第一篇:《函數(shù)的單調(diào)性》說課稿
《函數(shù)的單調(diào)性》說課稿
北大附中深圳南山分校:馬立明
一、教材分析-----教學(xué)內(nèi)容、地位和作用本課是蘇教版新課標(biāo)普通高中數(shù)學(xué)必修一第二章第1節(jié)《函數(shù)的簡單性質(zhì)》的內(nèi)容,該節(jié)中內(nèi)容包括:函數(shù)的單調(diào)性、函數(shù)的最值、函數(shù)的奇偶性。總課時安排為3課時,《函數(shù)的單調(diào)性》是本節(jié)中的第一課時。函數(shù)的單調(diào)性是函數(shù)眾多性質(zhì)中的重要性質(zhì)之一,函數(shù)的單調(diào)性一節(jié)中的知識是今后研究具體函數(shù)的單調(diào)性理論基礎(chǔ);在解決函數(shù)值域、定義域、不等式、比較兩數(shù)大小等具體問題中均有著廣泛的應(yīng)用;在歷年的高考中對函數(shù)的單調(diào)性考查每年都有涉及;同時在這一節(jié)中利用函數(shù)圖象來研究函數(shù)性質(zhì)的數(shù)形結(jié)合思想將貫穿于我們整個高中數(shù)學(xué)教學(xué)。按現(xiàn)行教材結(jié)構(gòu)體系,該內(nèi)容安排在學(xué)習(xí)了函數(shù)的現(xiàn)代定義及函數(shù)的三種表示方法之后,了解了在生活實踐中函數(shù)關(guān)系的普遍性,另外學(xué)生已在初中學(xué)過一次函數(shù)、反比例函數(shù)、二次函數(shù)等初等函數(shù)。在學(xué)生現(xiàn)有認(rèn)知結(jié)構(gòu)中能根據(jù)函數(shù)的圖象觀察出“隨著自變量的增大函數(shù)值增大”等變化趨勢,所以在教學(xué)中要充分利用好函數(shù)圖象的直觀性、發(fā)揮好多媒體教學(xué)的優(yōu)勢;在本節(jié)課是以函數(shù)的單調(diào)性的概念為主線,它始終貫穿于整個課堂教學(xué)過程;這是本節(jié)課的重點內(nèi)容。利用函數(shù)的單調(diào)性的定義證明具體函數(shù)的單調(diào)性一個難點,也是對函數(shù)單調(diào)性概念的深層理解,且在“作差、變形、定號”過程學(xué)生不易掌握。學(xué)生剛剛接觸這種證明方法,給出一定的步驟是必要的,有利于學(xué)生理解概念,也可以對學(xué)生掌握證明方法、形成證明思路有所幫助。另外,這也是以后要學(xué)習(xí)的不等式證明的比較法的基本思路,現(xiàn)在提出來對今后的教學(xué)也有了一定的鋪墊。
二、學(xué)情分析教學(xué)目標(biāo)的制定與實現(xiàn),主要取決于我們對學(xué)習(xí)者掌握的程度。只有了解學(xué)習(xí)者原來具有的認(rèn)知結(jié)構(gòu),學(xué)習(xí)者的準(zhǔn)備狀態(tài),學(xué)習(xí)風(fēng)格,情感態(tài)度等,我們才能制定合適的教學(xué)目標(biāo),安排合適的教學(xué)活動與評價標(biāo)準(zhǔn)。不同的教學(xué)環(huán)境,不同的學(xué)習(xí)主體有著不同的學(xué)習(xí)動機(jī)和學(xué)習(xí)特點。我所教授的班級的學(xué)生具體學(xué)情具體到我們班級學(xué)生而言有以下特點:學(xué)生多才多藝,個性張揚,但學(xué)科成績不很理想,參差不齊;經(jīng)受不住挫折,需要經(jīng)常受到鼓勵和安慰,否則就不能堅持不懈的學(xué)習(xí);學(xué)習(xí)習(xí)慣不好,小動作較多,學(xué)習(xí)時注意力抗干擾能力不強,易被外界因素所影響,需要不斷的引導(dǎo);獨立解決問題能力弱,畏難情緒嚴(yán)重,探索精神不足。只有少部分學(xué)生學(xué)習(xí)習(xí)慣良好,學(xué)風(fēng)嚴(yán)謹(jǐn),思維縝密。
三、教學(xué)目標(biāo):根據(jù)新課標(biāo)的要求,以及對教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)及心理特征,制定如下教學(xué)目標(biāo):
三維目標(biāo)1
知識與技能:(1)
使學(xué)生理解函數(shù)單調(diào)性的概念,能判斷并證明一些簡單函數(shù)在給定區(qū)間上的單調(diào)性。(2)
通過函數(shù)單調(diào)性的教學(xué),逐步培養(yǎng)學(xué)生觀察、分析、概括與合作能力;
2過程與方法:(1)
通過本節(jié)課的學(xué)習(xí),通過“數(shù)與形”之間的轉(zhuǎn)換,滲透數(shù)形結(jié)合的數(shù)學(xué)思想。(2)
通過探究活動,明白考慮問題要細(xì)致、縝密,說理要嚴(yán)密、明確。3
情感,態(tài)度與價值觀:在平等的教學(xué)氛圍中,通過學(xué)生之間、師生之間的交流、合作與評價,拉近學(xué)生之間、師生之間的情感距離,培養(yǎng)學(xué)生對數(shù)學(xué)的興趣。
(二)重點、難點重點:函數(shù)單調(diào)性的概念:為了突出重點,使學(xué)生理解該概念,整個過程分為:作圖象并觀察圖象→討論:函數(shù)圖象的變化趨勢是什么?→在這種變化趨勢下,x與函數(shù)值y是如何相互影響的?→你能從量的角度出一個縝密的,完善的定義來嗎?每個步驟都是在教師的參與下與引導(dǎo)下,通過學(xué)生與學(xué)生之間,師生之間的合作交流,不斷反省,探索,直到完善結(jié)論,最終達(dá)到一個嚴(yán)密,簡潔的定義。難點:函數(shù)單調(diào)性的判斷與推證:突破該難點的:通過對照、分析定義,引導(dǎo)學(xué)生,概括出證明方法及步驟:“取量定大小,作差定符號,判斷得結(jié)論”,并注意解題過程的規(guī)范性與嚴(yán)謹(jǐn)性。
四、教學(xué)方法:合作學(xué)習(xí)認(rèn)為教學(xué)是師生之間、生生之間相互作用的過程,強調(diào)多邊互動,共同掌握知識。視教學(xué)為師生平等參與和互動的過程,強調(diào)教師只是小組中的普通一員,起到一個引導(dǎo)者,管理者角色。在課堂教學(xué)中要加強知識發(fā)生過程的教學(xué),充分調(diào)動學(xué)生的參與的積極性,有效地滲透數(shù)學(xué)思想方法,發(fā)展學(xué)生個性品質(zhì),從而達(dá)到提高學(xué)生整體的數(shù)學(xué)素養(yǎng)的目的。結(jié)合教學(xué)目標(biāo)和學(xué)生情況我采用合作交流,探究學(xué)習(xí)相結(jié)合的教學(xué)方法。
五、內(nèi)容組織形式課堂教學(xué)環(huán)節(jié)畫出函數(shù)的圖象,并研究出它們各自的變化趨勢。認(rèn)知派學(xué)習(xí)理論認(rèn)為學(xué)習(xí)的積累及恰當(dāng)與否取決于學(xué)習(xí)者已有的認(rèn)知結(jié)構(gòu)。殘缺的認(rèn)知結(jié)構(gòu)是完成不了整個學(xué)習(xí)過程的。針對學(xué)生的實際情況,在上一節(jié)的課后布置作業(yè)讓學(xué)生畫一次函數(shù),二次函數(shù)及反比例函數(shù)圖象,回顧以前知識,盡而形成一個完整的認(rèn)知結(jié)構(gòu),為以后的學(xué)習(xí)排除障礙。
(二)創(chuàng)設(shè)情景,引發(fā)興趣師:在生活中我們經(jīng)常會關(guān)注一些實際問題。如果你是市長分管防洪抗旱工作,你會對水位的漲落隨時間變化的規(guī)律特別關(guān)心,如果你為一個股民的話,你心里想得就是如果能預(yù)見每天股價的走勢那該是一件多么幸福的事情。實際上這些問題歸根結(jié)底就是:是研究量與量之間的變化趨勢,也就是研究其中兩個變量如何相互影響的,這也是我們今天所要研究的主要課題??匆韵聦嶋H問題:請說出氣溫在哪些時段是升高的,怎么樣用數(shù)學(xué)語言來刻畫“隨時間的增大氣溫逐步升高”這一特征?這種在一定時間內(nèi),隨著時間增大,氣溫逐步升高的現(xiàn)象反映在數(shù)學(xué)中,我們稱它為函數(shù)的單調(diào)性行為學(xué)習(xí)理論者強調(diào)環(huán)境對學(xué)習(xí)產(chǎn)生的影響。當(dāng)學(xué)習(xí)者對某種特殊的刺激做出反應(yīng)時,就產(chǎn)生了“學(xué)習(xí)”。依據(jù)教材知識,滲透新課標(biāo)理念,通過與實際問題的聯(lián)系,揭示我們研究此節(jié)內(nèi)容的現(xiàn)實意義,目的引發(fā)學(xué)生學(xué)習(xí)興趣,有利于學(xué)生學(xué)習(xí)動力的產(chǎn)生。要點:短,平,快。
