾個算式,讓同學(xué)們來說一說他們的觀察到的算式,從而總結(jié)出乘法分配律的規(guī)律。進(jìn)而通過計(jì)算,發(fā)現(xiàn)運(yùn)用乘法分配律可以使得計(jì)算更加簡便。

      這節(jié)課的不足:

      當(dāng)我們運(yùn)用乘法分配律進(jìn)行練習(xí)的時候,我發(fā)現(xiàn)學(xué)生在做題時會錯誤的把中間的+抄寫成×,導(dǎo)致錯誤。這說明學(xué)生沒有完全對乘法結(jié)合律和乘法分配律進(jìn)行區(qū)分,還需要再次進(jìn)行強(qiáng)調(diào)。

      這節(jié)課上對學(xué)生的主題地位有所忽視。雖然是網(wǎng)課教學(xué),沒辦法與學(xué)生共同在一間教室,沒辦法與學(xué)生面對面教學(xué),但是顧慮到時間的限制與學(xué)生的互動,留給學(xué)生的思考的時間不夠充分,接下來在教學(xué)設(shè)計(jì)時可以減少授課容量,留給學(xué)生充分的思考時間。

      《乘法分配律》教學(xué)反思6

      師:(出示掛圖)仔細(xì)觀察,從圖中你獲得哪些信息?

      買這些衣服,戚老師一共要付多少元呢?你能用兩種方法列出綜合算式嗎?

      生:(65+35)×12=1200(元)

      生:65×12+35×12=1200(元)

      師:每個算式的結(jié)果都是1200元,那么這兩個算式有什么關(guān)系?

      生:(65+35)×12=65×12+35×12

      師:剛才我們是通過計(jì)算發(fā)現(xiàn)兩個算式相等的,大家能根據(jù)題意說說兩個算式為什么相等嗎?

      (學(xué)生小組討論)

      師:指名學(xué)生回答。

      生:一件上衣和一條褲子合起來叫一套衣服,就是65元和35元的和,買12套衣服的價錢就是12個65元和12個35元的和;每件上衣65元,12件上衣的價錢就是12個65元,每條褲子35元,12條褲子就是12個35元,合起來也是12套衣服的價錢,所以(65+35)×12=65×12+35×12。

      師:說得真棒,誰能概括地說一說。

      生:12個65加12個35等于12個65與35的和。

      師:請同桌互相說一遍。

      師:照這樣,你能再寫出幾組這樣的等式嗎?(學(xué)生獨(dú)立思考。)

      (過一會兒,一只只小手舉起來了,教師指名回答。)

      生1:(15+25)×8=15×8+25×8。

      生2:a×(5+2)=a×5+a×2。

      生3:(+▲)×■=×■+▲×■。

      ……

      師:同桌檢查一下,對方寫的等式兩邊是否相等?

      師:同學(xué)們仔細(xì)觀察,對比上面的等式左右兩邊的式子有什么特征?你從中發(fā)現(xiàn)什么規(guī)律?小組內(nèi)的同學(xué)可以互相商量、討論。

      生1:我們小組發(fā)現(xiàn):等號左邊的式子不是兩個數(shù)的和乘一個數(shù)就是一個數(shù)乘兩個數(shù)的和,等右左邊的式子都是括號內(nèi)的兩個數(shù)與括號外的那個數(shù)相乘,最后把兩個積相加起來。

      生2:我們小組從乘法的意義理解發(fā)現(xiàn):比如(15+25)×8=×8+(

      )×8。因?yàn)?5和25的和等于40,左邊的式子可以理解為40個8,右邊的`式子可以理解為15個8加25個8一共是40個8,所以40個8等于15個8加25個8。

      ……

      師;同學(xué)們剛才觀察非常仔細(xì),都代表本組講出了你們發(fā)現(xiàn)的規(guī)律。

      師:像(65+35)×12=65×12+35×12這樣的等式,你能寫出多少個?

      生:無數(shù)個。

      師:你們能不能像乘法交換律和乘法結(jié)合律那樣也用一個字母式子來表示呢?

      學(xué)生嘗試用字母表示乘法分配律,教師巡視。

      生:a×(5+2)=a×5+a×2。

      生:(+▲)×■=×■+▲×■

      生(a+b)×c=a×c+b×c。

      ……

      師:你們真棒!今天我們發(fā)現(xiàn)的規(guī)律就是乘

      法分配律。乘法分配律常表示為(a+b)×c=a×c+b×c。

      你們能用自己的話說說什么是乘法分配律嗎?

      指名學(xué)生回答。

      師小結(jié):兩個數(shù)的和乘第三個數(shù),可以把兩個數(shù)分別和第三個數(shù)相乘,再求和。

      教后反思:

      1、關(guān)注學(xué)生已有的知識經(jīng)驗(yàn)

      以學(xué)生身邊熟悉的情境為教學(xué)的切入點(diǎn),激發(fā)學(xué)生主動學(xué)習(xí)的需要,為學(xué)生創(chuàng)設(shè)了與生活環(huán)境、知識背景密切相關(guān)的感興趣的學(xué)習(xí)情境,通過兩種算式的比較,喚醒了學(xué)生已有的知識經(jīng)驗(yàn),使學(xué)生初步感知乘法分配律。讓學(xué)生始終處于主動探索知識的最佳狀態(tài),促使學(xué)生對原有知識進(jìn)行更新、深化、突破、超越。

      2、提供自主探索的機(jī)會

      一堂數(shù)學(xué)課可以有不同種教法,怎樣教才能在數(shù)學(xué)活動中培養(yǎng)學(xué)生的創(chuàng)新能力呢?我覺得,最重要的是保證學(xué)生的主體地位,提供自主探索的機(jī)會。在探索乘法運(yùn)算律的過程中,提出的問題有易到難,層層遞進(jìn),不僅為學(xué)生提供了自主探索的時間和空間,使學(xué)生經(jīng)歷乘法運(yùn)算律的產(chǎn)生和形成過程,而且讓學(xué)生發(fā)現(xiàn)其中的數(shù)學(xué)規(guī)律與奧秘,從而激發(fā)學(xué)生對數(shù)學(xué)深層次的熱愛。

      在日常生活中,數(shù)學(xué)真是無處不在,處處留心皆學(xué)問。如果學(xué)生們能處處留心數(shù)學(xué)問題,并運(yùn)用數(shù)學(xué)知識去解決這些實(shí)際問題;能夠在認(rèn)真觀察的基礎(chǔ)上,根據(jù)數(shù)字的特點(diǎn),靈活地選擇運(yùn)算定律,找到適合自己的最佳的簡算方法,那么自己的教學(xué)就成功了。盡管在課堂上也許還不能夠全部掌握簡算的知識,只要在日常的學(xué)習(xí)和生活計(jì)算的過程中,能夠?qū)W會善于觀察,自覺運(yùn)用,就能達(dá)到熟能生巧的效果,學(xué)習(xí)成績與學(xué)習(xí)能力也會有很大程度的提升。

      《乘法分配律》教學(xué)反思7

      乘法分配律是小學(xué)階段學(xué)生比較難理解與敘述的運(yùn)算定律,但的確又非常重要、運(yùn)用廣泛。在本節(jié)教學(xué)過程的設(shè)計(jì)上我采用了讓孩子通過“聯(lián)系實(shí)際、感知建模;分類整理,生成模型;發(fā)現(xiàn)規(guī)律,舉例驗(yàn)證;表示規(guī)律,建構(gòu)模型;概括規(guī)律,完善模型;應(yīng)用規(guī)律,感受模型”的探索過程,完成本節(jié)的教學(xué)任務(wù)。

      在教學(xué)過程中,以突破乘法分配律的教學(xué)重點(diǎn)和難點(diǎn)為切入點(diǎn),對本節(jié)課知識的學(xué)習(xí)起到了舉足輕重的作用。根據(jù)自己的教學(xué)教訓(xùn),在平常的教學(xué)中,總是發(fā)現(xiàn)學(xué)生在學(xué)習(xí)完乘法分配律之后容易出現(xiàn)(a+b)×c=a×c+b的現(xiàn)象仔細(xì)研究其原因,其實(shí)是學(xué)生學(xué)的記的只是乘法分配律的外在形式,對公式只不過是表面膚淺的忘記,而沒有真正理解乘法分配律內(nèi)在的數(shù)學(xué)意義。因此,我就打破通過觀察 發(fā)現(xiàn) 猜想 驗(yàn)證 概括的傳統(tǒng)教學(xué)思路,除了在外在形式上認(rèn)識規(guī)律(教材意圖),又從乘法的意義入手,使學(xué)生進(jìn)一步從算式意義方面得出了(a+b)×c=a×b+b×c這樣確鑿無疑的結(jié)論。讓學(xué)生對乘法分配律的理解不再只是停留在外在的“形”,而是又進(jìn)入“質(zhì)”的深化。這種教學(xué)建立在學(xué)生認(rèn)知規(guī)律的基礎(chǔ)之上,實(shí)現(xiàn)了有效的建立模型突破了本節(jié)的第一個難點(diǎn)。從課后作業(yè)可以看出,這種教學(xué)效果明顯好于以前。

      在突破本節(jié)第二個難點(diǎn):乘法分配律容易跟乘法結(jié)合律混淆的現(xiàn)象時。敢于挑戰(zhàn)自我,不再泛泛地講兩個規(guī)律的區(qū)別與聯(lián)系,而采用反式教學(xué)寫出25×(4×8)=25×4+25×8的現(xiàn)象,讓學(xué)生既懂得乘法結(jié)合律和分配律的區(qū)別,又找到了乘法分配律概念的重點(diǎn)。

      在本節(jié)課的練習(xí)設(shè)計(jì)上,力求有針對性、有坡度的知識延伸,出示擴(kuò)展型的'練習(xí),對分配律的概念加以升華。

      這些方面,只是我對自己原來的教學(xué)在反思與對比中覺得是對我而言較為進(jìn)步的一點(diǎn)點(diǎn)。但是,在實(shí)際的課堂操作中,整個教學(xué)過程也出現(xiàn)了許多不盡人意的地方。

      比如:課堂上由于緊強(qiáng)導(dǎo)致只顧自己思路,而忘了對學(xué)生的回答或知識的恰當(dāng)與否做出及時評定。還有,恐怕在規(guī)定時間內(nèi)完不成任務(wù),而把“總結(jié)”與“拓展”放錯了位置;學(xué)生參與的積極性沒有預(yù)想中那么高,可能與我相對缺乏激勵性語言有關(guān)等等問題。

      深入思考,覺得還是自己的業(yè)務(wù)不夠熟練,駕馭課堂能力低下而造成的。因此,我想:今后要從以下幾方面努力:

      一、深入鉆研,在挖掘教材上下功夫。

      二、多聽課,學(xué)習(xí)別人長處,多查閱資料學(xué)習(xí),提高自己的業(yè)務(wù)水平。

      最重要的是更新教學(xué)理念,在教學(xué)思路的“創(chuàng)新”上狠下功夫,讓學(xué)生看到的天天都是“新”老師,甚至忘記“傳統(tǒng)”形象,這是我最高的追求目標(biāo)。

      《乘法分配律》教學(xué)反思8

      師:出示教學(xué)掛圖并提問:從圖上你知道什么?

      生:張阿姨買5件夾克衫和5條褲子,一共要付多少錢?

      師:能自己列式解答嗎?(教師巡視,學(xué)生解答)

      讓用兩種不同方法解答的學(xué)生分別板演。

      師:說說65×5+45×5這種解答方法是怎樣想到的?

      生:先算買夾克衫和買褲子各用多少元?

      師:(65+45)×5這種方法呢?

      生:先算買一套衣服用多少元?

      師:比較這兩種方法,有什么不同和相同呢?

      生:想的方法不同導(dǎo)致列的算式不同,但結(jié)果相同

      師:結(jié)果相等的兩個算式可以用什么連接?

      生:等號揭示:(65+45)×5=65×5+45×5

      師:仔細(xì)觀察等號兩邊的算式,它們有什么聯(lián)系嗎?(從數(shù),運(yùn)算符號思考)

      生:結(jié)果相等,都有三個數(shù),5左邊出現(xiàn)了1次,右邊出現(xiàn)了兩次,左邊先加再乘,右邊先乘再加……

      師:等號左邊先算什么?右邊呢?

      生:等號左邊是65加45的和乘5,右邊是65乘5的積加45乘5的積。

      師:你能模仿著寫出幾組這樣的算式嗎?學(xué)生試寫

      學(xué)生列舉驗(yàn)證,教師將學(xué)生列舉的等式寫在黑板上,并讓學(xué)生說出等式兩邊的得數(shù)。

      師:還有很多同學(xué)想說,像這樣的例子舉得完嗎?

      師:由此你想到些什么?

      生:這里有規(guī)律。

      師:我們可以用什么來表示這種普遍存在的規(guī)律呢?

      生:(字母、符號、文字)

      師:試著寫一寫吧

      生:(a+b)×c=a×c+b×c

      (△+○)×□=△×□+○×□

      師:小結(jié):像這樣兩個數(shù)的和與一個數(shù)相乘,也可以用這兩個數(shù)分別與這個數(shù)相乘,再把他們的積相加,這就是乘法分配律。(指著算式說)

      順著讀,(任何事物都要從正反兩面去看)反過來讀乘法分配律

      反思:

      乘法分配律一課是蘇教國標(biāo)版教材四年級下冊的內(nèi)容,是在學(xué)生經(jīng)過較長時間的四則運(yùn)算學(xué)習(xí),對四則運(yùn)算已有較多感性認(rèn)識的基礎(chǔ)上學(xué)習(xí)的。學(xué)生接觸過加法、乘法的驗(yàn)算和口算等方面的知識,對此有較多的感性認(rèn)識,這是學(xué)習(xí)乘法分配律的.基礎(chǔ)。教材安排這個運(yùn)算律是從學(xué)生解決熟悉的實(shí)際問題引入的,讓學(xué)生通過觀察、比較和分析,初步感受運(yùn)算的規(guī)律。然后讓學(xué)生根據(jù)對運(yùn)算律的初步感知,舉出更多的例子,進(jìn)一步觀察比較,發(fā)現(xiàn)規(guī)律。教材有意識地讓學(xué)生運(yùn)用已有經(jīng)驗(yàn),經(jīng)歷運(yùn)算律的發(fā)現(xiàn)過程,讓學(xué)生在合作與交流中對運(yùn)算律地認(rèn)識由感性逐步發(fā)展到理性,合理地構(gòu)建知識。

      課程標(biāo)準(zhǔn)提出“讓學(xué)生經(jīng)歷有效地探索過程”。教學(xué)中以學(xué)生為主體,激勵學(xué)生動眼、動手、動口、動腦積極探究問題,促使學(xué)生積極主動地參與“觀察——舉例——得出結(jié)論”這一數(shù)學(xué)學(xué)習(xí)全過程。學(xué)生掌握了學(xué)習(xí)方法,就等于拿到了打開知識寶庫地金鑰匙。由于乘法分配律是本課教學(xué)難點(diǎn)。教學(xué)中安排了三個層次,首先學(xué)生在觀察等式,初步感知等式特征的基礎(chǔ)上模仿寫等式,在模仿中逐步明晰特征。第二層次在觀察比較中概括特征,通過“由此你想到了些什么”引發(fā)學(xué)生聯(lián)想到是否具有普遍性。從而得到猜想:是不是所有的三個數(shù)都具有這樣的特征,再通過學(xué)生大量的舉例,驗(yàn)證猜想,得出規(guī)律。本課從學(xué)生的學(xué)習(xí)情況來看,通過本課的學(xué)習(xí)不但掌握了乘法分配律的知識,更重要的是學(xué)會了數(shù)學(xué)方法,并產(chǎn)生運(yùn)用這一數(shù)學(xué)方法進(jìn)行探索的愿望和熱情。這些數(shù)學(xué)方法是學(xué)生終身學(xué)習(xí)必備的能力。

      《乘法分配律》教學(xué)反思9

      多年來,我一直從事小學(xué)數(shù)學(xué)教學(xué)工作,每當(dāng)教授學(xué)生學(xué)習(xí)運(yùn)用乘法分配律進(jìn)行簡便計(jì)算時,心里多少都有些發(fā)怵,因?yàn)檫@是一節(jié)比較抽象的概念課,學(xué)生極易混淆概念。這節(jié)課是在學(xué)生學(xué)習(xí)了加法交換律、結(jié)合律和乘法交換律、結(jié)合律的基礎(chǔ)上教學(xué)的。乘法分配律是學(xué)習(xí)這幾個定律中的難點(diǎn),它的教學(xué)重點(diǎn)是讓學(xué)生感知乘法分配律,知道什么是乘法分配律,難點(diǎn)是理解乘法分配律的意義,并會用乘法分配律進(jìn)行一些簡便運(yùn)算。于是,對于乘法分配律的教學(xué),我沒有把重點(diǎn)放在數(shù)學(xué)語言的表達(dá)上,而是把重點(diǎn)放在讓學(xué)生通過多種方法的計(jì)算去完整地感知,對所列算式進(jìn)行仔細(xì)觀察,比較和歸納,大膽提出自己的猜想并且舉例進(jìn)行驗(yàn)證。

      乘法分配律是四年級下冊的教學(xué)內(nèi)容,對本課的教學(xué)目標(biāo)我定位在:

      1、從學(xué)生已有的生活經(jīng)驗(yàn)出發(fā),通過口算、觀察、類比,歸納、驗(yàn)證、運(yùn)用等方法深化和豐富對乘法分配律的認(rèn)識。

      2、在教學(xué)中滲透“由特殊到一般,再由一般到特殊”的認(rèn)識事物的方法,培養(yǎng)學(xué)生獨(dú)立自主、主動探索、發(fā)現(xiàn)問題、解決問題的能力,提高學(xué)生對數(shù)學(xué)的應(yīng)用意識。

      新教材的一個鮮明特點(diǎn)就是,不再僅僅給出一些數(shù)值計(jì)算的實(shí)例,讓學(xué)生通過傳統(tǒng)的計(jì)算方法,發(fā)現(xiàn)規(guī)律,而是給學(xué)生出示一些熟悉的問題情境,讓學(xué)生從實(shí)際生活出發(fā),體會運(yùn)算定律的現(xiàn)實(shí)生活背景,這樣便于學(xué)生依托已有的知識經(jīng)驗(yàn),分析比較不同的解決問題的方法,從而引出運(yùn)算定律。

      本節(jié)課也一樣,教材提供了這樣一個主題圖:工人叔叔正在給墻面貼瓷磚呢,橫著一排貼9塊瓷磚,豎著有兩種顏色,其中黃色的貼4排,藍(lán)色的貼6排,需要解決的問題是:一共需要貼多少塊瓷磚?學(xué)生獨(dú)立計(jì)算,分別用兩種不同的方法計(jì)算:

      (1)4×9+6×9=90(塊);

      (2)(4+6)×9=90(塊)。

      接著我讓學(xué)生敘述等號左邊和右邊分別表示什么意思(根據(jù)情境)。目的是讓學(xué)生用等值變形對算式的理解。接著讓學(xué)生觀察兩個算式,讓學(xué)生說出:這兩個算是可以用“=”連接,即:(4+6)×9=4×9+6×9。學(xué)生繼續(xù)觀察等于號左邊和右邊的算式的特點(diǎn),目的是結(jié)合學(xué)生熟悉的問題情境,為后面的學(xué)習(xí)奠定基礎(chǔ),幫助學(xué)生體會運(yùn)算定律的現(xiàn)實(shí)背景。接著設(shè)計(jì)“懸念”,出示四組題目,把學(xué)生引到“兩個算式的結(jié)果相等”的情況中來。先讓學(xué)生猜想,然后驗(yàn)證,再讓學(xué)生仿照上式編題,讓每一個學(xué)生都不由自主的參與到研究中來。在編題的過程中,大多學(xué)生都編得正確,于是學(xué)生在參與探究中體驗(yàn)到了成就感,從而增強(qiáng)了他們學(xué)習(xí)的自信心和繼續(xù)探究的欲望。接著,請同學(xué)們在生活中尋找驗(yàn)證的`方法,分小組交流討論,學(xué)生的思維活動一下活躍起來了,紛紛探究其中的奧秘。

      用小組討論的方式,更促使學(xué)生之間進(jìn)行思維交流,激發(fā)學(xué)生希望獲得的成功的機(jī)會。通過實(shí)踐、討論,揭示了乘法分配律。再通過用自己喜歡的方式來表述乘法分配律加以內(nèi)化。這樣做,學(xué)生學(xué)得積極、學(xué)得主動、學(xué)得快樂。自己動手編題、自己動腦探索,從數(shù)量關(guān)系變化的多次類比中悟出規(guī)律。

      “給的現(xiàn)成”的少,學(xué)生“創(chuàng)造”的就多,這樣學(xué)生學(xué)會的不僅僅是一條規(guī)律,更重要的是,學(xué)生學(xué)會了自主、主動參與,學(xué)會了進(jìn)行合作、獨(dú)立思考、研究、發(fā)現(xiàn)等,像一個數(shù)學(xué)家一樣(這是我的鼓勵語言)!這對于一個十來歲的孩子來說,起到的激勵作用是無比巨大的。而愛思考、多思考、會思考的學(xué)習(xí)習(xí)慣,會讓孩子一生受益??v觀整個教學(xué)過程,學(xué)生學(xué)得輕松,學(xué)得主動。

      通過這節(jié)課的教學(xué),我感受到:認(rèn)真鉆研教材,深入挖掘教材中的寶貴資源,會使教材的內(nèi)涵更有深度、廣度,也為培養(yǎng)和發(fā)展學(xué)生思維的靈活性,提供了更加廣闊的空間。本節(jié)課的教學(xué)較好的貫徹了新課程標(biāo)準(zhǔn)的理念,具體體現(xiàn)在以下幾點(diǎn):

      一、主動探究、親身經(jīng)歷和體驗(yàn)

      學(xué)生的學(xué)習(xí)過程應(yīng)該是學(xué)習(xí)文本批判、質(zhì)疑和重新發(fā)現(xiàn)的過程,是在具體情境中整個身心投入到學(xué)習(xí)活動,去經(jīng)歷和體驗(yàn)知識形成的過程,也是身心多方面需要的實(shí)現(xiàn)和發(fā)展的過程。本節(jié)的教學(xué),我從主題圖入手,引出(4+6)×9=4×9+6×9。設(shè)計(jì)的目的是從解決這個問題的兩種算法中,得到乘法分配律的一個實(shí)例。接下來,出示四組題目,把學(xué)生引到“兩算式的結(jié)果相等”的情況中來。然后讓學(xué)生通過驗(yàn)證方法的可行性,再讓學(xué)生舉例驗(yàn)證方法的普遍性,最后由學(xué)生通過觀察、討論、發(fā)現(xiàn)、驗(yàn)證、歸納出乘法分配律。整個過程中,我不是把規(guī)律直接呈現(xiàn)給學(xué)生,而是讓學(xué)生通過自主探索去感悟發(fā)現(xiàn),使主體性得到了充分發(fā)揮。在這個過程中,學(xué)生經(jīng)歷了一次嚴(yán)密的科學(xué)發(fā)現(xiàn)過程:觀察――猜想――驗(yàn)證――結(jié)論,聯(lián)系生活,解決問題。為學(xué)生的可持續(xù)學(xué)習(xí)奠定了基礎(chǔ)。

      二、多向互動,注重合作交流

      在教學(xué)過程中,學(xué)生的認(rèn)知水平、思維方式、智力水平、活動能力都是不一樣的。因此,為了使不同層次的學(xué)生都能在學(xué)習(xí)中得到發(fā)展,我在本節(jié)課的教學(xué)中通過師生多向互動,特別是通過學(xué)生與學(xué)生之間的相互啟發(fā)與補(bǔ)充,來培養(yǎng)他們的合作意識,實(shí)現(xiàn)對“乘法分配律”這一定律的主動構(gòu)建過程,使學(xué)生個人的方法化為共同的學(xué)習(xí)成果,共同體驗(yàn)成功的喜悅,生命活力得到發(fā)展的過程。

      總之,在本節(jié)課中,雖然新的教學(xué)理念有所體現(xiàn),但對于個別學(xué)生的參與積極性還沒有充分調(diào)動起來,同學(xué)們雖然很投入,都似乎掌握了運(yùn)算定律的運(yùn)用,但在課堂練習(xí)時還是發(fā)現(xiàn)了一些問題,個別學(xué)生仍然出現(xiàn)了概念混淆,如:學(xué)生在計(jì)算形如a×(b+c)時,就把等于號右邊的算式錯誤的寫成:a×b+c,期間我還提醒大家注意,但實(shí)際運(yùn)用中,很多同學(xué)還是忘記用括號里的兩個加數(shù)a和b分別去乘括號外的乘數(shù)c。其實(shí)這個問題,也是我上課之前所發(fā)怵的原因,現(xiàn)在看來,對于這一問題,還必須在今后的練習(xí)過程中進(jìn)一步加強(qiáng)理解、運(yùn)用的訓(xùn)練,更有待我在今后的教學(xué)中不斷地探索改進(jìn)更好的教學(xué)方法,以求進(jìn)一步提升課堂教學(xué)效率。

      《乘法分配律》教學(xué)反思10

      《乘法分配律》是整個四年級運(yùn)算定律中最最重要的一節(jié)。理解乘法分配律、并會很好運(yùn)用他很重要!所以這節(jié)課重點(diǎn)就是在于讓學(xué)生理解乘法分配律的意義。

      整堂課基本完成了教學(xué)目標(biāo),但在環(huán)節(jié)設(shè)置以及細(xì)節(jié)等方面存在很多問題。

      1、概念課親歷過程需精確、嚴(yán)密

      本節(jié)課是一節(jié)概念課,旨在學(xué)生通過操作整理式子(多余3)——觀察式子——猜測觀點(diǎn)——驗(yàn)證觀點(diǎn)——總結(jié)定理,這樣一個過程。如果后面沒有反例,就證明存在這種成立的可能。而在整節(jié)課程中,學(xué)生沒有明確的用具體數(shù)字驗(yàn)證它是成立的,所以推導(dǎo)出來的不具有說服力??赡軙o學(xué)生一種不好的印象,猜想后就可以了,不需要驗(yàn)證、或者不需要反證來驗(yàn)證就可以了。所以概念怎么推到出來這個很重要。

      2、師生互動評判加強(qiáng)

      學(xué)生無論是回答好的還是不好的,對的還是不對的,都需要老師帶有評判性的語言,這樣對于學(xué)生的積極性都可以提高。同樣的對于典型的問題可以進(jìn)行當(dāng)堂解答,這都是課堂生成的一個過程,需要重視學(xué)生在整個課程的反映這個很重要。

      3、語言表達(dá)方面可以優(yōu)化

      在思維拓展的時候,本來應(yīng)該是“如果給你一把剪刀,你可以拼嗎?用最少的次數(shù)去剪,使它拼成一個長方形,你會剪嗎?拼有什么要求嗎?如果沒有相等的兩條邊,你可以創(chuàng)造嗎?”而在課堂上,表達(dá)的意思卻是:“如果給你一把剪刀,你可以拼嗎?拼有什么要求,如果沒有,你可以創(chuàng)造嗎?”結(jié)果導(dǎo)致最終在小組活動中,學(xué)生隨意亂剪,并不理解活動的意義。數(shù)學(xué)講究的`是嚴(yán)密性以及邏輯性,所以要求要明確一些,引導(dǎo)性的語言要貼切。整個語言組織,如:相等的兩條表而不是相同的兩條邊

      4、注重細(xì)節(jié)

      在整個過程中有同學(xué)列出38×(547-347)和(547-347)×38這兩個算式,它都可以用乘法分配律來講,但同時兩者也是有差異的。課堂生成的東西需要注意,并且坐好預(yù)設(shè)。將38放到前面,可以避免出錯。這個小的知識點(diǎn)也是需要去讓學(xué)生通過對比來理解的這很重要。方便他們積累避免錯誤。

      5、試教是一個課堂診斷的過程

      在上整堂課前,已經(jīng)去試教過3個班。雖然每個班情況都不一樣,但是試教就是跟孩子的磨合過程,試教過程中發(fā)現(xiàn)什么問題,再去改正過來,調(diào)整好。如果每個班都出現(xiàn)這樣的問題,說明課程設(shè)置不合理。需要對教案進(jìn)行修改。這也是為什么需要試教。希望在試教過程中,能夠反思,自己發(fā)現(xiàn)問題所在。

      總的來說,這個課從制作教案、試教、修改、正式教學(xué)過程中,感謝數(shù)學(xué)組尤其是師傅對我的指點(diǎn)以及磨煉。試教讓我明白了課件調(diào)整的重要性,一定要符合學(xué)生的認(rèn)知發(fā)展規(guī)律。讓我明白了數(shù)學(xué)語言是需要邏輯性,針對性以及嚴(yán)密性的。所以未來的路還很長,我還會再修改磨煉的。要相信好課是不斷磨出來的!