(三)合作交流,建構(gòu)數(shù)學(xué)師生互動,引導(dǎo)探索建構(gòu)數(shù)學(xué),收獲新知讓一小組的代表上臺來展示在上節(jié)課后所做的幾個函數(shù)圖象,并據(jù)此討論下列問題,問題
1、并說一說所畫函數(shù)的圖象的變化趨勢。觀察得到:隨著x值的增大,函數(shù)的函數(shù)圖象有的呈逐漸上升的趨勢,有的呈下降的趨勢,有的在一個區(qū)間內(nèi)呈上升趨勢,在另一個區(qū)間內(nèi)呈逐漸下降的趨勢。問題2:你能明確的說出“圖象呈逐漸上升趨勢”的意思嗎?此時X與函數(shù)值y如何相互影響的?討論得到:在某一個區(qū)間內(nèi),當(dāng)x值增大時,函數(shù)值y也增大圖象在該區(qū)間內(nèi)呈上升趨勢。在某一個區(qū)間內(nèi),當(dāng)x值增大時,函數(shù)值y也反而減小圖象在該區(qū)間內(nèi)呈下降趨勢。在眾多的函數(shù)中,很多函數(shù)都具有這種性質(zhì),因此我們有必要對函數(shù)的這種性質(zhì)做進(jìn)一步的討論與研究。這就是我們今天這一節(jié)課的主題。函數(shù)的這種性質(zhì),我們就稱為函數(shù)的單調(diào)性。
1、通過一系列的問題,引發(fā)對概念的全面思考。從具體到抽象,再從抽象到具體,并通過合作交流,增強學(xué)生對概念的理解,不斷的修正、完善結(jié)論,達(dá)到建構(gòu)數(shù)學(xué)的目的。
2、教學(xué)實踐證明,小組內(nèi)成員合作,組間成員競爭的討論是一種有效的教學(xué)策略,使得整個評價的重心同個人之間競爭轉(zhuǎn)為團(tuán)體合作達(dá)標(biāo)。并能使教師與學(xué)生、學(xué)生與學(xué)生之間有更多的交往、互動的機(jī)會。它也是引導(dǎo)學(xué)生積極參與教學(xué)過程的重要措施,是培養(yǎng)學(xué)生合作精神和激發(fā)學(xué)生創(chuàng)新意識的重要手段,也是促使每個學(xué)生得到充分發(fā)展的有效途徑
3、重點:學(xué)生能否抓住定義中的關(guān)鍵詞“給定區(qū)間”、“任意”和“都有”,是能否正確,深入透徹地理解和掌握概念的重要一環(huán)。分析定義,使學(xué)生把定義與圖形結(jié)合起來,使新舊知識融為一體,加深對概念的理解,滲透數(shù)形結(jié)合的分析問題的數(shù)學(xué)思想方法問題3:我們剛才已經(jīng)對函數(shù)的單調(diào)性,做了定性的分析,我們?nèi)绾螐牧康慕嵌葋砜坍嬤@種性質(zhì)。你能給出一個確切的定義來嗎?請用你自己的話表達(dá)出來,并說給你的小組成員聽,并與他交流后,形成集體意見,再展示給大家。最后的結(jié)論:定義:對于函數(shù)f的定義域I內(nèi)某個區(qū)間A上的任意兩個值⑴若當(dāng)<時,都有f
(四)數(shù)學(xué)運用,鞏固新知例題例1:定義在R上的函數(shù)y=f圖象如圖甲,所示,請說出它的單調(diào)區(qū)間,以及在每一單調(diào)區(qū)間上,是增函數(shù)還是減函數(shù)
參看所畫看圖乙,指出函數(shù)y=的單調(diào)區(qū)間,能不能說在定義域內(nèi)是單調(diào)減函數(shù)?指出函數(shù)的單調(diào)區(qū)間,能不能說在定義域內(nèi)是單調(diào)減函數(shù)?)如圖丙,函數(shù)圖象如圖,寫出單調(diào)區(qū)間讓學(xué)生進(jìn)一步理解一般函數(shù)單調(diào)區(qū)間的定義,區(qū)間的端點要不要?在這里一定要強調(diào)單調(diào)性只是函數(shù)的“局部性質(zhì)”它與區(qū)間密不可分。-----不能把函數(shù)的單調(diào)區(qū)間寫成例2判斷并證明函數(shù)f=在上的單調(diào)性。證明:設(shè),是上的任意兩個實數(shù),且<,------------------------------則f-f=-=,由,∈,得>0,又由<,得-<0,于是f-f<0,即f 歸納證明方法并加以比較說明;使學(xué)生突破本節(jié)的難點,掌握重點內(nèi)容?;静襟E:“取量定大小,作差定符號,判斷定結(jié)論”其中第二環(huán)節(jié)是難點“作差→變形→判斷正負(fù)”。課堂練習(xí): 1、判斷下列說法是否正確 定義在R上的函數(shù)滿足,則函數(shù)是R上的增函數(shù)。 定義在R上的函數(shù)滿足,則函數(shù)是R上不是減函數(shù)。 定義在R上的函數(shù)在上是增函數(shù),在上也是增函數(shù),則函數(shù)是R上的增函數(shù)。、定義在R上的函數(shù)在上是增函數(shù),在上也是增函數(shù),則函數(shù)是R上的增函數(shù)。 2、判斷函數(shù)f=kx+b在R上的單調(diào)性,并說明理由.3、判斷并證明函數(shù)在上的單調(diào)性。練習(xí)的設(shè)定也是由淺入深層層推進(jìn)的?;仡櫩偨Y(jié),加深理解理解理解請同學(xué)小結(jié)一下這節(jié)課的主要內(nèi)容,有哪些是詞語特別注意的? 1、函數(shù)單調(diào)性的定義,注意定義中的關(guān)鍵詞。 2、證明函數(shù)單調(diào)性的一般步驟; 3、在寫單調(diào)區(qū)間時,不要輕易用并集的符號連接;課后知識性內(nèi)容總結(jié),把課堂內(nèi)容轉(zhuǎn)化為學(xué)生的素質(zhì)兼顧差異,分層練習(xí)必做:習(xí)題2.1:第1、4、7題選做:研究的單調(diào)性,并給出嚴(yán)格證明,你能求出該函數(shù)的值域嗎? 1、針對學(xué)生個體的差異設(shè)置分層練習(xí)。既注重課內(nèi)基礎(chǔ)知識掌握,又兼顧了有余力的學(xué)生的能力的提高。 2、提出新的課題是想把問題研究引向課外,激發(fā)學(xué)生興趣,為下一節(jié)課“最值”作好充分的準(zhǔn)備。希望得到各位評委的批評指正課后記:在本節(jié)課中我力求做一名引導(dǎo)者,管理者營造一種平等,民主,和諧的學(xué)習(xí)氣氛,充分發(fā)揮評價在教學(xué)中的導(dǎo)向和激勵作用,與學(xué)生平等,民主的討論問題,增強學(xué)生之間的合作交流意識。集體講授時力求簡要清晰,高效低耗。 函數(shù)單調(diào)性概念教學(xué)的三個關(guān)鍵點 ──兼談《函數(shù)單調(diào)性》的教學(xué)設(shè)計 北京教育學(xué)院宣武分院 彭 林 函數(shù)單調(diào)性是學(xué)生進(jìn)入高中后較早接觸到的一個完全形式化的抽象定義,對于仍然處于經(jīng)驗型邏輯思維發(fā)展階段的高一學(xué)生來講,有較大的學(xué)習(xí)難度。一直以來,這節(jié)課也都是老師教學(xué)的難點。最近,在我區(qū)“青年教師評優(yōu)課”上,聽了多名教師對這節(jié)課不同風(fēng)格的課堂教學(xué),通過對他們教學(xué)案例的研究和思考,筆者認(rèn)為,在函數(shù)單調(diào)性概念的教學(xué)中,關(guān)鍵是把握住如下三個關(guān)鍵點。 關(guān)鍵點1。學(xué)生 學(xué)習(xí)函數(shù)單調(diào)性的認(rèn)知基礎(chǔ)是什么? 在這個內(nèi)容之前,已經(jīng)教學(xué)過一次函數(shù)、二次函數(shù)、反比例函數(shù)等簡單函數(shù),函數(shù)的變量定義和映射定義,以及函數(shù)的表示。對函數(shù)是一個刻畫某些運動變化數(shù)量關(guān)系的數(shù)學(xué)概念,也已經(jīng)形成初步認(rèn)識。接踵而來的任務(wù)是對函數(shù)應(yīng)該繼續(xù)研究什么。在數(shù)學(xué)研究中,建立一個數(shù)學(xué)概念的意義就是揭示它的本質(zhì)特征,即共同屬性或不變屬性。