      《乘法分配律》教學(xué)反思11

      ①1355+5587=55(13+87)=5513+5587

      ②8(125+9)=8125+9

      ③(100-7)25=10025+725

      ④9947=(100-1)47=10047-1

      ⑤35201=35(201-1)

      ⑥79125=125(80-1)=12580+1251

      ⑦79125=125(80-1)=12580-1

      ⑧1252532=1258+425

      ⑨88125=808125

      ⑩24335=(245)33=10033

      學(xué)生對于乘法分配律和結(jié)合律極容易混淆,而且符號容易抄錯。針對這些情況,在教學(xué)中應(yīng)該注意什么呢?

      1、乘法分配律的教學(xué)既要注重它的外形結(jié)構(gòu)特點(diǎn),也要同時注重其內(nèi)涵。

      教學(xué)時我們往往注重等式兩邊的外形特點(diǎn),即a(b+c)=ab+ac缺乏從乘法意義角度的理解。這時教師可提出為什么兩個算式是相等的?這里不僅從解題的'角度理解,如(2+7)3=23+73是相等的,還有從乘法的意義的角度理解,即左邊表示出3個9,右邊也表示出3個9,所以(2+7)3=23+73

      2、注意區(qū)分乘法結(jié)合律與乘法分配律的特點(diǎn),多進(jìn)行對比練習(xí)。

      乘法結(jié)合律的特征是幾個數(shù)連乘,而乘法分配律的特征是兩個數(shù)的和乘一個數(shù)或兩個積的和。在練習(xí)題中(40+4)25與(404)25這種題學(xué)生特別容易出錯。為了更好地掌握,可多進(jìn)行一些對比練習(xí),如進(jìn)行題組對比25(8+4)和2584;25125254和25125+258;每組算式有什么特征和區(qū)別?符合什么運(yùn)算定律?應(yīng)用什么運(yùn)算定律可以使計(jì)算簡便?為什么要這樣算?

      3、讓學(xué)生進(jìn)行一題多解的練習(xí),加深對乘法結(jié)合律和乘法分配律的理解

      如:12588;10189你能有幾種方法?12588①豎式計(jì)算②125811③125(80+8)④(100+25)88等等。10189①豎式計(jì)算②(100+1)89③101(100-1)④101(80+9)⑤101(90-1)等.對于不同解法,引導(dǎo)學(xué)生進(jìn)行對比分析,什么時候用乘法結(jié)合律簡便?什么時候用乘法分配律簡便?力爭達(dá)到用簡便計(jì)算法進(jìn)行計(jì)算成為學(xué)生一種自主行為,并能根據(jù)題目的特色靈活選擇適當(dāng)?shù)乃惴ǖ哪康?

      4、多練

      針對題目多次練習(xí)。練習(xí)時注意練習(xí)量和時間的安排。剛開始可以天天練習(xí),過段時間以后可以一兩天練習(xí)一次,再到一周練習(xí)一次,典型題型課選擇(40+4)25;(404)25;6325+6375;65103-653;5699+66;48102;4899等。

      對于比較特殊的題目可以間斷性練習(xí),對優(yōu)生提出掌握的要求,如:3698+72;6825+68+6874;3212525等。

      只有在理解的基礎(chǔ)上反復(fù)練習(xí),才能使孩子對于乘法分配律牢固掌握,我將在反思過程中制定出切實(shí)可行的計(jì)劃,盡快使孩子消化吸收。

      《乘法分配律》教學(xué)反思12

      《乘法分配律》是四年級第七單元的內(nèi)容,在此之前,學(xué)生上個學(xué)期已經(jīng)學(xué)過了加法交換律和結(jié)合律、乘法交換律和結(jié)合律,同時這個學(xué)期第四單元混合運(yùn)算中也運(yùn)用了學(xué)過的運(yùn)算律進(jìn)行簡便的計(jì)算,上課之前,我以為學(xué)生對這一部分的知識并不陌生,所以就簡單地設(shè)計(jì)了復(fù)習(xí),回顧學(xué)過的運(yùn)算律,再讓學(xué)生發(fā)現(xiàn)運(yùn)算律在簡便計(jì)算中的運(yùn)用,接著就出示了上課的例題,讓學(xué)生從例題中尋找乘法分配律的影子,再通過舉例,比較發(fā)現(xiàn)乘法分配律并用字母表示出來,基本完成本節(jié)課的新授。通過鞏固練習(xí)讓學(xué)生認(rèn)識乘法分配律在計(jì)算和實(shí)際生活問題中的運(yùn)用。上課之前,我以為學(xué)生會跟著我的思路走,會很順利的上完整節(jié)課。但上完課,我發(fā)現(xiàn)我自己的課堂出現(xiàn)了很多的問題,總結(jié)了一下,我感覺自己在很多方面做得很不到位。

      開始的時候,學(xué)生回顧運(yùn)算律的時候出現(xiàn)了小的問題,讓我有一點(diǎn)束手無策,導(dǎo)致后面的復(fù)習(xí)題忘記出示,課堂環(huán)節(jié)被遺漏。

      教學(xué)新課的時候,學(xué)生的列式不是我想要的算式的形式,我就直接寫出我想要的算式的形式了,其實(shí)這個時候可以用乘法交換律變成我想要的形式,同時,我也在想,知識應(yīng)該是靈活的,我也應(yīng)該寫出學(xué)生說出的那種形式,因?yàn)檫@是學(xué)生自己列出來的式子,他自己肯定能理解的,但課上我的做法就有點(diǎn)急于求成,有點(diǎn)生搬硬套了。

      小組討論的時候也出現(xiàn)了很多的問題,本來我認(rèn)為這節(jié)課學(xué)生應(yīng)該很快地發(fā)現(xiàn)等式兩邊的特點(diǎn)的,也能很快地說出它們的共同點(diǎn)的,但上課的時候,小組討論中我發(fā)現(xiàn),學(xué)生根本不知道該如何發(fā)現(xiàn)這些算式的共同點(diǎn),即使有些同學(xué)發(fā)現(xiàn)了一些特點(diǎn)也不知道該如何表達(dá)出來,課后反思了,我發(fā)現(xiàn)自己的問題設(shè)計(jì)的不好,學(xué)生不能明白地知道該從哪里入手,是比較數(shù)字上面的關(guān)系,還是觀察式子上的關(guān)系,還是看符號上的關(guān)系,所以導(dǎo)致學(xué)生不知道該怎么說,還有一點(diǎn)重要的原因是我在討論之前比較例題中的等式的時候沒有清楚地講到讓學(xué)生觀察等式的運(yùn)算順序,導(dǎo)致學(xué)生不會說。另一方面,對于將等式抽象成一個字母表示的式子本身不是什么難事,但還要講出抽象的過程,對于四年級的`學(xué)生有一點(diǎn)難度,學(xué)生能感覺出來就是這樣寫,但說的有理有據(jù)真的很困難。所以在我們的教學(xué)中,我們要考慮到學(xué)生的認(rèn)知水平,讓學(xué)生說出他應(yīng)該有的想法就很好了,以后的教學(xué)中我們應(yīng)盡量讓學(xué)生進(jìn)行小組討論說出自己的想法,同時也要注意小組討論的程度問題,提出適合學(xué)生的、有效的問題是很有必要的。

      練習(xí)中,要更多地關(guān)注學(xué)生的能力發(fā)展,要讓學(xué)生說出自己的想法,把每一題的設(shè)計(jì)意圖理解清楚,根據(jù)題意正確地進(jìn)行計(jì)算,并掌握做題的方法。

      一節(jié)課下來發(fā)現(xiàn)自己出現(xiàn)了很多很多的問題,希望在以后的教學(xué)中能慢慢地減少這樣問題的出現(xiàn)。

      《乘法分配律》教學(xué)反思13

      今年我“高升”了!從畢業(yè)開始,一直在一二年級的數(shù)學(xué)徘徊,今年“高升”到了四年級!得到消息后,先是興奮,再是忐忑。興奮的是終于能教大孩子了。忐忑的是能教了這些大孩子嗎?于是每天像是剛工作時一樣,每天手寫備課、拎著凳子去聽師傅的每一節(jié)課,不敢有絲毫怠慢。更忐忑的是接到通知,于老師要來聽課,其中有我!于是馬上請教我的師傅車?yán)蠋?,車?yán)蠋熣J(rèn)為《乘法分配律》是一節(jié)數(shù)學(xué)味很濃的課,而且是一節(jié)特別值得研究的課,于是決定講這節(jié)課。經(jīng)過初步備課,我發(fā)現(xiàn)乘法分配律的運(yùn)用屬于運(yùn)算律中最有難度的部分,而且類型頗多,每一種都能讓學(xué)生琢磨半天,這讓我感覺這節(jié)課確實(shí)很有意思,也很有挑戰(zhàn)。

      因?yàn)閺膩頉]有執(zhí)教過高年級,我決定先“拜訪”名師。于是我上網(wǎng)搜視頻,設(shè)計(jì)。當(dāng)我看到葛麗霞老師的視頻,我被驚艷了!課堂中的每個環(huán)節(jié)都讓我感覺眼前一亮,幾個精彩瞬間如“乘法分配律的探索過程、用字母表示法還有課的小結(jié)……”仍記憶猶新,于是我決定就模仿葛麗霞老師的這節(jié)課。視頻看了三遍,教案看了無數(shù)遍。于是就“拿來”了這節(jié)課。

      可是經(jīng)過于老師的指導(dǎo),我發(fā)現(xiàn),我模仿的是教案的話,每一句話后面深意,每一句話的目的,我真的明白了嗎?備課,備了教案,備了老師,卻把最重要的要素——學(xué)生,忘記了。沒有找到學(xué)生的認(rèn)知起點(diǎn),沒有探索到學(xué)生的易錯點(diǎn),難點(diǎn)。后來,與我的師傅車?yán)蠋熞黄鹧芯?,對教案進(jìn)行了重建,重建教案主要有以下幾個改進(jìn):

      1、形意結(jié)合。

      初次教學(xué)乘法分配律時,由于對教材的挖掘比較膚淺,在教學(xué)中,只是重視了對“兩個數(shù)的和與一個數(shù)相乘,要用括號里的每一個加數(shù)分別與這個數(shù)相乘,再把積相加”這句話的理解,學(xué)生對乘法分配律的'印象完全停留在外形上,根本不知道為什么要用括號里的每個加數(shù)分別與括號外的數(shù)相乘,結(jié)果他們在應(yīng)用時,只會按照總結(jié)出的規(guī)律生搬硬套,全班竟有一半的人出現(xiàn)了問題;當(dāng)課堂進(jìn)行到乘法分配律的逆運(yùn)用時,很多學(xué)生更是不知道該從何入手,課堂效果特差。于是,重建教案中,在引導(dǎo)學(xué)生發(fā)現(xiàn)規(guī)律時,不僅注意了等式兩邊的“外形”結(jié)構(gòu)特點(diǎn),即“兩個數(shù)的和與一個數(shù)相乘,要用括號里的每一個加數(shù)分別與這個數(shù)相乘,再把積相加”,而且重視了對規(guī)律的本質(zhì)--乘法意義的理解。借此機(jī)會我再次打開教學(xué)參考,進(jìn)行了細(xì)細(xì)地研讀?!皩?2×105簡算時,要將105想成100與5的和。先求100個12是多少,再求5個12是多少,合起來就是105個12是多少?!笔茄?,在引導(dǎo)學(xué)生發(fā)現(xiàn)規(guī)律時,我只注意了等式兩邊的“外形”結(jié)構(gòu)特點(diǎn),卻缺乏對規(guī)律的本質(zhì)--乘法意義的理解。

      2、講解到位,注重知識點(diǎn)的前后聯(lián)系

      初建教案時,最后環(huán)節(jié)設(shè)計(jì)了展示二年級兩位數(shù)乘一位數(shù),以及三年級兩位數(shù)乘兩位數(shù)的電子課本,其目的是將前后的知識點(diǎn)加以聯(lián)系。我的課堂設(shè)計(jì)也延續(xù)了這一亮點(diǎn),可是我只是自顧自的講解了一番,孩子根本不知所云!

      起初我的感覺是這一環(huán)節(jié)主要是考慮優(yōu)等生的提升,所以在講解時也只是匆匆了事!但是,課后我覺得應(yīng)該讓孩子明白回顧這一環(huán)節(jié)的內(nèi)容,在出示乘法情境圖的時候可以采用課件展示的方式,出示23×(10+2)=23×10+23×2這一算式。為了讓學(xué)生更好地理解以前運(yùn)用過乘法分配律,還可出示長方形的周長公式(a+b)×2=a×2+b×2,唯有此,才能夠?qū)⑶昂笾R點(diǎn)聯(lián)系起來,水到渠成。

      新航程的號角已經(jīng)吹響,我想我應(yīng)該以此次講課為契機(jī),適應(yīng)數(shù)學(xué)教學(xué)的變化,向名師課堂學(xué)習(xí),從“拿來”到“思考”,關(guān)注學(xué)生,讓數(shù)學(xué)回歸本質(zhì),盡自己最大的努力讓每一個孩子學(xué)到有價值的數(shù)學(xué)!