對各種函數(shù)模型而言,就是研究它們所描述的運動關(guān)系的變化規(guī)律,也就是這些運動關(guān)系在變化之中的共同屬性或不變屬性,即“變中不變”的性質(zhì)。按照這種科學(xué)研究的思維方式,使得當(dāng)前來討論函數(shù)的一些性質(zhì),就成為順理成章的、必要的和有意義的數(shù)學(xué)活動。至于在多種函數(shù)性質(zhì)中,選擇這個時機(jī)來討論函數(shù)的單調(diào)性而不是其他性質(zhì),是因為函數(shù)的單調(diào)性是學(xué)生從已經(jīng)學(xué)習(xí)的函數(shù)中比較容易發(fā)現(xiàn)的一個性質(zhì)。 就中小學(xué)生與單調(diào)性相關(guān)的經(jīng)歷而言,學(xué)生認(rèn)識函數(shù)單調(diào)性可以分為四個階段: 第一階段,經(jīng)驗感知階段(小學(xué)階段),知道一個量隨另一個量的變化而變化的具體情境,如“隨著年齡的增長,我的個子越來越高”,“我認(rèn)識的字越多,我的知識就越多”等。 第二階段,形象描述階段(初中階段),能用抽象的語言描述一個量隨另一個量變化的趨勢,如“y隨著x的增大而減少”。 第三階段,抽象概括階段(高中必修1),能進(jìn)行脫離具體和直觀對象的抽象化、符號化的概括,并通過具體函數(shù),初步體會單調(diào)性在研究函數(shù)變化中的作用。 第四階段,認(rèn)識提升階段(高中選修系列1、2),要求學(xué)生能初步認(rèn)識導(dǎo)數(shù)與單調(diào)性的聯(lián)系。 基于上述認(rèn)識,函數(shù)單調(diào)性教學(xué)的引入應(yīng)該從學(xué)生的已有認(rèn)知出發(fā),建立在學(xué)生初中已學(xué)的一次函數(shù)、二次函數(shù)以及反比例函數(shù)的基礎(chǔ)上,即從學(xué)生熟悉的常見函數(shù)的圖象出發(fā),直觀感知函數(shù)的單調(diào)性,完成對函數(shù)單調(diào)性定義的第一次認(rèn)識.。 讓學(xué)生分別作出函數(shù)數(shù)值有什么變化規(guī)律? 的圖象,并且觀察自變量變化時,函在學(xué)生畫圖的基礎(chǔ)上,引導(dǎo)學(xué)生觀察圖象,獲得信息:第一個圖象從左向右逐漸上升,y隨x的增大而增大;第二個圖象從左向右逐漸下降,y隨x的增大而減小.然后讓學(xué)生明確,對于自變量變化時,函數(shù)值具有這兩種變化規(guī)律的函數(shù),我們分別稱為增函數(shù)和減函數(shù).第三個函數(shù)圖象的上升與下降要分段說明,通過討論使學(xué)生明確函數(shù)的單調(diào)性是對定義域內(nèi)某個區(qū)間而言的. 在此基礎(chǔ)上,教師引導(dǎo)學(xué)生用自己的語言描述增函數(shù)的定義: 如果函數(shù)在某個區(qū)間上的圖象從左向右逐漸上升,或者如果函數(shù) 在某個區(qū)間上隨自變量x的增大,y也越來越大,我們說函數(shù)在該區(qū)間上為增函數(shù). 關(guān)鍵點2。為什么要用數(shù)學(xué)的符號語言定義函數(shù)的單調(diào)性概念? 對于函數(shù)單調(diào)性概念的教學(xué)而言,有一個很重要的問題,即為什么要進(jìn)一步形式化。學(xué)生在初中已經(jīng)接觸過一次函數(shù)、反比例函數(shù)、二次函數(shù),對函數(shù)的增減性已有初步的認(rèn)識:隨x增大y增大是增函數(shù),隨x增大y 減小是減函數(shù)。這個觀念對他們而言是易于接受的,很形象,他們會覺得這樣的定義很好,為什么還要費神去進(jìn)行符號化呢?如果教師能通過教學(xué)設(shè)計,讓學(xué)生感受到進(jìn)一步符號化、形式化的必要性,造成認(rèn)知沖突,則學(xué)生研究的興趣就會大大提高,主動性也會更強。其實,數(shù)學(xué)概念就是一系列常識不斷精微化的結(jié)果,之所以要進(jìn)一步形式化,完全是數(shù)學(xué)精確性、嚴(yán)密性的要求,因為只有達(dá)到這種符號化、形式化的程度,才可以進(jìn)行準(zhǔn)確的計算,進(jìn)行推理論證。 所以,在教學(xué)中提出類似如下的問題是非常必要的: 右圖是函數(shù)函數(shù)嗎? 的圖象,能說出這個函數(shù)分別在哪個區(qū)間為增函數(shù)和減 對于這個問題,學(xué)生的困難是難以確定分界點的確切位置.通過討論,使學(xué)生感受到用函數(shù)圖象判斷函數(shù)單調(diào)性雖然比較直觀,但有時不夠精確,需要結(jié)合解析式進(jìn)行嚴(yán)密化、精確化的研究,使學(xué)生體會到用數(shù)量大小關(guān)系嚴(yán)格表述函數(shù)單調(diào)性的必要性,從而將函數(shù)的單調(diào)性研究從研究函數(shù)圖象過渡到研究函數(shù)的解析式.關(guān)鍵點3:如何用形式化的語言定義函數(shù)的單調(diào)性? 從數(shù)學(xué)學(xué)科這個整體來看,數(shù)學(xué)的高度抽象性造成了數(shù)學(xué)的難懂、難教、難學(xué),解決這一問題的基本途徑是順應(yīng)學(xué)習(xí)者的認(rèn)知規(guī)律:在需要和可能的情況下,盡量做到從直觀入手,從具體開始,逐步抽象,即數(shù)學(xué)的思考方式。恰當(dāng)運用圖形語言、自然語言和符號化的形式語言,并進(jìn)行三者之間必要的轉(zhuǎn)化,可以說,這是學(xué)習(xí)數(shù)學(xué)的基本思考方式。而函數(shù)單調(diào)性這一內(nèi)容正是體現(xiàn)數(shù)學(xué)基本思考方式的一個良好載體,教學(xué)中應(yīng)該充分關(guān)注到這一點。長此以往,便可使學(xué)生在學(xué)習(xí)知識的同時,學(xué)到比知識更重要的東西—學(xué)會如何思考?如何進(jìn)行數(shù)學(xué)的思考? 一般說,對函數(shù)單調(diào)性的建構(gòu)有兩個重要過程,一是建構(gòu)函數(shù)單調(diào)性的意義,二是通過思維構(gòu)造把這個意義用數(shù)學(xué)的形式化語言加以描述。對函數(shù)單調(diào)性的意義,學(xué)生通過對若干函數(shù)圖象的觀察并不難認(rèn)識,因此,前一過程的建構(gòu)學(xué)習(xí)相對比較容易進(jìn)行。后一過程的進(jìn)行則有相當(dāng)?shù)碾y度,其難就難在用數(shù)學(xué)的符合語言來描述函數(shù)單調(diào)性的定義時,如何才能最大限度地通過學(xué)生自己的思維活動來完成。這其中有兩個難點: (1)“x增大”如何用符號表示;同樣,“f(x)增大”如何用符號表示。(2)“‘隨著’x增大,函數(shù)f(x)‘也’增大”,如何用符號表示。 用數(shù)學(xué)符號描述這兩種數(shù)學(xué)意義的最大要害之處,在于要用數(shù)學(xué)的符號來描述動態(tài)的數(shù)學(xué)對象。 在初中數(shù)學(xué)中,除了學(xué)習(xí)函數(shù)的初級概念,用y=f(x)表示函數(shù)y隨著自變量x的變化而變化時,接觸到一點動態(tài)數(shù)學(xué)對象的數(shù)學(xué)符號表示以外,絕大多數(shù)都是用數(shù)學(xué)符號表示靜態(tài)的數(shù)學(xué)對象。因此,從用靜態(tài)的數(shù)學(xué)符號描述靜態(tài)的數(shù)學(xué)對象,到用靜態(tài)的符號語言刻畫動態(tài)數(shù)學(xué)對象,在思維能力層次上存在重大差異,對剛剛由初中進(jìn)入高中學(xué)習(xí)的學(xué)生而言,無疑是一個很大的挑戰(zhàn)! 因此,在教學(xué)中可以提出如下問題2: 如何從解析式的角度說明 在上為增函數(shù)? 這個問題是形成函數(shù)單調(diào)性概念的關(guān)鍵。在教學(xué)中,教師可以組織學(xué)生先分組探究,然后全班交流,相互補充,并及時對學(xué)生的發(fā)言進(jìn)行反饋、評價,對普遍出現(xiàn)的問題組織學(xué)生討論,在辨析中達(dá)成共識.對于問題2,學(xué)生錯誤的回答主要有兩種: ①在給定區(qū)間內(nèi)取兩個數(shù),例如1和2,因為函數(shù). ,所以 在上為增②可以用0,1,2,3,4,5驗證: 在所以函數(shù)上是增函數(shù)。 