      《乘法分配律》教學(xué)反思14

      《乘法分配律》是人教版四年級第三單元的內(nèi)容,學(xué)生已經(jīng)學(xué)過了加法交換律和結(jié)合律、乘法交換律和結(jié)合律,因此總以為學(xué)生對這一部分的知識并不陌生,就簡單地設(shè)計(jì)了復(fù)習(xí),回顧學(xué)過的運(yùn)算律,再讓學(xué)生發(fā)現(xiàn)運(yùn)算律在簡便計(jì)算中的運(yùn)用,接著就出示了新課的例題,讓學(xué)生從例題中尋找乘法分配律的規(guī)律,再通過舉例,比較發(fā)現(xiàn)乘法分配律并用字母表示出來,基本完成本節(jié)課的新授,最后通過鞏固練習(xí)讓學(xué)生認(rèn)識乘法分配律并在計(jì)算和實(shí)際生活問題中的運(yùn)用。但上完課,發(fā)現(xiàn)課堂出現(xiàn)了很多的問題,學(xué)生對乘法分配律和乘法結(jié)合律的混淆。那么在教學(xué)中應(yīng)該注意什么呢?

      1、乘法分配律的教學(xué)既要注重它的外形結(jié)構(gòu)特點(diǎn),也要同時注重其內(nèi)涵。

      教學(xué)時我們往往注重等式兩邊的`外形特點(diǎn),即a×(b+c)=a×b+a×c。這時教師可提出為什么兩個算式是相等的?這里不僅從解題的角度理解,如(2+7)×3=2×3+7×3是相等的,還有從乘法的意義的角度理解,即左邊表示出3個9,右邊也表示出3個9,所以(2+7)×3=2×3+7×3

      2、注意區(qū)分乘法結(jié)合律與乘法分配律的特點(diǎn),多進(jìn)行對比練習(xí)。

      乘法結(jié)合律的特征是幾個數(shù)連乘,而乘法分配律特征是兩個數(shù)的和乘以一個數(shù)或兩個積的和。在練習(xí)題中(40+4)×25與(40×4)×25這種題學(xué)生特別容易出錯。為了更好地掌握,可多進(jìn)行一些對比練習(xí),如進(jìn)行題組對比25×(8+4)和25×8×4;25×125×25×4和25×125+25×8;每組算式有什么特征和區(qū)別?符合什么運(yùn)算定律?應(yīng)用什么運(yùn)算定律可以使計(jì)算簡便?為什么要這樣算?

      3、讓學(xué)生進(jìn)行一題多解的練習(xí),加深對乘法結(jié)合律和乘法分配律的理解

      如:125×88;101×89你能有幾種方法?125×88①豎式計(jì)算;②125×8×11;③125×(80+8);④(100+25)×88等等。101×89①豎式計(jì)算;②(100+1)×89;③101×(100-1);④101×(80+9);⑤101×(90-1)等.對于不同解法,引導(dǎo)學(xué)生進(jìn)行對比分析,什么時候用乘法結(jié)合律簡便?什么時候用乘法分配律簡便?力爭達(dá)到“用簡便計(jì)算法進(jìn)行計(jì)算”成為學(xué)生一種自主行為,并能根據(jù)題目的特色靈活選擇適當(dāng)?shù)乃惴ǖ哪康?/p>

      4、多練

      針對題目多次練習(xí)。練習(xí)時注意練習(xí)量和時間的安排。剛開始可以天天練習(xí),過段時間以后可以一兩天練習(xí)一次,再到一周練習(xí)一次,典型題型課選擇(40+4)x25;(40x4)x25;63x25+63x75;65x103-65x3;56x99+66;125x8;48x102;48x99等。

      對于比較特殊的題目可以間斷性練習(xí),對優(yōu)生提出掌握的要求,如:36x98+72;68x25+68+68x74;32x125x25等。

      這樣一來,讓學(xué)生親歷觀察、歸納、猜測驗(yàn)證推理等探究發(fā)現(xiàn)的全過程,使學(xué)生不僅發(fā)現(xiàn)了乘法分配律的知識的內(nèi)含,而且學(xué)習(xí)了科學(xué)的探究的方法,數(shù)學(xué)思維能力也得到了發(fā)展。

      《乘法分配律》教學(xué)反思15

      教材分析:

      乘法分配律是北師大版小學(xué)數(shù)學(xué)四年級上冊第三單元最后一節(jié)的教學(xué)內(nèi)容。本課是在學(xué)生已經(jīng)學(xué)習(xí)掌握了乘法交換律、結(jié)合律,并能初步應(yīng)用這些定律進(jìn)行一些簡便計(jì)算的基礎(chǔ)上進(jìn)行學(xué)習(xí)的。乘法分配律是本單元教學(xué)的一個重點(diǎn),也是本單元內(nèi)容的難點(diǎn),教材是按照發(fā)現(xiàn)問題--提出假設(shè)--舉例驗(yàn)證--歸納結(jié)論等層次進(jìn)行的。然而乘法分配律又不是單一的乘法運(yùn)算,還涉及到加法的運(yùn)算,是學(xué)生學(xué)習(xí)的難點(diǎn)。因此本節(jié)課不僅使學(xué)生學(xué)會什么是乘法分配律,更要讓學(xué)生經(jīng)歷探索規(guī)律的過程,進(jìn)而培養(yǎng)學(xué)生的分析、推理、抽象、概括的思維能力。

      1.上課一開始,我創(chuàng)造性地使用教材,創(chuàng)設(shè)了訂校服的教學(xué)情境,使學(xué)生解決非常熟悉的生活問題、

      2.在此基礎(chǔ)上,我并沒有急于讓學(xué)生說出規(guī)律,而是繼續(xù)為學(xué)生提供具有挑戰(zhàn)性的研究機(jī)會:“請你再舉出一些符合自己心中規(guī)律的等式”,繼續(xù)讓學(xué)生觀察、思考、猜想,然后交流、分析、探討,感悟到等式的特點(diǎn),驗(yàn)證其內(nèi)在的規(guī)律,從而概括出乘法分配律。

      3.本節(jié)課有一定的亮點(diǎn),但其中出現(xiàn)了不少問題:學(xué)生參與的積極性沒有預(yù)想中那么高??赡芘c我相對缺乏激勵性語言有關(guān)。也有可能今天的題材學(xué)生不太感興趣。

      4.以后注意,學(xué)生不感興趣的材料,教師應(yīng)該想辦法使呈現(xiàn)的`這個材料變得能讓學(xué)生感興趣

      教學(xué)反思:

      乘法分配律是第三單元的一個難點(diǎn)。在理解、掌握和運(yùn)用上都有一定難度。因此如何上好這一課,讓學(xué)生真正地理解乘法分配律,并在理解的基礎(chǔ)上運(yùn)用好它?我覺得要注重形式上的認(rèn)識,更要注重意義上的理解。因?yàn)閱螐男问缴先ビ涀〕朔ǚ峙渎墒怯芯窒扌缘模院笤谶\(yùn)用乘法分配律的時候,遇到一些變式如:99×24+24會變得難以解決。注重意義的理解,能讓學(xué)生從更高的層面上去理解乘法分配律,那么將來無論形式上怎么變化,學(xué)生都能輕松運(yùn)用乘法分配律。

      北師大版的教材注重學(xué)生的探索活動,在探索中讓學(xué)生自己去發(fā)現(xiàn)的規(guī)律,才能讓他們真正地理解。本課是“探索與發(fā)現(xiàn)”的第三節(jié)課了,學(xué)生已經(jīng)有了一定的探索能力。因此本課的設(shè)計(jì)完全圍繞著學(xué)生的自主活動在進(jìn)行。

      總體上我的教學(xué)思路是由具體——抽象——具體。在學(xué)生已有的知識經(jīng)驗(yàn)的基礎(chǔ)上,一起來研究抽象的算式,尋找它們各自的特點(diǎn),從而概括它們的規(guī)律。在學(xué)習(xí)中大膽放手,把學(xué)生放在主動探索知識規(guī)律的主體位置上,讓學(xué)生能自由地利用自己的知識經(jīng)驗(yàn)、思維方式去發(fā)現(xiàn)規(guī)律,驗(yàn)證規(guī)律,表示規(guī)律,歸納規(guī)律,應(yīng)用規(guī)律。

      在教學(xué)過程中,也有不盡人意的地方,如雖然本節(jié)課在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上還不夠,因此在歸納乘法分配律的內(nèi)容時,學(xué)生難以完整地總結(jié)出乘法分配律,另外還有部分學(xué)困生對乘法分配律不太理解,運(yùn)用時問題較多等。

      第五篇:乘法分配律教學(xué)反思

      乘法分配律教學(xué)反思(15篇)

      乘法分配律教學(xué)反思1

      這是我對自己上的有關(guān)乘法分配律的一課的教學(xué)反思,我讓她們每次上完課都寫一寫反思,我想這樣她才能真正從實(shí)習(xí)中有所收獲。她的教學(xué)反思如下:

      乘法分配律不僅是本章的難點(diǎn)也是四年級學(xué)習(xí)的重點(diǎn)和難點(diǎn)。它是學(xué)生學(xué)生學(xué)習(xí)了加法交換律、加法結(jié)合律及乘法交換律、乘法結(jié)合律的基礎(chǔ)上教學(xué)的,是一節(jié)比較抽象的概念課,它的重點(diǎn)是讓學(xué)生感知乘法分配律,知道什么是乘法分配律,難點(diǎn)是理解乘法分配律的意義,并會用乘法分配律進(jìn)行一些簡便運(yùn)算。因此在教學(xué)過程中,怎樣引導(dǎo)學(xué)生成為重中之重。我的教學(xué)思路大體為以下幾點(diǎn):

      第一:在開始的課上,與學(xué)生一起回憶了乘法交換律與乘法結(jié)合律,做到溫故而知新,不至于學(xué)生了解乘法分配律時與前兩個運(yùn)算定律相混。

      第二:通過詢問學(xué)生關(guān)于校服的問題引入需要解決的問題,在此環(huán)節(jié)中,我詢問了學(xué)生們現(xiàn)在的校服是什么樣子的,接著呈現(xiàn)了,事先準(zhǔn)備好的班級同學(xué)穿校服的照片,這樣,學(xué)生們就會體會到,這堂課與他們息息相關(guān),然后我又問他們想擁有什么樣的校服,接著又呈現(xiàn)了搜索到的幾張關(guān)于校服的個性圖片,于是探討乘法分配律之旅,轟轟烈烈的開始了。

      第二:教材中此出問題的主題圖是關(guān)于植樹的問題,但考慮到學(xué)生的理解能力有限,我將題目改成校服上衣價錢,校服褲子價錢與總價錢的問題,這樣一來,更貼近學(xué)生生活。

      第三:讓學(xué)生列示計(jì)算的同時請兩名同學(xué)上黑板做題,這樣就節(jié)省了一些時間,但仍有不足。

      不足及改進(jìn):

      第一:學(xué)生在黑板上書寫很是不規(guī)范,占去了黑板的很大空間,導(dǎo)致我在詢問其他同學(xué)答題步驟及板書時無處可寫,黑板書寫有些許亂。

      第二:在兩名同學(xué)書寫完下去之后,我接著就詢問了其他同學(xué)的不同做法,于是學(xué)生只要有一點(diǎn)計(jì)算步驟不同的就舉手回答,導(dǎo)致回答不完,但各種方法又相似,黑板羅列太多,學(xué)生分不清主次。我想如果在來那名同學(xué)書寫完后,先不讓他們下去,而是留在講臺上解釋自己的先算什么后算什么,這樣下面的.同學(xué)也就曉得自己的解題步驟到底屬于哪一種,從而也可以節(jié)省部分時間。

      第三:在解釋乘法分配律意義方面不清楚,幾種理解方法過于著急地解釋給學(xué)生,導(dǎo)致學(xué)生聽得的迷迷糊糊。在這方面,我應(yīng)該更加清晰地理清自己的思路,該怎樣循序漸進(jìn)的向?qū)W生解釋這種運(yùn)算方法的意義。如先理解在題意中先算什么后算什么,再脫離情境觀察數(shù)的特點(diǎn),先算的誰和誰的積又算誰和誰的積,最后再怎樣,自然而然,學(xué)生會發(fā)現(xiàn)有共同的數(shù),進(jìn)而引導(dǎo)理解30個45加上20個45等于50個45。

      總之乘法分配律確實(shí)并不是很好理解,再加上老師不太能抓住重點(diǎn),雖然課前我一再給她講這地方那地方如何引導(dǎo)和如何講,但是她還是被學(xué)生給帶偏了,講解的不透徹,再加上不會維持學(xué)生聽課,所以學(xué)生掌握的不是很好。事后我又講了練習(xí)課加以鞏固,但是先入為主,并且也不像例題講的那么詳細(xì),還是有幾個孩子比較糊涂。所以單元測試中乘法分配律出錯最多。

      乘法分配律教學(xué)反思2

      乘法分配律是所有運(yùn)算律中形式變化較為復(fù)雜,且跨越加法和乘法兩級運(yùn)算的定律,對學(xué)生的記憶、理解與運(yùn)用都提出了較高的要求。教學(xué)中,教師需要在探析錯因、讀法糾正、變式訓(xùn)練上做足功夫,巧制策略。學(xué)生在正式接觸乘法分配律之前,學(xué)生陸續(xù)掌握了加法和乘法的交換律和結(jié)合律,并能熟練使用這些定律進(jìn)行簡單的運(yùn)算。照常理推測,同為等式恒等變換,借助已有的經(jīng)驗(yàn),學(xué)生對于乘法分配律應(yīng)該很容易接受。然而,實(shí)際情況卻不容樂觀,學(xué)生在運(yùn)用乘法分配律進(jìn)行簡算時出錯率較高。為此,教師應(yīng)巧制策略,幫助學(xué)生克服困難。

      如何幫學(xué)生建立數(shù)學(xué)模型,展現(xiàn)乘法分配律的性質(zhì),是教學(xué)的根本,也是學(xué)生理解的前提。要讓學(xué)生對乘法分配律有深刻準(zhǔn)確的記憶和理解,用最符合學(xué)生心理特征的方式進(jìn)行闡述才是上策。

      為此,我改進(jìn)了教學(xué)方式——切換讀法,化難為易。

      [例題]植樹節(jié)那天,學(xué)校組織二(1)班的.學(xué)生植樹,上午植樹4小時,下午植樹2小時,平均每小時植樹25棵,問:植樹節(jié)那天,學(xué)生一共植樹多少棵?

      步驟1:學(xué)生列式多為“25×4+25×2”和“25×(4+2)”兩種式子。

      步驟2:簡述各算式的算理:25×4+25×2表示先分別求出半天的植樹數(shù),再求一天的植樹總數(shù);25×(4+2)表示先求植樹總時長,再求植樹總數(shù)。

      步驟3:引導(dǎo)學(xué)生從數(shù)字計(jì)算的角度去理解:25×4+25×2表示兩個積的和,25×(4+2)表示兩個數(shù)的積。接著用一句話揭示它們的共同點(diǎn):4個25加上2個25等于6個25,6就是4與2的和。以實(shí)例為對象,換成通俗的說法,完美呈現(xiàn)了算式的內(nèi)涵,深化了學(xué)生的理解。

      步驟4:針對代數(shù)式表示的乘法分配律“a×c+b×c=(a+b)×c”,讓學(xué)生嘗試用通俗方式解讀,即a個c加上b個c等于(a+b)個c。

      實(shí)踐證明,滲入思維的讀法比機(jī)械復(fù)讀教學(xué)效果要好。

      乘法分配律教學(xué)反思3

      1、乘法分配律的教學(xué)既要注重它的外形結(jié)構(gòu)特點(diǎn),也要同時注重其內(nèi)涵

      教學(xué)中通過解決“濟(jì)青高速公路全長多少千米”這一問題,結(jié)合具體的生活情景,得到了(110+90)x2=110x2+90x2”這一結(jié)果,教學(xué)中只注重了等式的外形特點(diǎn),即兩個數(shù)的和乘一個數(shù)=兩個積的和。缺乏從乘法意義角度的理解。這時教師可提問“為什么兩個算式是相等的?”這里不僅要從解題思路的角度理解兩個算式是相等的,還要從乘法意義的'角度理解,即左邊表示200個2,右邊也表示200個2。所以(110+90)x2=110x2+90x2。

      2、注意區(qū)分乘法結(jié)合律與乘法分配律的特點(diǎn),多進(jìn)行對比練習(xí)

      乘法結(jié)合律的特征是幾個數(shù)連乘,而乘法分配律特征是兩數(shù)的和乘一個數(shù)或兩個積的和。在練習(xí)中(40+4)×25與(40×4)×25這種題學(xué)生特別容易出現(xiàn)錯誤。為了學(xué)生更好地掌握可以多進(jìn)行一些對比練習(xí)。如:進(jìn)行題組對比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;練習(xí)中可以提問:每組算是個有什么特征和區(qū)別?符合什么運(yùn)算定律的特征?應(yīng)用運(yùn)算定律可以使計(jì)算簡便嗎?為什么要這樣算?

      3、讓學(xué)生進(jìn)行一題多解的練習(xí),經(jīng)歷解題策略多樣性的過程,優(yōu)化算法,加深學(xué)生對乘法結(jié)合律與乘法分配律的理解

      如:計(jì)算125×88;101×89你能用幾種方法?125×88①豎式計(jì)算;②125×8×11;③125×(80+8)等。101×89①豎式計(jì)算;②(100+1)×89;③101×(80+9)等。對不同的解題方法,引導(dǎo)學(xué)生進(jìn)行對比分析,什么時候用乘法結(jié)合律簡便,什么時候用乘法分配律簡便?明確利用乘法結(jié)合律與乘法分配律進(jìn)行簡算,乘法結(jié)合律適用于連乘的算式,而乘法分配律一般針對有兩種運(yùn)算的算式。力爭達(dá)到“用簡便算法進(jìn)行計(jì)算”成為學(xué)生的一種自主行為,并能根據(jù)題目的特點(diǎn),靈活選擇適當(dāng)?shù)乃惴ǖ哪康摹?/p>

      4、多練

      針對典型題目多次進(jìn)行練習(xí)。練習(xí)時注意練習(xí)量和練習(xí)時間的安排。剛開始可以天天練,過段時間以后可以過1-2天練習(xí)一次,再到1周練習(xí)一次。典型題型可選擇(40+4)×25;(40×4)×25;63×25+63×75;65×103-65×3;56×99+56;125×88;48×102;48×99等。對于比較特殊的題目可間斷性練習(xí),對優(yōu)生提出掌握的要求。如68×25+68+68×74,32×125×25等。

      乘法分配律教學(xué)反思4

      本節(jié)課主要讓學(xué)生充分感知并歸納乘法分配律,理解其意義。教學(xué)中,我從解決實(shí)際問題(買衣服)引入,通過交流兩種解法,把兩個算式寫成一個等式,并找出它們的聯(lián)系。讓學(xué)生初步感知乘法分配律的基礎(chǔ)上再讓學(xué)生舉出幾組類似的算式,通過計(jì)算得出等式。

      在充分感知的基礎(chǔ)上引導(dǎo)學(xué)生比較這幾組等式,發(fā)現(xiàn)有什么規(guī)律?

      這里我化了一些時間,我發(fā)現(xiàn)學(xué)生在用語言文字?jǐn)⑹龇矫嬗行├щy,新教材上也沒有要求,因此,只要學(xué)生意思說到即可,后來,我提了這樣一個問題,你能用自己喜歡的方式來表示你發(fā)現(xiàn)的規(guī)律嗎?學(xué)生立即活躍起來,紛紛用自己喜歡的方式來闡明自己發(fā)現(xiàn)的規(guī)律:有用字母的,有用符號的,大部分學(xué)生會說,沒問題。對于應(yīng)用這一乘法分配律進(jìn)行后面的`練習(xí)還可以。

      如:書上第55頁的第5題,學(xué)生都想到用簡便方法去列式計(jì)算。整節(jié)課,學(xué)生還是學(xué)的比較輕松的。

      乘法分配律教學(xué)反思5

      《乘法分配律》是本章的難點(diǎn),它不是單一的乘法運(yùn)算,還涉及到加法運(yùn)算。教材對于這部分內(nèi)容的處理方法與前面講乘法結(jié)合律的方法類似。在設(shè)計(jì)本教案的過程中,我一直抱著“以學(xué)生發(fā)展為本”的宗旨,試圖尋找一種在完成共同的學(xué)習(xí)任務(wù)、參與共同的學(xué)習(xí)活動過程中實(shí)現(xiàn)不同的人的數(shù)學(xué)水平得到不同發(fā)展的教學(xué)方式。結(jié)合自己所教案例,對本節(jié)課教學(xué)策略進(jìn)行以下幾點(diǎn)簡要分析:

      一、教師要深入了解各層次學(xué)生思維實(shí)際,提供充分的信息,為各層次學(xué)生參與探索學(xué)習(xí)活動創(chuàng)造條件,沒有學(xué)生主體的主動參與,不會有學(xué)生主體的主動發(fā)展,教師若不了解學(xué)生實(shí)際,一下子把學(xué)習(xí)目標(biāo)定得很高,勢必會造成部分學(xué)生高不可攀而坐等觀望,失去信心浪費(fèi)寶貴的學(xué)習(xí)時間。以往教學(xué)該課時都是以計(jì)算引入,有復(fù)習(xí)舊知,也有比一比誰的計(jì)算能力強(qiáng)開場。我想是不是可以拋開計(jì)算,帶著愉快的心情進(jìn)課堂,因此,我在一開始設(shè)計(jì)了一個購物的情境,讓學(xué)生在一個寬松愉悅的環(huán)境中,走進(jìn)生活,開始學(xué)習(xí)新知。這樣所設(shè)的起點(diǎn)較低,學(xué)生比較容易接受。

      二、讓學(xué)生根據(jù)自己的愛好,選擇自己喜歡的方法列出來的算式就比較開放。學(xué)生能自由發(fā)揮,對所學(xué)內(nèi)容很感興趣,氣氛熱烈。到通過計(jì)算發(fā)現(xiàn)兩個形式不一樣的算式,結(jié)果卻是一樣的。這都是在學(xué)生已有的知識經(jīng)驗(yàn)的基礎(chǔ)上得到的`結(jié)論,是來自于學(xué)生已有的數(shù)學(xué)知識水平的。

      三、總體上我的教學(xué)思路是由具體——抽象——具體。在學(xué)生已有的知識經(jīng)驗(yàn)的基礎(chǔ)上,一起來研究抽象的算式,尋找它們各自的特點(diǎn),從而概括它們的規(guī)律。在尋找規(guī)律的過程中,有同學(xué)是橫向觀察,也有同學(xué)是縱向觀察,老師都予以肯定和表揚(yáng),目的是讓學(xué)生從自己的數(shù)學(xué)現(xiàn)實(shí)出發(fā),去嘗試解決問題,又能使不同思維水平的學(xué)生得到相應(yīng)的滿足,獲得相應(yīng)的成功體驗(yàn)。

      四、在學(xué)習(xí)中大膽放手,把學(xué)生放在主動探索知識規(guī)律的主體位置上,讓學(xué)生能自由地利用自己的知識經(jīng)驗(yàn)、思維方式去發(fā)現(xiàn)規(guī)律,驗(yàn)證規(guī)律,表示規(guī)律,歸納規(guī)律,應(yīng)用規(guī)律。

      在教學(xué)過程中,也有不盡人意的地方,如雖然本節(jié)課在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上還不夠,因此在歸納乘法分配律的內(nèi)容時,學(xué)生難以完整地總結(jié)出乘法分配律,另外還有部分學(xué)困生對乘法分配律不太理解,運(yùn)用時問題較多等。

      乘法分配律教學(xué)反思6

      《乘法分配律》是一節(jié)比較抽象的概念課,是學(xué)生們學(xué)習(xí)了加法交換律和結(jié)合律,以及乘法的交換律和結(jié)合律的基礎(chǔ)上進(jìn)行教學(xué)的。本節(jié)課的教學(xué)重點(diǎn)是乘法分配律的特點(diǎn)和應(yīng)用。開始導(dǎo)入我是利用小學(xué)教學(xué)熱身賽展開的教學(xué)。9×37+9×63和9×(37+63)。左右兩排學(xué)生做不同的題,讓學(xué)生認(rèn)識到這兩道題難易程度的不同,用的時間也是不同的,體現(xiàn)了用括號的必要性和簡便性,通過學(xué)生總結(jié)說特點(diǎn)引導(dǎo)他們猜想,然后對猜想進(jìn)行驗(yàn)證,得出結(jié)論,并應(yīng)用到實(shí)際中,培養(yǎng)學(xué)生們學(xué)以致用的好習(xí)慣。

      上周去濱州聽課,學(xué)到了“猜測-舉例驗(yàn)證-總結(jié)-應(yīng)用”的教學(xué)模式,充分體現(xiàn)了新課標(biāo)的探究性學(xué)習(xí),并在本課教學(xué)中得到了很好的`利用,不完全歸納法,也在本課中用所應(yīng)用。但是在引入時應(yīng)該讓學(xué)生們把這兩個算式的特點(diǎn)和聯(lián)系理解透徹了,學(xué)生們會很快的猜想出這條規(guī)律,整節(jié)課講速度有些慢,導(dǎo)致了幾個經(jīng)典的練習(xí)題沒有處理,創(chuàng)設(shè)情境激發(fā)學(xué)生的求知欲來導(dǎo)入新課,會收到更好的效果。

      (80+4)×25=80×25+4×25此題的處理,我感到比較欣慰。當(dāng)發(fā)現(xiàn)學(xué)生們(80+4)×25=80×25+4時,我靈機(jī)一動在黑板上寫下了這個錯誤的算式,讓和我做的一樣的同學(xué)舉手,大約有5、6個同學(xué)高興地舉起手,還有一個同學(xué)得意地說“剛才我還以為做錯了呢?”看到這種情景我接著說:“不舉手的同學(xué)你們想說點(diǎn)什么嗎?”此句話給了這些沒有舉手的同學(xué)的信心,他們迫不及待地說出了正確的解法。這道題學(xué)生們非常容易做錯,這樣的處理會使學(xué)生加深印象,提高做題的準(zhǔn)確率。

      乘法分配律教學(xué)反思7

      教學(xué)過程:

      一、創(chuàng)境

      1、直接出示:師口述:張阿姨買5件夾克和5條褲子,一共要付多少元?你們能用兩種方法解答嗎?(獨(dú)立)指名板演

      2、組織交流:你是怎么想的?(先求什么,再求什么)

      比較:最后結(jié)果,你發(fā)現(xiàn)什么?

      說明:這樣的兩個算式可寫成一個等式

      3、出示課題運(yùn)算律

      今天,我們就來仔細(xì)研究這兩個算式,找出其中隱藏的秘密。

      二、探究:

      1、仔細(xì)觀察此算式,比較等號的兩邊有什么聯(lián)系?

      2、明確:左邊先算什么?再算什么?右邊先算什么?再算什么?

      3、根據(jù)觀察,你有什么猜想?是不是所有這樣的兩道算式間都有這樣聯(lián)系呢?