對于這兩種錯誤,教師要引導(dǎo)學(xué)生進(jìn)一步展開思考。例如,指出回答②試圖用自然數(shù)列來驗證結(jié)論,而且引入了不等式表示不等關(guān)系,但是,只是對有限幾個自然數(shù)驗證不行,只有當(dāng)所有的比較結(jié)果都是一樣的:自變量大時,函數(shù)值也大,才可以證明它是增函數(shù),那么怎么辦?如果有的學(xué)生提出:引入非負(fù)實數(shù)a,只要證明 就可以了,這就把驗證的范圍由有限擴(kuò)大到了無限。教師應(yīng)適時指出這種驗證也有局限性,然后再讓學(xué)生思考怎樣做才能實現(xiàn)“任意性”就有堅實的基礎(chǔ)了。也就是,從給定的區(qū)間內(nèi)任意取兩個自變量,然后求差比較函數(shù)值的大小,從而得到正確的回答: 任意取在,有為增函數(shù). ,即,所以這種回答既揭示了單調(diào)性的本質(zhì),也讓學(xué)生領(lǐng)悟到兩點:(1)兩自變量的取值具有任意性;(2)求差比較它們函數(shù)值的大小。至此,學(xué)生對函數(shù)單調(diào)性有了理性的認(rèn)識.在前面研究的基礎(chǔ)上,引導(dǎo)學(xué)生歸納、抽象出函數(shù)單調(diào)性的定義,使學(xué)生經(jīng)歷從特殊到一般,從具體到抽象的認(rèn)知過程。 教學(xué)中,教師引導(dǎo)學(xué)生用嚴(yán)格的數(shù)學(xué)符號語言歸納、抽象增函數(shù)的定義,并讓學(xué)生類比得到減函數(shù)的定義.然后指導(dǎo)學(xué)生認(rèn)真閱讀教材中有關(guān)單調(diào)性的概念,對定義中關(guān)鍵的地方進(jìn)行強調(diào).同時設(shè)計了一組判斷題: 判斷題: ①②若函數(shù)③若函數(shù)滿足f(2) 和(2,3)上均為增函數(shù),則函數(shù)在(1,3)上為增函數(shù).④因為函數(shù)減函數(shù).在上都是減函數(shù),所以在上是通過對判斷題的討論,強調(diào)三點: ①單調(diào)性是對定義域內(nèi)某個區(qū)間而言的,離開了定義域和相應(yīng)區(qū)間就談不上單調(diào)性. ②有的函數(shù)在整個定義域內(nèi)單調(diào)(如一次函數(shù)),有的函數(shù)只在定義域內(nèi)的某些區(qū)間單調(diào)(如二次函數(shù)),有的函數(shù)根本沒有單調(diào)區(qū)間(如常函數(shù)). ③函數(shù)在定義域內(nèi)的兩個區(qū)間A,B上都是增(或減)函數(shù),一般不能認(rèn)為函數(shù)在上是增(或減)函數(shù). 從而加深學(xué)生對定義的理解 北京4中常規(guī)備課 【教學(xué)目標(biāo)】 1.使學(xué)生從形與數(shù)兩方面理解函數(shù)單調(diào)性的概念,初步掌握利用函數(shù)圖象和單調(diào)性定義判斷、證明函數(shù)單調(diào)性的方法. 2.通過對函數(shù)單調(diào)性定義的探究,滲透數(shù)形結(jié)合數(shù)學(xué)思想方法,培養(yǎng)學(xué)生觀察、歸納、抽象的能力和語言表達(dá)能力;通過對函數(shù)單調(diào)性的證明,提高學(xué)生的推理論證能力. 3.通過知識的探究過程培養(yǎng)學(xué)生細(xì)心觀察、認(rèn)真分析、嚴(yán)謹(jǐn)論證的良好思維習(xí)慣,讓學(xué)生經(jīng)歷從具體到抽象,從特殊到一般,從感性到理性的認(rèn)知過程. 【教學(xué)重點】 函數(shù)單調(diào)性的概念、判斷及證明. 【教學(xué)難點】 歸納抽象函數(shù)單調(diào)性的定義以及根據(jù)定義證明函數(shù)的單調(diào)性. 【教學(xué)方法】 教師啟發(fā)講授,學(xué)生探究學(xué)習(xí). 【教學(xué)手段】 計算機(jī)、投影儀. 【教學(xué)過程】 一、創(chuàng)設(shè)情境,引入課題 課前布置任務(wù): (1)由于某種原因,2008年北京奧運會開幕式時間由原定的7月25日推遲到8月8日,請查閱資料說明做出這個決定的主要原因.(2)通過查閱歷史資料研究北京奧運會開幕式當(dāng)天氣溫變化情況.課上通過交流,可以了解到開幕式推遲主要是天氣的原因,北京的天氣到8月中旬,平均氣溫、平均降雨量和平均降雨天數(shù)等均開始下降,比較適宜大型國際體育賽事.下圖是北京市今年8月8日一天24小時內(nèi)氣溫隨時間變化的曲線圖.引導(dǎo)學(xué)生識圖,捕捉信息,啟發(fā)學(xué)生思考. 問題:觀察圖形,能得到什么信息? 預(yù)案:(1)當(dāng)天的最高溫度、最低溫度以及何時達(dá)到;(2)在某時刻的溫度; (3)某些時段溫度升高,某些時段溫度降低.在生活中,我們關(guān)心很多數(shù)據(jù)的變化規(guī)律,了解這些數(shù)據(jù)的變化規(guī)律,對我們的生活是很有幫助的. 問題:還能舉出生活中其他的數(shù)據(jù)變化情況嗎? 預(yù)案:水位高低、燃油價格、股票價格等. 歸納:用函數(shù)觀點看,其實就是隨著自變量的變化,函數(shù)值是變大還是變?。?〖設(shè)計意圖〗由生活情境引入新課,激發(fā)興趣. 二、歸納探索,形成概念 對于自變量變化時,函數(shù)值是變大還是變小,初中同學(xué)們就有了一定的認(rèn)識,但是沒有嚴(yán)格的定義,今天我們的任務(wù)首先就是建立函數(shù)單調(diào)性的嚴(yán)格定義.1.借助圖象,直觀感知 問題1: 分別作出函數(shù)數(shù)值有什么變化規(guī)律? 的圖象,并且觀察自變量變化時,函 預(yù)案:(1)函數(shù) 在整個定義域內(nèi) y隨x的增大而增大;函數(shù) 在整個定義域內(nèi) y隨x的增大而減?。?/p> (2)函數(shù)在上 y隨x的增大而增大,在上y隨x的增大而減?。?/p> (3)函數(shù) 在上 y隨x的增大而減小,在上y隨x的增大而減?。?/p> 引導(dǎo)學(xué)生進(jìn)行分類描述(增函數(shù)、減函數(shù)).同時明確函數(shù)的單調(diào)性是對定義域內(nèi)某個區(qū)間而言的,是函數(shù)的局部性質(zhì). 問題2:能不能根據(jù)自己的理解說說什么是增函數(shù)、減函數(shù)? 預(yù)案:如果函數(shù) 在某個區(qū)間上隨自變量x的增大,y也越來越大,我們說函數(shù) 在某個區(qū)間上隨自變量x的增大,y越來越小,我們在該區(qū)間上為增函數(shù);如果函數(shù)說函數(shù)在該區(qū)間上為減函數(shù). 教師指出:這種認(rèn)識是從圖象的角度得到的,是對函數(shù)單調(diào)性的直觀,描述性的認(rèn)識. 【設(shè)計意圖】從圖象直觀感知函數(shù)單調(diào)性,完成對函數(shù)單調(diào)性的第一次認(rèn)識. 2.探究規(guī)律,理性認(rèn)識 問題1:下圖是函數(shù)和減函數(shù)嗎? 的圖象,能說出這個函數(shù)分別在哪個區(qū)間為增函數(shù) 學(xué)生的困難是難以確定分界點的確切位置. 通過討論,使學(xué)生感受到用函數(shù)圖象判斷函數(shù)單調(diào)性雖然比較直觀,但有時不夠精確,需要結(jié)合解析式進(jìn)行嚴(yán)密化、精確化的研究. 〖設(shè)計意圖〗使學(xué)生體會到用數(shù)量大小關(guān)系嚴(yán)格表述函數(shù)單調(diào)性的必要性. 問題2:如何從解析式的角度說明 在為增函數(shù)? 22預(yù)案:(1)在給定區(qū)間內(nèi)取兩個數(shù),例如1和2,因為1<2,所以為增函數(shù). (2)仿(1),取很多組驗證均滿足,所以(3)任取,所以 在,因為 為增函數(shù). 在為增函數(shù). 在,即對于學(xué)生錯誤的回答,引導(dǎo)學(xué)生分別用圖形語言和文字語言進(jìn)行辨析,使學(xué)生認(rèn)識到問題的根源在于自變量不可能被窮舉,從而引導(dǎo)學(xué)生在給定的區(qū)間內(nèi)任意取兩個自變量. 【設(shè)計意圖】把對單調(diào)性的認(rèn)識由感性上升到理性認(rèn)識的高度,完成對概念的第二次認(rèn)識.事實上也給出了證明單調(diào)性的方法,為證明單調(diào)性做好鋪墊.3.抽象思維,形成概念 問題:你能用準(zhǔn)確的數(shù)學(xué)符號語言表述出增函數(shù)的定義嗎? 師生共同探究,得出增函數(shù)嚴(yán)格的定義,然后學(xué)生類比得出減函數(shù)的定義.(1)板書定義(2)鞏固概念 判斷題: ①. ②若函數(shù) ③若函數(shù) 在區(qū)間 和(2,3)上均為增函數(shù),則函數(shù) 在區(qū)間(1,3)上為增函 . ④因為函數(shù)在區(qū)間上是減函數(shù).上都是減函數(shù),所以在 通過判斷題,強調(diào)三點: ①單調(diào)性是對定義域內(nèi)某個區(qū)間而言的,離開了定義域和相應(yīng)區(qū)間就談不上單調(diào)性. ②對于某個具體函數(shù)的單調(diào)區(qū)間,可以是整個定義域(如一次函數(shù)),可以是定義域內(nèi)某個區(qū)間(如二次函數(shù)),也可以根本不單調(diào)(如常函數(shù)). ③函數(shù)在定義域內(nèi)的兩個區(qū)間A,B上都是增(或減)函數(shù),一般不能認(rèn)為函數(shù)在上是增(或減)函數(shù). 思考:如何說明一個函數(shù)在某個區(qū)間上不是單調(diào)函數(shù)? 【設(shè)計意圖】讓學(xué)生由特殊到一般,從具體到抽象歸納出單調(diào)性的定義,通過對判斷題的辨析,加深學(xué)生對定義的理解,完成對概念的第三次認(rèn)識.三、掌握證法,適當(dāng)延展 例 證明函數(shù) 在上是增函數(shù). 1.分析解決問題 針對學(xué)生可能出現(xiàn)的問題,組織學(xué)生討論、交流. 證明:任取 ,設(shè)元 求差 變形,斷號 ∴ ∴ 即 ∴函數(shù) 2.歸納解題步驟 在上是增函數(shù). 定論 引導(dǎo)學(xué)生歸納證明函數(shù)單調(diào)性的步驟:設(shè)元、作差、變形、斷號、定論. 練習(xí):證明函數(shù) 問題:要證明函數(shù) 在區(qū)間 上是增函數(shù),除了用定義來證,如果可以證得對 在上是增函數(shù). 任意的,且有可以嗎? 引導(dǎo)學(xué)生分析這種敘述與定義的等價性.讓學(xué)生嘗試用這種等價形式證明函數(shù)在 〖設(shè)計意圖〗初步掌握根據(jù)定義證明函數(shù)單調(diào)性的方法和步驟.等價形式進(jìn)一步發(fā)展可以得到導(dǎo)數(shù)法,為用導(dǎo)數(shù)方法研究函數(shù)單調(diào)性埋下伏筆. 四、歸納小結(jié),提高認(rèn)識 學(xué)生交流在本節(jié)課學(xué)習(xí)中的體會、收獲,交流學(xué)習(xí)過程中的體驗和感受,師生合作共同完成小結(jié). 1.小結(jié) (1)概念探究過程:直觀到抽象、特殊到一般、感性到理性.(2)證明方法和步驟:設(shè)元、作差、變形、斷號、定論.(3)數(shù)學(xué)思想方法和思維方法:數(shù)形結(jié)合,等價轉(zhuǎn)化,類比等. 2.作業(yè) 書面作業(yè):課本第60頁習(xí)題2.3 第4,5,6題. 課后探究:(1)證明:函數(shù) 在區(qū)間 上是增函數(shù)的充要條件是對任意的上是增函數(shù).,且 有. (2)研究函數(shù)的單調(diào)性,并結(jié)合描點法畫出函數(shù)的草圖. 《函數(shù)的單調(diào)性》教學(xué)設(shè)計說明 一、教學(xué)內(nèi)容的分析 函數(shù)的單調(diào)性是學(xué)生在了解函數(shù)概念后學(xué)習(xí)的函數(shù)的第一個性質(zhì),是函數(shù)學(xué)習(xí)中第一個用數(shù)學(xué)符號語言刻畫的概念,為進(jìn)一步學(xué)習(xí)函數(shù)其它性質(zhì)提供了方法依據(jù). 對于函數(shù)單調(diào)性,學(xué)生的認(rèn)知困難主要在兩個方面:(1)要求用準(zhǔn)確的數(shù)學(xué)符號語言去刻畫圖象的上升與下降,這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對高一的學(xué)生是比較困難的;(2)單調(diào)性的證明是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,而學(xué)生在代數(shù)方面的推理論證能力是比較薄弱的.根據(jù)以上的分析和教學(xué)大綱的要求,確定了本節(jié)課的重點和難點. 二、教學(xué)目標(biāo)的確定 根據(jù)本課教材的特點、教學(xué)大綱對本節(jié)課的教學(xué)要求以及學(xué)生的認(rèn)知水平,從三個不同的方面確定了教學(xué)目標(biāo),重視單調(diào)性概念的形成過程和對概念本質(zhì)的認(rèn)識;強調(diào)判斷、證明函數(shù)單調(diào)性的方法的落實以及數(shù)形結(jié)合思想的滲透;突出語言表達(dá)能力、推理論證能力的培養(yǎng)和良好思維習(xí)慣的養(yǎng)成. 三、教學(xué)過程的設(shè)計 為達(dá)到本節(jié)課的教學(xué)目標(biāo),突出重點,突破難點,教學(xué)上采取了以下的措施:(1)在探索概念階段, 讓學(xué)生經(jīng)歷從直觀到抽象、從特殊到一般、從感性到理性的認(rèn)知過程,完成對單調(diào)性定義的三次認(rèn)識,使得學(xué)生對概念的認(rèn)識不斷深入. (2)在應(yīng)用概念階段,通過對證明過程的分析,幫助學(xué)生掌握用定義證明函數(shù)單調(diào)性的方法和步驟. (3)考慮到我校學(xué)生數(shù)學(xué)基礎(chǔ)較好、思維較為活躍的特點,對判斷方法進(jìn)行適當(dāng)?shù)难诱?,加深對定義的理解,同時也為用導(dǎo)數(shù)研究單調(diào)性埋下伏筆. 《函數(shù)的單調(diào)性》說課稿 《函數(shù)的單調(diào)性》說課稿 北京景山學(xué)校 許云堯 各位專家、評委:大家好! 我是北京景山學(xué)校的數(shù)學(xué)教師許云堯,很高興有機(jī)會參加這次說課活動,希望專家和評委對我的說課提出寶貴意見.我說課的內(nèi)容是《函數(shù)的單調(diào)性》的教學(xué)設(shè)計,下面我分別從教學(xué)內(nèi)容的分析、教學(xué)目標(biāo)的確定、教學(xué)方法的選擇和教學(xué)過程的設(shè)計這四個方面來匯報我對這節(jié)課的教學(xué)設(shè)想. 一、教學(xué)內(nèi)容的分析 1.教材的地位和作用 首先,從單調(diào)性知識本身來講.學(xué)生對于函數(shù)單調(diào)性的學(xué)習(xí)共分為三個階段,第一階段是在初中學(xué)習(xí)了一次函數(shù)、二次函數(shù)、反比例函數(shù)圖象的基礎(chǔ)上對增減性有一個初步的感性認(rèn)識;第二階段是在高一進(jìn)一步學(xué)習(xí)函數(shù)單調(diào)性的嚴(yán)格定義,從數(shù)和形兩個方面理解單調(diào)性的概念;第三階段則是在高三利用導(dǎo)數(shù)為工具研究函數(shù)的單調(diào)性.高一單調(diào)性的學(xué)習(xí),既是初中學(xué)習(xí)的延續(xù)和深化,又為高三的學(xué)習(xí)奠定基礎(chǔ). 其次,從函數(shù)角度來講.函數(shù)的單調(diào)性是學(xué)生學(xué)習(xí)函數(shù)概念后學(xué)習(xí)的第一個函數(shù)性質(zhì),也是第一個用數(shù)學(xué)符號語言來刻畫的概念.函數(shù)的單調(diào)性與函數(shù)的奇偶性、周期性一樣,都是研究自變量變化時,函數(shù)值的變化規(guī)律;學(xué)生對于這些概念的認(rèn)識,都經(jīng)歷了直觀感受、文字描述和嚴(yán)格定義三個階段,即都從圖象觀察,以函數(shù)解析式為依據(jù),經(jīng)歷用符號語言刻畫圖形語言,用定量分析解釋定性結(jié)果的過程.因此,函數(shù)單調(diào)性的學(xué)習(xí)為進(jìn)一步學(xué)習(xí)函數(shù)的其它性質(zhì)提供了方法依據(jù).