      列舉指名口答算式齊計(jì)算感受結(jié)果相等

      4、發(fā)現(xiàn)規(guī)律

      5、出示公式

      三、應(yīng)用深化

      1、完成1,填一填

      2、完成2

      3、完成4

      老師出一道算式,請同學(xué)們根據(jù)乘法分配律,說出算式,比比誰反應(yīng)最快。

      4、完成3:你能用兩種不同方法計(jì)算長方形菜地周長嗎?

      5、完成5

      四、回顧

      通過今天的學(xué)習(xí)你有什么收獲?

      五、作業(yè)

      對自主探究與有效生成幾點(diǎn)嘗試

      ——《乘法分配律》教學(xué)案例與反思

      一、回顧

      本課對乘法分配律的教學(xué),結(jié)合具體的問題情境,幫助學(xué)生理解兩種算法之間的聯(lián)系與區(qū)別,即先算出一套的和再乘5套,與先分別算5件及服和5條褲子的總價再相加,它們的結(jié)果相等;再通過例舉驗(yàn)證,觀察比較,歸納出乘法分配律;最后進(jìn)行多層次的練習(xí),進(jìn)一步提升孩子們對乘法分配律理解與應(yīng)用。

      二、反思

      新課程如春風(fēng)化雨,走進(jìn)了師生的生活。倡導(dǎo)自主探究,關(guān)注有效生成,成為新課程改革永恒的主題。在追求有效的教學(xué)中我作出了以下幾點(diǎn)的嘗試:

      1、從具體的問題情境出發(fā),有利于學(xué)生的自主探索

      對于5套運(yùn)動服一共多少元,這樣的問題對于大多數(shù)學(xué)生來說是駕輕就熟的。結(jié)合熟悉的問題情境,便于學(xué)生理解兩種算法間的聯(lián)系與區(qū)別,

      為后敘對乘法分配律的成功探究理好伏筆。最近發(fā)展區(qū)理論告訴我們,只有找準(zhǔn)了學(xué)生的知識起點(diǎn),才能有效的教學(xué),熟悉的問題情境面向全體學(xué)生,只有全面參與的探究,才是真正的自主有效的探究。

      2、鼓勵學(xué)生大膽猜想,在驗(yàn)證過程中形成共識。

      數(shù)學(xué)的猜想是在一系列的.實(shí)驗(yàn)、觀察、歸納、類比的基礎(chǔ)上獲得的,數(shù)學(xué)活動脫離了猜想就會顯得沒有意義。本課教學(xué)乘法分配律的探究過程分為幾個層次:(1)啟發(fā)猜想。在解決實(shí)際問題的基礎(chǔ)上通過比較,引導(dǎo)學(xué)生的發(fā)散性思維,提出猜想。在具體的問題情境中,讓學(xué)生插上想象的翅膀,激起創(chuàng)新的火花。(2)例舉驗(yàn)證。讓學(xué)生圍繞猜想,以小組探究為主要形式,以獨(dú)立思考例舉算式與合作學(xué)習(xí)有機(jī)結(jié)合,算出得數(shù)發(fā)現(xiàn)兩種算式結(jié)果相等,在相互交流中,形成對乘法分配律的共識。在交流、合作中,使學(xué)生真正成為學(xué)習(xí)的主人。

      3、設(shè)計(jì)多層次練習(xí),在層層深入中啟迪學(xué)生的智慧

      在形成對乘法分配律的認(rèn)識后,分幾個層次運(yùn)用知識訓(xùn)練,首先是基礎(chǔ)訓(xùn)練,書本55頁第1、2、3題練習(xí)從正的兩個角度進(jìn)行,使學(xué)生明確乘法分配律是互逆的。從而達(dá)到靈活運(yùn)用真正理解并掌握的目標(biāo)。其次變式練習(xí),我將書本55頁第4題組練習(xí)設(shè)計(jì)成游戲的形式呈現(xiàn),讓學(xué)生在國松的氛圍中,發(fā)現(xiàn)用乘法分配律可使計(jì)算方便。最后拓展延伸啟迪智慧。練習(xí)中再次結(jié)合具體的問題情境,通過觀察與比較體會到乘法分配律不僅適用于一個數(shù)兩個數(shù)的和,也適用于一個數(shù)乘兩個數(shù)的差。在這層層深入的練習(xí)中面向了全體學(xué)生,使每個孩子有所進(jìn)步,有所發(fā)現(xiàn),有所啟迪,有所收獲。

      新課改的腳步在前行,新課扆的理念在深入。作為教師只有不斷內(nèi)化新課程理念,才能使自己的教學(xué)面向全體,促使學(xué)生真正的自主探究,成為學(xué)習(xí)的主人。

      乘法分配律教學(xué)反思8

      師:(出示掛圖)仔細(xì)觀察,從圖中你獲得哪些信息?

      買這些衣服,戚老師一共要付多少元呢?你能用兩種方法列出綜合算式嗎?

      生:(65+35)×12=1200(元)

      生:65×12+35×12=1200(元)

      師:每個算式的結(jié)果都是1200元,那么這兩個算式有什么關(guān)系?

      生:(65+35)×12=65×12+35×12

      師:剛才我們是通過計(jì)算發(fā)現(xiàn)兩個算式相等的,大家能根據(jù)題意說說兩個算式為什么相等嗎?

      (學(xué)生小組討論)

      師:指名學(xué)生回答。

      生:一件上衣和一條褲子合起來叫一套衣服,就是65元和35元的和,買12套衣服的價錢就是12個65元和12個35元的和;每件上衣65元,12件上衣的價錢就是12個65元,每條褲子35元,12條褲子就是12個35元,合起來也是12套衣服的價錢,所以(65+35)×12=65×12+35×12。

      師:說得真棒,誰能概括地說一說。

      生:12個65加12個35等于12個65與35的和。

      師:請同桌互相說一遍。

      師:照這樣,你能再寫出幾組這樣的等式嗎?(學(xué)生獨(dú)立思考。)

      (過一會兒,一只只小手舉起來了,教師指名回答。)

      生1:(15+25)×8=15×8+25×8。

      生2:a×(5+2)=a×5+a×2。

      生3:(+▲)×■=×■+▲×■。

      ……

      師:同桌檢查一下,對方寫的等式兩邊是否相等?

      師:同學(xué)們仔細(xì)觀察,對比上面的等式左右兩邊的.式子有什么特征?你從中發(fā)現(xiàn)什么規(guī)律?小組內(nèi)的同學(xué)可以互相商量、討論。

      生1:我們小組發(fā)現(xiàn):等號左邊的式子不是兩個數(shù)的和乘一個數(shù)就是一個數(shù)乘兩個數(shù)的和,等右左邊的式子都是括號內(nèi)的兩個數(shù)與括號外的那個數(shù)相乘,最后把兩個積相加起來。

      生2:我們小組從乘法的意義理解發(fā)現(xiàn):比如(15+25)×8=×8+(

      )×8。因?yàn)?5和25的和等于40,左邊的式子可以理解為40個8,右邊的式子可以理解為15個8加25個8一共是40個8,所以40個8等于15個8加25個8。

      ……

      師;同學(xué)們剛才觀察非常仔細(xì),都代表本組講出了你們發(fā)現(xiàn)的規(guī)律。

      師:像(65+35)×12=65×12+35×12這樣的等式,你能寫出多少個?

      生:無數(shù)個。

      師:你們能不能像乘法交換律和乘法結(jié)合律那樣也用一個字母式子來表示呢?

      學(xué)生嘗試用字母表示乘法分配律,教師巡視。

      生:a×(5+2)=a×5+a×2。

      生:(+▲)×■=×■+▲×■

      生(a+b)×c=a×c+b×c。

      ……

      師:你們真棒!今天我們發(fā)現(xiàn)的規(guī)律就是乘

      法分配律。乘法分配律常表示為(a+b)×c=a×c+b×c。

      你們能用自己的話說說什么是乘法分配律嗎?

      指名學(xué)生回答。

      師小結(jié):兩個數(shù)的和乘第三個數(shù),可以把兩個數(shù)分別和第三個數(shù)相乘,再求和。

      教后反思:

      1、關(guān)注學(xué)生已有的知識經(jīng)驗(yàn)

      以學(xué)生身邊熟悉的情境為教學(xué)的切入點(diǎn),激發(fā)學(xué)生主動學(xué)習(xí)的需要,為學(xué)生創(chuàng)設(shè)了與生活環(huán)境、知識背景密切相關(guān)的感興趣的學(xué)習(xí)情境,通過兩種算式的比較,喚醒了學(xué)生已有的知識經(jīng)驗(yàn),使學(xué)生初步感知乘法分配律。讓學(xué)生始終處于主動探索知識的最佳狀態(tài),促使學(xué)生對原有知識進(jìn)行更新、深化、突破、超越。

      2、提供自主探索的機(jī)會

      一堂數(shù)學(xué)課可以有不同種教法,怎樣教才能在數(shù)學(xué)活動中培養(yǎng)學(xué)生的創(chuàng)新能力呢?我覺得,最重要的是保證學(xué)生的主體地位,提供自主探索的機(jī)會。在探索乘法運(yùn)算律的過程中,提出的問題有易到難,層層遞進(jìn),不僅為學(xué)生提供了自主探索的時間和空間,使學(xué)生經(jīng)歷乘法運(yùn)算律的產(chǎn)生和形成過程,而且讓學(xué)生發(fā)現(xiàn)其中的數(shù)學(xué)規(guī)律與奧秘,從而激發(fā)學(xué)生對數(shù)學(xué)深層次的熱愛。

      在日常生活中,數(shù)學(xué)真是無處不在,處處留心皆學(xué)問。如果學(xué)生們能處處留心數(shù)學(xué)問題,并運(yùn)用數(shù)學(xué)知識去解決這些實(shí)際問題;能夠在認(rèn)真觀察的基礎(chǔ)上,根據(jù)數(shù)字的特點(diǎn),靈活地選擇運(yùn)算定律,找到適合自己的最佳的簡算方法,那么自己的教學(xué)就成功了。盡管在課堂上也許還不能夠全部掌握簡算的知識,只要在日常的學(xué)習(xí)和生活計(jì)算的過程中,能夠?qū)W會善于觀察,自覺運(yùn)用,就能達(dá)到熟能生巧的效果,學(xué)習(xí)成績與學(xué)習(xí)能力也會有很大程度的提升。

      乘法分配律教學(xué)反思9

      乘法分配律是第三章的教學(xué)難點(diǎn)也是重點(diǎn)。這節(jié)課的設(shè)計(jì)。我是從學(xué)生的生活問題入手,利用與生活密切相關(guān)的情境圖植樹問題展開。這節(jié)課我力圖將教學(xué)生學(xué)會知識,變?yōu)橹笇?dǎo)學(xué)生會學(xué)知識。通過讓學(xué)生經(jīng)歷了“觀察、初步發(fā)現(xiàn)、舉例驗(yàn)證、再觀察、發(fā)現(xiàn)規(guī)律、概括歸納”這樣一個知識形成的過程?;仡櫿麄€教學(xué)過程,這節(jié)課的亮點(diǎn)主要體現(xiàn)在以下幾個方面:

      在教學(xué)中,通過這次植樹情境讓學(xué)生感到數(shù)學(xué)就是從身邊的生活中來的,激發(fā)學(xué)生學(xué)習(xí)的熱情?!耙还灿卸嗌倜麑W(xué)生參加這次植樹活動?”。讓學(xué)生根據(jù)提供的條件,用不同的方法解決,從而發(fā)現(xiàn)(4+2)×25=4×25+2×25這個等式。然后請學(xué)生觀察,這個等式兩邊的`運(yùn)算順序,使學(xué)生初步感知“乘法分配律”。再讓學(xué)生“觀察這個等式左右兩邊的不同之處”,再次感知“乘法分配律”。同時利用情景,讓學(xué)生充分的感知“乘法分配律”,為后來“乘法分配律”的探究提供了有力的保障。

      重點(diǎn)是理解算式的意義,我們在引導(dǎo)中進(jìn)行總結(jié)(4+2)個25的和也可以寫為25分別乘以4和2,再把他們的積相加的形式,接著讓同學(xué)們再次深化理解自己嘗試寫出幾個類似的算式,由于是網(wǎng)上教學(xué),沒辦法直接展示學(xué)生的算式,于是我在大屏幕上寫出幾個算式,讓同學(xué)們來說一說他們的觀察到的算式,從而總結(jié)出乘法分配律的規(guī)律。進(jìn)而通過計(jì)算,發(fā)現(xiàn)運(yùn)用乘法分配律可以使得計(jì)算更加簡便。

      這節(jié)課的不足:

      當(dāng)我們運(yùn)用乘法分配律進(jìn)行練習(xí)的時候,我發(fā)現(xiàn)學(xué)生在做題時會錯誤的把中間的+抄寫成×,導(dǎo)致錯誤。這說明學(xué)生沒有完全對乘法結(jié)合律和乘法分配律進(jìn)行區(qū)分,還需要再次進(jìn)行強(qiáng)調(diào)。

      這節(jié)課上對學(xué)生的主題地位有所忽視。雖然是網(wǎng)課教學(xué),沒辦法與學(xué)生共同在一間教室,沒辦法與學(xué)生面對面教學(xué),但是顧慮到時間的限制與學(xué)生的互動,留給學(xué)生的思考的時間不夠充分,接下來在教學(xué)設(shè)計(jì)時可以減少授課容量,留給學(xué)生充分的思考時間。

      乘法分配律教學(xué)反思10

      乘法分配律是在學(xué)生學(xué)習(xí)了加法交換律、結(jié)合律和乘法交換律、結(jié)合律的基礎(chǔ)上教學(xué)的。乘法分配律也是學(xué)生較難理解和敘述的定律。因此在本節(jié)課教學(xué)設(shè)計(jì)上,我結(jié)合新課標(biāo)的一些基本理念和本地區(qū)的具體情況,注重從學(xué)生的實(shí)際出發(fā),把數(shù)學(xué)知識和實(shí)際生活緊密聯(lián)系起來,讓學(xué)生在不斷的感悟和體驗(yàn)中學(xué)習(xí)知識。