最后,從學(xué)科角度來講.函數(shù)的單調(diào)性是學(xué)習(xí)不等式、極限、導(dǎo)數(shù)等其它數(shù)學(xué)知識的重要基礎(chǔ),是解決數(shù)學(xué)問題的常用工具,也是培養(yǎng)學(xué)生邏輯推理能力和滲透數(shù)形結(jié)合思想的重要素材.2.教學(xué)的重點和難點 對于函數(shù)的單調(diào)性,學(xué)生的認(rèn)知困難主要在兩個方面: 首先,要求用準(zhǔn)確的數(shù)學(xué)符號語言去刻畫圖象的上升與下降,把對單調(diào)性直觀感性的認(rèn)識上升到理性的高度, 這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對高一的學(xué)生來說比較困難.其次,單調(diào)性的證明是學(xué)生在函數(shù)學(xué)習(xí)中首次接觸到的代數(shù)論證內(nèi)容,而學(xué) 共 8 頁 第 1 頁 《函數(shù)的單調(diào)性》說課稿 生在代數(shù)方面的推理論證能力是比較薄弱的.根據(jù)以上的分析和教學(xué)大綱對單調(diào)性的教學(xué)要求,本節(jié)課的教學(xué)重點是函數(shù)單調(diào)性的概念,判斷、證明函數(shù)的單調(diào)性;難點是引導(dǎo)學(xué)生歸納并抽象出函數(shù)單調(diào)性的定義以及根據(jù)定義證明函數(shù)的單調(diào)性.二、教學(xué)目標(biāo)的確定 根據(jù)本課教材的特點、教學(xué)大綱對本節(jié)課的教學(xué)要求以及學(xué)生的認(rèn)知水平,我從三個方面確定了以下教學(xué)目標(biāo): 1.使學(xué)生從形與數(shù)兩方面理解函數(shù)單調(diào)性的概念,初步掌握利用函數(shù)圖象和單調(diào)性定義判斷、證明函數(shù)單調(diào)性的方法. 2.通過對函數(shù)單調(diào)性定義的探究,滲透數(shù)形結(jié)合數(shù)學(xué)思想方法,培養(yǎng)學(xué)生觀察、歸納、抽象的能力和語言表達(dá)能力;通過對函數(shù)單調(diào)性的證明,提高學(xué)生的推理論證能力. 3.通過知識的探究過程培養(yǎng)學(xué)生細(xì)心觀察、認(rèn)真分析、嚴(yán)謹(jǐn)論證的良好思維習(xí)慣;讓學(xué)生經(jīng)歷從具體到抽象,從特殊到一般,從感性到理性的認(rèn)知過程. 三、教學(xué)方法的選擇 1.教學(xué)方法 本節(jié)課是函數(shù)單調(diào)性的起始課,根據(jù)教學(xué)內(nèi)容、教學(xué)目標(biāo)和學(xué)生的認(rèn)知水平,主要采取教師啟發(fā)講授,學(xué)生探究學(xué)習(xí)的教學(xué)方法.教學(xué)過程中,根據(jù)教材提供的線索,安排適當(dāng)?shù)慕虒W(xué)情境,讓學(xué)生展示相應(yīng)的數(shù)學(xué)思維過程,使學(xué)生有機(jī)會經(jīng)歷數(shù)學(xué)概念抽象的各個階段,引導(dǎo)學(xué)生獨立自主地開展思維活動,深入探究,從而創(chuàng)造性地解決問題,最終形成概念,獲得方法,培養(yǎng)能力.2.教學(xué)手段 教學(xué)中使用了多媒體投影和計算機(jī)來輔助教學(xué).目的是充分發(fā)揮其快捷、生動、形象的特點,為學(xué)生提供直觀感性的材料,有助于學(xué)生對問題的理解和認(rèn)識. 四、教學(xué)過程的設(shè)計 為達(dá)到本節(jié)課的教學(xué)目標(biāo),突出重點,突破難點,我把教學(xué)過程設(shè)計為四個階段:創(chuàng)設(shè)情境,引入課題;歸納探索,形成概念;掌握證法,適當(dāng)延展;歸納小結(jié),提高認(rèn)識.具體過程如下: (一)創(chuàng)設(shè)情境,引入課題 概念的形成主要依靠對感性材料的抽象概括,只有學(xué)生對學(xué)習(xí)對象有了豐富具體經(jīng)驗以后,才能使學(xué)生對學(xué)習(xí)對象進(jìn)行主動的、充分的理解,因此在本階段 共 8 頁 第 2 頁 《函數(shù)的單調(diào)性》說課稿 的教學(xué)中,我從具體材料——有關(guān)奧運會天氣的例子出發(fā),而不是從抽象語言入手來引入函數(shù)的單調(diào)性.使學(xué)生體會到研究函數(shù)單調(diào)性的必要性,明確本課我們要研究和學(xué)習(xí)的課題,同時激發(fā)學(xué)生的學(xué)習(xí)興趣和主動探究的精神. 在課前,我給學(xué)生布置了兩個任務(wù): (1)由于某種原因,2008年北京奧運會開幕式時間由原定的7月25日推遲到8月8日,請查閱資料說明做出這個決定的主要原因.課上通過交流,可以了解到開幕式推遲主要是天氣的原因,北京的天氣到8月中旬,平均氣溫、平均降雨量和平均降雨天數(shù)等均開始下降,比較適宜大型國際體育賽事.(2)通過查閱歷史資料研究北京奧運會開幕式當(dāng)天氣溫變化情況.課上我引導(dǎo)學(xué)生觀察2006年8月8日的氣溫變化曲線圖,引導(dǎo)學(xué)生體會在某些時段溫度升高,某些時段溫度降低.然后,我指出生活中我們關(guān)心很多數(shù)據(jù)的變化,并讓學(xué)生舉出一些實際例子(如燃油價格等).隨后進(jìn)一步引導(dǎo)學(xué)生歸納:所有這些數(shù)據(jù)的變化,用函數(shù)觀點看,其實就是隨著自變量的變化,函數(shù)值是變大還是變小. (二)歸納探索,形成概念 在本階段的教學(xué)中,為使學(xué)生充分感受數(shù)學(xué)概念的發(fā)生與發(fā)展過程和數(shù)形結(jié)合的數(shù)學(xué)思想,經(jīng)歷觀察、歸納、抽象的探究過程,加深對函數(shù)單調(diào)性的本質(zhì)的認(rèn)識,我設(shè)計了三個環(huán)節(jié),引導(dǎo)學(xué)生分別完成對單調(diào)性定義的三次認(rèn)識.1.借助圖象,直觀感知 本環(huán)節(jié)的教學(xué)主要是從學(xué)生的已有認(rèn)知出發(fā),即從學(xué)生熟悉的常見函數(shù)的圖象出發(fā),直觀感知函數(shù)的單調(diào)性,完成對函數(shù)單調(diào)性定義的第一次認(rèn)識.在本環(huán)節(jié)的教學(xué)中,我主要設(shè)計了兩個問題: 問題1:分別作出函數(shù)y?x?2,y??x?2,y?x2以及y?觀察自變量變化時,函數(shù)值有什么變化規(guī)律? 在學(xué)生畫圖的基礎(chǔ)上,引導(dǎo)學(xué)生觀察圖象,獲得信息:第一個圖象從左向右逐漸上升,y隨x的增大而增大;第二個圖象從左向右逐漸下降,y隨x的增大而減小.然后讓學(xué)生明確,對于自變量變化時,函數(shù)值具有這兩種變化規(guī)律的函數(shù),我們分別稱為增函數(shù)和減函數(shù).而后兩個函數(shù)圖象的上升與下降要分段說明,通過討論使學(xué)生明確函數(shù)的單調(diào)性是對定義域內(nèi)某個區(qū)間而言的,是函數(shù)的局部性質(zhì). 共 8 頁 第 3 頁 1的圖象,并且x《函數(shù)的單調(diào)性》說課稿 對于概念教學(xué),若學(xué)生能用自己的語言來表述概念的相關(guān)屬性,則能更好的理解和掌握概念,因此我設(shè)計了問題2.問題2:能否根據(jù)自己的理解說說什么是增函數(shù)、減函數(shù)? 教學(xué)中,我引導(dǎo)學(xué)生用自己的語言描述增函數(shù)的定義: 如果函數(shù)f(x)在某個區(qū)間上的圖象從左向右逐漸上升,或者如果函數(shù)f(x)在某個區(qū)間上隨自變量x的增大,y也越來越大,我們說函數(shù)f(x)在該區(qū)間上為增函數(shù). 然后讓學(xué)生類比描述減函數(shù)的定義.至此,學(xué)生對函數(shù)單調(diào)性就有了一個直觀、描述性的認(rèn)識. 2.探究規(guī)律,理性認(rèn)識 在此環(huán)節(jié)中,我設(shè)計了兩個問題,通過對兩個問題的研究、交流、討論,將函數(shù)的單調(diào)性研究從研究函數(shù)圖象過渡到研究函數(shù)的解析式,使學(xué)生對單調(diào)性的認(rèn)識由感性認(rèn)識上升到理性認(rèn)識的高度,使學(xué)生完成對概念的第二次認(rèn)識. 問題1:右圖是函數(shù)y?x?2(x?0)的 x圖象,能說出這個函數(shù)分別在哪個區(qū)間為增 函數(shù)和減函數(shù)嗎? 對于問題1,學(xué)生的困難是難以確定分界點的確切位置.通過討論,使學(xué)生感受到用函數(shù)圖象判斷函數(shù)單調(diào)性雖然比較直觀,但有時不夠精確,需要結(jié)合解析式進(jìn)行嚴(yán)密化、精確化的研究,使學(xué)生體會到用數(shù)量大小關(guān)系嚴(yán)格表述函數(shù)單調(diào)性的必要性,從而將函數(shù)的單調(diào)性研究從研究函數(shù)圖象過渡到研究函數(shù)的解析式.問題2:如何從解析式的角度說明f(x)?x2在[0,??)上為增函數(shù)? 在前邊的鋪墊下,問題2是形成單調(diào)性概念的關(guān)鍵.在教學(xué)中,我組織學(xué)生先分組探究,然后全班交流,相互補充,并及時對學(xué)生的發(fā)言進(jìn)行反饋,評價,對普遍出現(xiàn)的問題組織學(xué)生討論,在辨析中達(dá)成共識.對于問題2,學(xué)生錯誤的回答主要有兩種: (1)在給定區(qū)間內(nèi)取兩個數(shù),例如1和2,因為12?22,所以f(x)?x2在[0,??)上為增函數(shù). (2)仿(1),取很多組驗證均滿足,所以f(x)?x2在[0,??)上為增函數(shù). 對于這兩種錯誤,我鼓勵學(xué)生分別用圖形語言和文字語言進(jìn)行辨析.引導(dǎo)學(xué)生明確問題的根源是兩個自變量不可能被窮舉.在充分討論的基礎(chǔ)上,引導(dǎo)學(xué)生 共 8 頁 第 4 頁 《函數(shù)的單調(diào)性》說課稿 從給定的區(qū)間內(nèi)任意取兩個自變量x1,x2,然后求差比較函數(shù)值的大小,從而得到正確的回答: 任意取0?x1?x2,有x1?x2?(x1?x2)(x1?x2)?0,即x1?x2,所以 2222f(x)?x2在[0,??)為增函數(shù). 這種回答既揭示了單調(diào)性的本質(zhì),也讓學(xué)生領(lǐng)悟到兩點:(1)兩自變量的取值具有任意性;(2)求差比較它們函數(shù)值的大小.事實上,這種回答也給出了證明單調(diào)性的方法,為后續(xù)用定義證明其他函數(shù)的單調(diào)性做好鋪墊,降低難度.至此,學(xué)生對函數(shù)單調(diào)性有了理性的認(rèn)識.3.抽象思維,形成概念 本環(huán)節(jié)在前面研究的基礎(chǔ)上,引導(dǎo)學(xué)生歸納、抽象出函數(shù)單調(diào)性的定義,使學(xué)生經(jīng)歷從特殊到一般,從具體到抽象的認(rèn)知過程,完成對概念的第三次認(rèn)識.教學(xué)中,我引導(dǎo)學(xué)生用嚴(yán)格的數(shù)學(xué)符號語言歸納、抽象增函數(shù)的定義,并讓學(xué)生類比得到減函數(shù)的定義.然后我指導(dǎo)學(xué)生認(rèn)真閱讀教材中有關(guān)單調(diào)性的概念,對定義中關(guān)鍵的地方進(jìn)行強調(diào).同時我設(shè)計了一組判斷題: 判斷題: 1①已知函數(shù)f(x)?,因為f(?1)?f(2),所以函數(shù)f(x)是增函數(shù). x②若函數(shù)f(x)滿足f(2) ④因為函數(shù)f(x)?11在(??,0)和(0,??)上都是減函數(shù),所以f(x)?在xx(??,0)?(0,??)上是減函數(shù).通過對判斷題的討論,強調(diào)三點: ①單調(diào)性是對定義域內(nèi)某個區(qū)間而言的,離開了定義域和相應(yīng)區(qū)間就談不上單調(diào)性. ②有的函數(shù)在整個定義域內(nèi)單調(diào)(如一次函數(shù)),有的函數(shù)只在定義域內(nèi)的某些區(qū)間單調(diào)(如二次函數(shù)),有的函數(shù)根本沒有單調(diào)區(qū)間(如常函數(shù)). ③函數(shù)在定義域內(nèi)的兩個區(qū)間A,B上都是增(或減)函數(shù),一般不能認(rèn)為函數(shù)在A?B上是增(或減)函數(shù). 從而加深學(xué)生對定義的理解,完成本階段的教學(xué).共 8 頁 第 5 頁 《函數(shù)的單調(diào)性》說課稿 (三)掌握證法,適當(dāng)延展 本階段的教學(xué)主要是通過對例題和練習(xí)的思考交流、分析講解以及反思小結(jié),使學(xué)生初步掌握根據(jù)單調(diào)性定義證明函數(shù)單調(diào)性的方法,同時引導(dǎo)學(xué)生探究定義的等價形式,對證明方法做適當(dāng)延展.2例 證明函數(shù)f(x)?x?在(2,??)上是增函數(shù). x在引入導(dǎo)數(shù)后,用定義證明單調(diào)性的作用已經(jīng)有所降低,我選擇一個較難的例子,主要是考慮讓學(xué)生對證明過程中遇到的問題有一個比較深刻的認(rèn)識.證明過程的教學(xué)分為三個環(huán)節(jié):難點突破、詳細(xì)板書、歸納步驟.1.難點突破 對于函數(shù)單調(diào)性的證明,由于前邊有對函數(shù)f(x)?x2在[0,??)上為增函數(shù)的研究作鋪墊, 大部分學(xué)生能完成取值和求差兩個步驟: 證明:任取x1,x2?(2,??),且x1?x2, f(x1)?f(x2)?(x1?22)?(x2?),x1x2因此學(xué)生的難點主要是兩個函數(shù)值求差后的變形方向以及變形的程度.問題主要集中在兩個方面:一方面部分學(xué)生不知道如何變形,不敢動筆;另一方面部分學(xué)生在變形不徹底,理由不充分的情形下就下結(jié)論.針對這兩方面的問題,教學(xué)中,我組織學(xué)生討論,引導(dǎo)學(xué)生回顧函數(shù)f(x)?x2在[0,??)上為增函數(shù)的說明過程,明確變形的主要思路是因式分解.然后我引導(dǎo)學(xué)生從已有的認(rèn)知出發(fā),考慮分組分解法,即把形式相同的項分在一起,變形后容易找到公因式(x1?x2),提取后即可考慮判斷符號.2.詳細(xì)板書 在上面分析的基礎(chǔ)上,我對證明過程進(jìn)行規(guī)范、完整的板書,引導(dǎo)學(xué)生注意證明過程的規(guī)范性和嚴(yán)謹(jǐn)性,幫助學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣.證明:任取x1,x2?(2,??),且x1?x2,設(shè)元 f(x1)?f(x2)?(x1?22)?(x2?) 求差 x1x222?) 變形 x1x2?(x1?x2)?(共 8 頁 第 6 頁 《函數(shù)的單調(diào)性》說課稿 ?(x1?x2)?2(x2?x1) x1x2?(x1?x2)x1x2?2.x1x2由x1,x2?(2,??),得x1x2?2, 斷號 又由x1?x2,得x1?x2?0,于是f(x1)?f(x2)?0,即f(x1)?f(x2).2所以,函數(shù)f(x)?x?在(2,??)上是增函數(shù). 定論 x3.歸納步驟 在板書的基礎(chǔ)上,我引導(dǎo)學(xué)生歸納利用定義證明函數(shù)單調(diào)性的方法和步驟(設(shè)元,求差,變形,斷號,定論).通過對證明過程的分析,使學(xué)生明確每一步的必要性和目的,特別是第三步,讓學(xué)生明確變形的方法以及變形的程度,幫助學(xué)生掌握方法,提高學(xué)生的推理論證能力. 為了鞏固用定義證明函數(shù)單調(diào)性的方法,強化解題步驟,形成并提高解題能力,我設(shè)計了課堂練習(xí): 證明:函數(shù)f(x)?x在[0,??)上是增函數(shù). 教學(xué)過程中,我對學(xué)生的完成情況進(jìn)行及時評價和有針對性的指導(dǎo).同時考慮到我校學(xué)生數(shù)學(xué)基礎(chǔ)較好,思維較為活躍的特點,為了加深學(xué)生對定義的理解,并對判斷單調(diào)性的方法做適當(dāng)延展,我設(shè)計了下面的問題.問題:除了用定義外,如果證得對任意的x1,x2?