      《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“學(xué)生的數(shù)學(xué)學(xué)習(xí)內(nèi)容應(yīng)當(dāng)是現(xiàn)實(shí)的、有意義的、富有挑戰(zhàn)性的?!睌?shù)學(xué)教育家波利亞曾經(jīng)說過:“數(shù)學(xué)教師的首要責(zé)任是盡其一切可能,來發(fā)展學(xué)生解決問題的能力。”而我們過去的教學(xué)往往比較重視解決書上的數(shù)學(xué)問題,學(xué)生一旦遇到實(shí)際問題就束手無策。因此,在上課的一開始,我創(chuàng)造性地使用教材,創(chuàng)設(shè)了一個肯德基餐廳用餐的情境,使學(xué)生置身于非常熟悉的生活情境中,極大地激發(fā)了學(xué)生的學(xué)習(xí)欲望。學(xué)生很快地按要求用兩種不同的方法列出算式,并且能夠輕而易舉地證明兩式相等。接著要求學(xué)生通過觀察這個等式看看能否發(fā)現(xiàn)什么規(guī)律。在此基礎(chǔ)上,我并沒有急于讓學(xué)生說出規(guī)律,而是繼續(xù)為學(xué)生提供具有挑戰(zhàn)性的研究機(jī)會:“請你再舉出一些符合自己心中規(guī)律的等式”,繼續(xù)讓學(xué)生觀察、思考、猜想,然后交流、分析、探討,感悟到等式的特點(diǎn),驗(yàn)證其內(nèi)在的規(guī)律,從而概括出乘法分配律。這樣既培養(yǎng)了學(xué)生的猜想能力,又培養(yǎng)了學(xué)生驗(yàn)證猜想的.能力。學(xué)生通過自主探索去發(fā)現(xiàn)、猜想、質(zhì)疑、感悟、調(diào)整、驗(yàn)證、完善,主體性得到了充分的發(fā)揮。

      與此同時,我還十分注重合作與交流,多向互動。倡導(dǎo)課堂教學(xué)的動態(tài)生成是新課程標(biāo)準(zhǔn)的重要理念。在數(shù)學(xué)學(xué)習(xí)中,每個學(xué)生的思維方式、智力、活動水平都是不一樣的。因此,為了讓不同的學(xué)生在數(shù)學(xué)學(xué)習(xí)中都得到發(fā)展,我在本課教學(xué)中立足通過生生、師生之間多向互動,特別是通過學(xué)生之間的互相啟發(fā)與補(bǔ)充來培養(yǎng)他們的合作意識,實(shí)現(xiàn)對“乘法分配律”的主動建構(gòu)。學(xué)生在這樣一個開放的環(huán)境中博采眾長,共同經(jīng)歷猜想、驗(yàn)證、歸納知識的形成過程,共同體驗(yàn)成功的快樂。既培養(yǎng)了學(xué)生的問題意識,又拓寬了學(xué)生思維,學(xué)生也學(xué)得積極主動。

      應(yīng)用規(guī)律,解決實(shí)際問題是數(shù)學(xué)學(xué)習(xí)的目的所在。在練習(xí)題型的設(shè)計(jì)上,有搶答(填空)題、判斷題、連線題、簡算題和拓展題,它們并不孤立,而是有機(jī)地聯(lián)系在一起,由基本題到變式題,由一般題到綜合題,有一定的梯度和廣度。使學(xué)生逐步加深認(rèn)識,在弄清算理的基礎(chǔ)上,學(xué)生能根據(jù)題目的特點(diǎn),靈活地運(yùn)用所學(xué)知識進(jìn)行簡便運(yùn)算和拓展練習(xí)。不僅要求學(xué)生會順向應(yīng)用乘法分配律,而且還要求學(xué)生會反向應(yīng)用。通過正反應(yīng)用的練習(xí),加深學(xué)生對乘法分配律的理解。從課堂反饋來看,學(xué)生熱情較高,能夠?qū)W以致用。學(xué)生通過自己的努力以及和同學(xué)的交流合作,解題速度和準(zhǔn)確性都很理想。只有這樣才能真正提高學(xué)生的計(jì)算能力。

      本節(jié)課有一定的亮點(diǎn),但其中出現(xiàn)了不少問題:學(xué)生參與的積極性沒有預(yù)想中那么高??赡芘c我相對缺乏激勵性語言有關(guān)。也有可能今天的題材學(xué)生不太感興趣。但學(xué)生不感興趣的材料,教師應(yīng)該想辦法使呈現(xiàn)的這個材料變得能讓學(xué)生感興趣。另外,在回答問題時,個別學(xué)生的語言不夠流利、準(zhǔn)確。對乘法分配律的敘述稍顯羅嗦,不夠堅(jiān)定、自信。在這方面有待今后加強(qiáng)訓(xùn)練和提高

      乘法分配律教學(xué)反思11

      乘法分配律是教學(xué)的難點(diǎn)也是重點(diǎn)。這節(jié)課采用從生活中的問題入手,利用學(xué)生感興趣的具體情境展開。這節(jié)課我力圖將教學(xué)生學(xué)會知識,變?yōu)橹笇?dǎo)學(xué)生會學(xué)知識,將重視結(jié)論的記憶變?yōu)橹匾晫W(xué)生獲取結(jié)論的體驗(yàn)和感悟,將模仿式的學(xué)習(xí)變?yōu)樘骄渴降膶W(xué)習(xí)。學(xué)生經(jīng)歷了“觀察、初步發(fā)現(xiàn)、舉例驗(yàn)證、再觀察、發(fā)現(xiàn)規(guī)律、概括歸納”這樣一個知識形成過程。這樣不僅讓學(xué)生獲得了數(shù)學(xué)基礎(chǔ)知識和基本技能,而且更能培養(yǎng)學(xué)生主動探究、發(fā)現(xiàn)知識的能力?;仡櫿麄€教學(xué)過程,這節(jié)課的亮點(diǎn)體現(xiàn)在以下幾個方面:

      一、從身邊引入熟悉的生活問題,激趣探究

      我們在教學(xué)中要為學(xué)生創(chuàng)設(shè)大量生動、具體、鮮活的生活情境,讓學(xué)生感到數(shù)學(xué)就是從身邊的生活中來的,激發(fā)學(xué)生學(xué)習(xí)的熱情。在教學(xué)時,我先創(chuàng)設(shè)情景,提出問題:“一共有多少名學(xué)生參加這次植樹活動?”。讓學(xué)生根據(jù)提供的條件,用不同的方法解決,從而發(fā)現(xiàn)(4+2)×25=4×25+2×25這個等式。然后請學(xué)生觀察,這個等式兩邊的運(yùn)算順序,使學(xué)生初步感知“乘法分配律”。再讓學(xué)生“觀察這個等式左右兩邊的不同之處”,再次感知“乘法分配律”。我利用情景,讓學(xué)生充分的感知“乘法分配律”,為后來“乘法分配律”的探究提供了有力的保障。

      二、為學(xué)生提供了自己獨(dú)立探究的機(jī)會

      數(shù)學(xué)教學(xué)應(yīng)該是數(shù)學(xué)教學(xué)的活動。傳統(tǒng)的教學(xué)活動往往只重視結(jié)論的記憶,而這節(jié)課我把學(xué)生的活動定位在感悟和體驗(yàn)上,引導(dǎo)學(xué)生用數(shù)學(xué)思維方式去發(fā)現(xiàn),去探索。尤其是在學(xué)生初步感悟到兩種算法相等關(guān)系的基礎(chǔ)上,繼續(xù)為學(xué)生創(chuàng)造一個思考的情景。我要求學(xué)生觀察得到的兩個等式,提出“你有什么發(fā)現(xiàn)?”。此時學(xué)生對“乘法分配律”已有了自己的一點(diǎn)點(diǎn)感知,我馬上要求學(xué)生模仿等式,自己再寫幾個類似的等式。使學(xué)生自己的模仿中,自然而然地完成猜測與驗(yàn)證,形成比較“模糊”的`認(rèn)識。

      三、為學(xué)生的學(xué)習(xí)方式的轉(zhuǎn)變創(chuàng)設(shè)了條件

      模仿學(xué)習(xí),學(xué)生“知其然,而不知其所以然”,知識容易遺忘,而且不能靈活應(yīng)用。改變學(xué)生的學(xué)習(xí)方式,讓學(xué)生進(jìn)行探索性的學(xué)習(xí),不能是一句空話。在這節(jié)課上,我抓住學(xué)生的已有感知,立刻提出“觀察這一組等式,你能發(fā)現(xiàn)其中的奧秘嗎?”。這樣,給學(xué)生提供了豐富的感知材料和具有挑戰(zhàn)性的研究材料,提供猜測與驗(yàn)證,辨析與交流的空間,把學(xué)習(xí)的主動權(quán)力還給學(xué)生。學(xué)生的學(xué)習(xí)熱情高了,自然激起了探究的火花。學(xué)生的學(xué)習(xí)方式不再是單一的、枯燥的,整個教學(xué)過程都采用了讓學(xué)生觀察思考、自主探究、合作交流的學(xué)習(xí)方式。我想:只有改變學(xué)習(xí)方式,才能提高學(xué)生發(fā)現(xiàn)問題、分析問題和解決問題的能力。

      乘法分配律教學(xué)反思12

      “乘法分配律”的學(xué)習(xí)是在學(xué)習(xí)了乘法交換律和乘法結(jié)合律之后進(jìn)行的,對于乘法分配律的理解和應(yīng)用上都比前兩個運(yùn)算定律更有難度,學(xué)生在新課學(xué)習(xí)和知識的應(yīng)用的過程中思路還比較清晰,但是在作業(yè)的過程中出現(xiàn)的好多問題,讓人感覺孩子并沒有對定律有真正意義上的理解。如:(40+4)×25,有時,只用40×25,后面只加上4就行了,還有的把這道題目改成了連乘題,根據(jù)孩子出現(xiàn)的問題和練習(xí)中出現(xiàn)的'困惑,我認(rèn)真的設(shè)計(jì)的這節(jié)練習(xí)課。

      第一,理清思路,,建構(gòu)完整的知識體系。在本節(jié)課中,我和學(xué)生們一起回顧了乘法的幾種運(yùn)算定律,比較每種運(yùn)算定律的字母公式,來區(qū)分乘法交換律、乘法結(jié)合律和乘法分配律之間的外形結(jié)構(gòu)特點(diǎn),引導(dǎo)學(xué)生發(fā)現(xiàn),乘法結(jié)合律是幾個數(shù)連乘,而乘法分配律是兩數(shù)的和乘一個數(shù)或者是兩個積的和.從運(yùn)算符號上我們很快就可以找到它們的不同。乘法交換律和乘法結(jié)合律都只有乘號,而乘法分配律有不同級的兩種運(yùn)算符號。

      第二,優(yōu)化練習(xí)題,實(shí)行精練。針對學(xué)生在乘法分配律學(xué)習(xí)后在理解上的困難,及乘法分配律在練習(xí)形式上的多變,我找出課本、課堂作業(yè)本以及一些課外輔導(dǎo)資料上的乘法分配律的計(jì)算題,把他們進(jìn)行概括總結(jié),把不同類型的乘法分配律的方法進(jìn)行練習(xí),講解。讓學(xué)生對不同的乘法分配律的解決方法都進(jìn)行嘗試,幫助理解,加深記憶。

      第三,一題多法。例如25×44,學(xué)生在利用乘法分配律拆分其中一個數(shù)據(jù)的時候,有多種方法,有的學(xué)生把25拆成20+5,有的是拆了40+4,還有的把25×44轉(zhuǎn)化成25×4×11,這些方法都可以,讓學(xué)生分辨出每一種方法所運(yùn)用的運(yùn)算定律,從而加深學(xué)生對知識的認(rèn)識和理解,在此基礎(chǔ)上,選出最佳方案。

      乘法分配律的練習(xí)實(shí)在是多種多樣,變幻無窮,要想更好的掌握,關(guān)鍵還是要理解,需多練.

      乘法分配律教學(xué)反思13

      乘法分配律是在學(xué)生學(xué)習(xí)了加法交換律、結(jié)合律和乘法交換律、結(jié)合律的基礎(chǔ)上教學(xué)的。乘法分配律也是所有運(yùn)算定律中變化最多的,因此它是學(xué)生最難理解與運(yùn)用的定律。因此我在教學(xué)中讓學(xué)生在不斷的感悟、體驗(yàn)中理解乘法分配律,從而概括出乘法分配律。

      一、在對本課的教學(xué)目標(biāo)上,我定位在:

      (1)從學(xué)生已有生活經(jīng)驗(yàn)出發(fā),通過觀察、類比、歸納、驗(yàn)證、運(yùn)用等方法深化和豐富對乘法分配律的認(rèn)識。

      (2)滲透“由特殊到一般,再由一般到特殊”的認(rèn)識事物的方法,培養(yǎng)學(xué)生獨(dú)立自主、主動探索、發(fā)現(xiàn)問題,解決問題的能力,提高數(shù)學(xué)的'應(yīng)用意識。

      二、在本課教學(xué)過程的設(shè)計(jì)上

      我盡量想體現(xiàn)新課標(biāo)的一些理念,注重從實(shí)際出發(fā),把數(shù)學(xué)知識和實(shí)際生活緊密聯(lián)系起來,讓學(xué)生在體驗(yàn)中學(xué)到知識。順延之前學(xué)習(xí)乘法交換律和乘法結(jié)合律的情境舉例:利用植樹活動情境“一共有25個小組,每組里4人負(fù)責(zé)挖坑、種樹,2人負(fù)責(zé)抬水、澆水”。提出問題:“一共有多少名同學(xué)參加了這次植樹活動”。讓學(xué)生嘗試通過不同的方法得出:

      (4 + 2)×254×25 + 2×25

      = 6×25 = 100 + 50

      = 150(元)= 150(元)

      此時,讓學(xué)生觀察通過計(jì)算方法得到了相同的結(jié)果,這兩個算式可用“=”連接。使之讓學(xué)生從中感受了乘法分配律的模型。從而引出乘法分配律的概念:“兩個數(shù)的和同一個數(shù)相乘,可以把兩個加數(shù)分別同這個數(shù)相乘,再把兩個積相加,結(jié)果不變?!庇米帜感问奖硎荆?/p>

      (a + b)× c = a × c + b × c

      三、在本節(jié)課的練習(xí)設(shè)計(jì)上,我力求有針對性、有坡度的知識延伸。

      1、在完成課本36頁做一做時,對應(yīng)這3道判斷題,

      (1)、判斷56×(19+28)=56×19+28,讓學(xué)生感知到乘法分配律要分給括號里的每一個數(shù),強(qiáng)調(diào)乘法分配律的“公平性”。

      (2)、判斷32×(7×3)=32×7+32×3,讓學(xué)生注意到乘法結(jié)合律和乘法分配律的區(qū)別:通過對運(yùn)算定律意義的描述,和算式的特點(diǎn),提煉出最簡潔的區(qū)分方法:乘法結(jié)合律是連乘情況下的,乘法分配律除了乘法還有加法(后繼教學(xué)還會出現(xiàn)減法),容易使我們混淆的原因是,它們都是乘法的運(yùn)算定律都有乘法出現(xiàn),更關(guān)鍵是它們都出現(xiàn)了小括號。

      (3)、判斷64×64+36×64,借助64個64和36個64,一共是64+36=100個64,讓學(xué)生理解乘法分配律逆向使用,在一些情況下,計(jì)算會變得十分簡便。

      2、在完成較簡單的課本36頁做一做后,進(jìn)行一些擴(kuò)展型的練習(xí):

      通過(250—25)×4,讓學(xué)生感受到,乘法分配律除也可以兩個數(shù)的差與一個數(shù)相乘。對于分配之后,再把兩個積相減。同時復(fù)習(xí)強(qiáng)調(diào)我們熟悉的5道重要算式:5×2、25×4、125×8、125×4、25×8

      由于本節(jié)課的知識運(yùn)用的難度較大,學(xué)生對乘法分配律可以基本掌握,但是對于其萬般變化,還是有點(diǎn)力不從心,而該運(yùn)算定律對學(xué)生后繼學(xué)習(xí),尤其是小數(shù)和分?jǐn)?shù)計(jì)算時有一定影響,所以還需要學(xué)生在本節(jié)課后進(jìn)行深入的學(xué)習(xí),教師也需要針對乘法分配律的每一種題型,結(jié)合學(xué)生的掌握情況進(jìn)行更系統(tǒng)深入的講解。

      乘法分配律教學(xué)反思14

      《乘法分配律》是四年級第七單元的內(nèi)容,在此之前,學(xué)生上個學(xué)期已經(jīng)學(xué)過了加法交換律和結(jié)合律、乘法交換律和結(jié)合律,同時這個學(xué)期第四單元混合運(yùn)算中也運(yùn)用了學(xué)過的運(yùn)算律進(jìn)行簡便的計(jì)算,上課之前,我以為學(xué)生對這一部分的知識并不陌生,所以就簡單地設(shè)計(jì)了復(fù)習(xí),回顧學(xué)過的運(yùn)算律,再讓學(xué)生發(fā)現(xiàn)運(yùn)算律在簡便計(jì)算中的運(yùn)用,接著就出示了上課的例題,讓學(xué)生從例題中尋找乘法分配律的影子,再通過舉例,比較發(fā)現(xiàn)乘法分配律并用字母表示出來,基本完成本節(jié)課的新授。通過鞏固練習(xí)讓學(xué)生認(rèn)識乘法分配律在計(jì)算和實(shí)際生活問題中的運(yùn)用。上課之前,我以為學(xué)生會跟著我的思路走,會很順利的上完整節(jié)課。但上完課,我發(fā)現(xiàn)我自己的課堂出現(xiàn)了很多的問題,總結(jié)了一下,我感覺自己在很多方面做得很不到位。

      開始的時候,學(xué)生回顧運(yùn)算律的時候出現(xiàn)了小的問題,讓我有一點(diǎn)束手無策,導(dǎo)致后面的復(fù)習(xí)題忘記出示,課堂環(huán)節(jié)被遺漏。

      教學(xué)新課的時候,學(xué)生的列式不是我想要的算式的形式,我就直接寫出我想要的算式的形式了,其實(shí)這個時候可以用乘法交換律變成我想要的形式,同時,我也在想,知識應(yīng)該是靈活的,我也應(yīng)該寫出學(xué)生說出的那種形式,因?yàn)檫@是學(xué)生自己列出來的式子,他自己肯定能理解的,但課上我的做法就有點(diǎn)急于求成,有點(diǎn)生搬硬套了。

      小組討論的時候也出現(xiàn)了很多的問題,本來我認(rèn)為這節(jié)課學(xué)生應(yīng)該很快地發(fā)現(xiàn)等式兩邊的特點(diǎn)的,也能很快地說出它們的共同點(diǎn)的,但上課的時候,小組討論中我發(fā)現(xiàn),學(xué)生根本不知道該如何發(fā)現(xiàn)這些算式的共同點(diǎn),即使有些同學(xué)發(fā)現(xiàn)了一些特點(diǎn)也不知道該如何表達(dá)出來,課后反思了,我發(fā)現(xiàn)自己的問題設(shè)計(jì)的不好,學(xué)生不能明白地知道該從哪里入手,是比較數(shù)字上面的關(guān)系,還是觀察式子上的關(guān)系,還是看符號上的關(guān)系,所以導(dǎo)致學(xué)生不知道該怎么說,還有一點(diǎn)重要的原因是我在討論之前比較例題中的`等式的時候沒有清楚地講到讓學(xué)生觀察等式的運(yùn)算順序,導(dǎo)致學(xué)生不會說。另一方面,對于將等式抽象成一個字母表示的式子本身不是什么難事,但還要講出抽象的過程,對于四年級的學(xué)生有一點(diǎn)難度,學(xué)生能感覺出來就是這樣寫,但說的有理有據(jù)真的很困難。所以在我們的教學(xué)中,我們要考慮到學(xué)生的認(rèn)知水平,讓學(xué)生說出他應(yīng)該有的想法就很好了,以后的教學(xué)中我們應(yīng)盡量讓學(xué)生進(jìn)行小組討論說出自己的想法,同時也要注意小組討論的程度問題,提出適合學(xué)生的、有效的問題是很有必要的。

      練習(xí)中,要更多地關(guān)注學(xué)生的能力發(fā)展,要讓學(xué)生說出自己的想法,把每一題的設(shè)計(jì)意圖理解清楚,根據(jù)題意正確地進(jìn)行計(jì)算,并掌握做題的方法。

      一節(jié)課下來發(fā)現(xiàn)自己出現(xiàn)了很多很多的問題,希望在以后的教學(xué)中能慢慢地減少這樣問題的出現(xiàn)。

      乘法分配律教學(xué)反思15

      《乘法分配律》是四年級數(shù)學(xué)下冊第三單元中的一節(jié)教學(xué)內(nèi)容,一直以來的教學(xué)中,我認(rèn)為這節(jié)課的教學(xué)都是一個教學(xué)難點(diǎn),學(xué)生很難學(xué)好。

      我認(rèn)為其中的不易可以從三個方面來說:其一,例題僅僅是分配律的一點(diǎn)知識,在課下的練習(xí)題中還存在不少乘法分配律類型的題(不過,這好像也是新課改后教材的表現(xiàn))。如果讓學(xué)生僅僅學(xué)會例題,可以說,你也只是學(xué)到了乘法分配律的皮毛;其二,乘法分配律只是一種簡單的計(jì)算方法的應(yīng)用,所有用乘法分配律計(jì)算的試題,用一般的方法完全都可以計(jì)算出來,也就是說,如果不用乘法分配律,學(xué)生完全可以計(jì)算出結(jié)果來,只不過不能符合簡便計(jì)算的要求罷了,問題是學(xué)生已學(xué)過一般的方法,學(xué)生在計(jì)算時想的最多的還是一般的計(jì)算方法;其三,本節(jié)課的教學(xué)靈活性比較大,并沒有死板板的模式可以來死記硬背,就是學(xué)生記住了定律,在運(yùn)用時,運(yùn)用錯了,也是很大的`麻煩,從題目的分析到應(yīng)用定律都需要學(xué)生的認(rèn)真分析及靈活運(yùn)用。

      針對以上自己分析可能出現(xiàn)的問題,,確定從以下兩個方面時行教學(xué):

      第一,以書本為依托,學(xué)好基礎(chǔ)知識。

      有一句話叫做“萬變不離其宗”。雖然課下還有多種類型題,但它們都與書上的例題有著親密的聯(lián)系,所以教學(xué)還是要以書本為依托。在教學(xué)中,我引導(dǎo)生通過觀察兩個不同的算式,得出乘法分配律的用字母表示數(shù):a×b+a×c=a×(b+c),在引導(dǎo)學(xué)生經(jīng)過練習(xí)之后,我還強(qiáng)調(diào)學(xué)生,要做到:a×(b+c)=a×b+a×c。用我自己的話說,就是:能走出去,還要走回來。再次經(jīng)過練習(xí),在學(xué)生掌握差不多時,簡單變換一下樣式:(a+b)×c=a×c+b×c,走回來:a×c+b×c=(a+b)×c。如此以來,學(xué)生算是對乘法分配律有了個初步的認(rèn)識,知道是怎么回事,具體的運(yùn)用還差很遠(yuǎn),因?yàn)檫€有很多的類型學(xué)生并不知道。于是我就在第二節(jié)課進(jìn)行了第二個方面的教學(xué)。

      第二,以練習(xí)為載體,系統(tǒng)鞏固知識。

      針對乘法分配律還有多種類型,例題中也沒講到的情況,我上網(wǎng)查資料,加上并時的一些認(rèn)識,把乘法分配律分為五類,并對每類進(jìn)行簡單的分析提示,附以相應(yīng)的練習(xí)題印發(fā)給學(xué)生,讓學(xué)生進(jìn)行練習(xí)。

      類型一:(a+b)×c a×(b-c)

      例:A (40+8)×25 B 15×(40-8)

      類型二:a×b+a×c a×b-a×c

      例:A 36×34+36×66 B 325×113-325×13

      類型三:100+1或80+1

      例:A 78×102 B 125×81

      類型四:100-1或40-1

      例:A 45×98 B 25×39

      類型五:+1或-1

      例:A 83+83×99 B 91×31-91

      下載《乘法分配律》數(shù)學(xué)課教學(xué)反思word格式文檔
      下載《乘法分配律》數(shù)學(xué)課教學(xué)反思.doc
      將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
      點(diǎn)此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會在5個工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        乘法分配律教學(xué)反思

        乘法分配律教學(xué)反思乘法分配律是在學(xué)生學(xué)習(xí)了加法交換律、結(jié)合律和乘法交換律、結(jié)合律的基礎(chǔ)上教學(xué)的。它的教學(xué)重點(diǎn)是讓學(xué)生感知乘法分配律,知道什么是乘法分配律,難點(diǎn)是理解......

        乘法分配律教學(xué)反思

        《乘法分配律》教學(xué)反思 康家營子小學(xué) 崔廣蘭 乘法分配律是在學(xué)生學(xué)習(xí)了加法交換律、加法結(jié)合律及乘法交換律、乘法結(jié)合律的基礎(chǔ)上教學(xué)的,乘法分配律也是學(xué)習(xí)這幾個定律中的......

        乘法分配律教學(xué)反思

        乘法分配律教學(xué)反思教師留給學(xué)生充足的思維空間和時間,放手讓學(xué)生去探索,去思考,去交流,學(xué)生自始至終是學(xué)習(xí)的主人。學(xué)生通過自主學(xué)習(xí)活動,從數(shù)學(xué)的角度提出問題,在探究中發(fā)現(xiàn)問題......

        乘法分配律教學(xué)反思

        乘法分配律教學(xué)反思15篇 乘法分配律教學(xué)反思1 一、讓學(xué)生從實(shí)質(zhì)上理解乘法分配律在乘法分配律的教學(xué)中,如果只求形式把握不求實(shí)質(zhì)理解,一方面從認(rèn)識的角度看是不嚴(yán)謹(jǐn)?shù)模ㄐ问缴?.....

        乘法分配律教學(xué)反思

        乘法分配律是第三章的教學(xué)難點(diǎn)也是重點(diǎn),乘法分配律教學(xué)反思。這節(jié)課的設(shè)計(jì)。我是從學(xué)生的生活問題入手,利用學(xué)生感興趣的買奶茶展開。這節(jié)課我力圖將教學(xué)生學(xué)會知識,變?yōu)橹笇?dǎo)學(xué)......

        乘法分配律教學(xué)反思

        《乘法分配律》教學(xué)反思 燕子民族學(xué)校 田景云 教學(xué)乘法分配律之后,發(fā)現(xiàn)學(xué)生的正確率很低,特別是對乘法結(jié)合律與乘法分配律極容易混淆。針對這種情況,在教學(xué)中應(yīng)該注意些什么呢?......

        《乘法分配律》教學(xué)反思

        《乘法分配律》教學(xué)反思 長臨學(xué)區(qū)中心校 王俊春 乘法分配律是教學(xué)的難點(diǎn)也是重點(diǎn)。這節(jié)課采用從生活中的問題入手,利用學(xué)生感興趣的買奶茶展開。這節(jié)課我力圖將教學(xué)生學(xué)會......

        乘法分配律教學(xué)反思

        乘法分配律教學(xué)反思 乘法分配律教學(xué)反思1 計(jì)算教學(xué)是小學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,幾乎每一冊的教材中都有計(jì)算的教學(xué),而其中的“簡便計(jì)算”教學(xué)更是計(jì)算教學(xué)的一部“重頭戲......