(a,b),且x1?x2,有f(x2)?f(x1)?0,能斷定函數(shù)f(x)在(a,b)上是增函數(shù)嗎? x2?x1教學(xué)過程中,我引導(dǎo)學(xué)生分析這種敘述與定義的等價性.然后,讓學(xué)生嘗試用這種定義等價形式證明之前的課堂練習(xí).這種方法進(jìn)一步發(fā)展可以得到導(dǎo)數(shù)法,為今后用導(dǎo)數(shù)方法研究函數(shù)單調(diào)性埋下伏筆. (四)歸納小結(jié),提高認(rèn)識 本階段通過學(xué)習(xí)小結(jié)進(jìn)行課堂教學(xué)的反饋,組織和指導(dǎo)學(xué)生歸納知識、技能、方法的一般規(guī)律,深化對數(shù)學(xué)思想方法的認(rèn)識,為后續(xù)學(xué)習(xí)打好基礎(chǔ). 1.學(xué)習(xí)小結(jié) 在知識層面上,引導(dǎo)學(xué)生回顧函數(shù)單調(diào)性定義的探究過程,使學(xué)生對單調(diào)性 共 8 頁 第 7 頁 《函數(shù)的單調(diào)性》說課稿 概念的發(fā)生與發(fā)展過程有清晰的認(rèn)識,體會到數(shù)學(xué)概念形成的主要三個階段:直觀感受、文字描述和嚴(yán)格定義.在方法層面上,首先引導(dǎo)學(xué)生回顧判斷,證明函數(shù)單調(diào)性的方法和步驟;然后引導(dǎo)學(xué)生回顧知識探究過程中用到的思想方法和思維方法,如數(shù)形結(jié)合,等價轉(zhuǎn)化,類比等,重點強調(diào)用符號語言來刻畫圖形語言,用定量分析來解釋定性結(jié)果;同時對學(xué)習(xí)過程作必要的反思,為后續(xù)的學(xué)習(xí)做好鋪墊.2.布置作業(yè) 在布置書面作業(yè)的同時,為了尊重學(xué)生的個體差異,滿足學(xué)生多樣化的學(xué)習(xí)需要,我設(shè)計了探究作業(yè)供學(xué)有余力的同學(xué)課后完成.(1)證明:函數(shù)f(x)在(a,b)上是增函數(shù)的充要條件是對任意的x,x?h?(a,b),且h?0,有 f(x?h)?f(x)?0. h目的是加深學(xué)生對定義的理解,而且這種方法進(jìn)一步發(fā)展同樣也可以得到導(dǎo)數(shù)法. (2)研究函數(shù)y?x?1(x?0)的單調(diào)性,并結(jié)合描點法畫出函數(shù)的草圖. x目的是使學(xué)生體會到利用函數(shù)的單調(diào)性可以簡化函數(shù)圖象的繪制過程,體會由數(shù)到形的研究方法和引入單調(diào)性定義的必要性,加深對數(shù)形結(jié)合的認(rèn)識. 以上就是我對《函數(shù)的單調(diào)性》這節(jié)課的教學(xué)設(shè)想.各位專家、評委,本節(jié)課我在概念教學(xué)上進(jìn)行了一些嘗試.在教學(xué)過程中,我努力創(chuàng)設(shè)一個探索數(shù)學(xué)的學(xué)習(xí)環(huán)境,通過設(shè)計一系列問題,使學(xué)生在探究問題的過程中,親身經(jīng)歷數(shù)學(xué)概念的發(fā)生與發(fā)展過程,從而逐步把握概念的實質(zhì)內(nèi)涵,深入理解概念.不足之處,懇請各位專家批評指正.謝謝! 共 8 頁 第 8 頁 必修1《1.3.1 函數(shù)的單調(diào)性》說課稿 酒泉中學(xué) 馬長青 一.教學(xué)內(nèi)容分析 1.本課定位與內(nèi)容 本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修1》A版第一章第三節(jié)函數(shù)的基本性質(zhì)第一小節(jié)函數(shù)的單調(diào)性與最大(小)值,本節(jié)課內(nèi)容教材主要學(xué)習(xí)函數(shù)的單調(diào)性的概念,判斷函數(shù)的單調(diào)性和應(yīng)用定義證明函數(shù)的單調(diào)性,共2課時,本節(jié)課為第一課時。 2.教材的地位和作用 從單調(diào)性本身看,學(xué)生的學(xué)習(xí)分為三個層面,首先是在初中學(xué)習(xí)了一次函數(shù)、二次函數(shù)、反比例函數(shù)圖象的基礎(chǔ)上對函數(shù)的增減性有一個初步的感性認(rèn)識,其次在高一對單調(diào)性進(jìn)行嚴(yán)格定義,最后在高三從導(dǎo)數(shù)的角度再次研究單調(diào)性。本節(jié)課的學(xué)習(xí)處于對單調(diào)性學(xué)習(xí)的第二層面,通過圖象歸納、抽象出單調(diào)性的準(zhǔn)確定義,并在高中首次經(jīng)歷代數(shù)的嚴(yán)格證明,是對初中學(xué)習(xí)的一次升華。 從本節(jié)的教學(xué)看,在此學(xué)習(xí)單調(diào)性是對函數(shù)概念的延續(xù)和拓展,對進(jìn)一步探索、研究函數(shù)的其他性質(zhì)有著示范性的作用,從本章的教學(xué)看,本節(jié)課的學(xué)習(xí)是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)內(nèi)容的基礎(chǔ)。 從函數(shù)知識網(wǎng)絡(luò)看,單調(diào)性起著承上啟下的作用,一方面,是初中學(xué)習(xí)內(nèi)容的深化,使學(xué)生對函數(shù)單調(diào)性從感性認(rèn)識提高到理性認(rèn)識。另一方面,函數(shù)的單調(diào)性為后面學(xué)習(xí)指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù)及數(shù)列這種特殊的函數(shù)打下基礎(chǔ),與不等式、求函數(shù)的值域、最值,導(dǎo)數(shù)等都有著緊密的聯(lián)系。 從高中數(shù)學(xué)學(xué)習(xí)看,函數(shù)的單調(diào)性是培養(yǎng)學(xué)生數(shù)形結(jié)合思想的重要內(nèi)容,也是研究變量的變化范圍的有力工具。3.教學(xué)目標(biāo) 根據(jù)本課教材特點、課程標(biāo)準(zhǔn)對本節(jié)課的教學(xué)要求以及學(xué)生的認(rèn)知水平,教學(xué)目標(biāo)確定為: 知識與技能: (1)從形與數(shù)兩方面理解單調(diào)性的概念 (2)初步掌握利用函數(shù)圖象和單調(diào)性定義判斷、證明函數(shù)單調(diào)性的方法 (3)通過對函數(shù)單調(diào)性定義的探究,提高觀察、歸納、抽象的能力和語言表達(dá)能力;通過對函數(shù)單調(diào)性的證明,提高推理論證能力 過程與方法: (1)通過對函數(shù)單調(diào)性定義的探究,滲透數(shù)形結(jié)合思想方法(2)經(jīng)歷觀察發(fā)現(xiàn)、抽象概括,自主建構(gòu)單調(diào)性概念的過程,體會從具體到抽象,從特殊到一般,從感性到理性的認(rèn)知過程。情感態(tài)度價值觀: 通過知識的探究過程培養(yǎng)細(xì)心觀察、認(rèn)真分析、嚴(yán)謹(jǐn)論證的良好思維習(xí)慣;領(lǐng)會用運動的觀點去觀察分析事物的方法 4.教學(xué)重難點 根據(jù)上述教學(xué)目標(biāo),本節(jié)課的教學(xué)重點是函數(shù)單調(diào)性的概念形成和初步運用。雖然高一學(xué)生已經(jīng)有一定的抽象思維能力,但是要用準(zhǔn)確的符號語言去刻畫圖象的增減性,從感性上升到理性對高一的學(xué)生來說比較困難。因此,本節(jié)課的教學(xué)難點是函數(shù)單調(diào)性的概念形成。 二.學(xué)生情況分析 知識結(jié)構(gòu) 學(xué)生已經(jīng)學(xué)習(xí)過一次函數(shù),二次函數(shù),反比例函數(shù),函數(shù)的概念及函數(shù)的表示,能畫出一些簡單函數(shù)的圖象,能從圖象的直觀變化,學(xué)生能得到函數(shù)增減性。 能力結(jié)構(gòu) 通過初中對函數(shù)的學(xué)習(xí),學(xué)生已具備了一定的觀察事物能力,抽象歸納的能力和語言轉(zhuǎn)換能力。 學(xué)習(xí)心理 函數(shù)的單調(diào)性是學(xué)生從已經(jīng)學(xué)習(xí)的函數(shù)中比較容易發(fā)現(xiàn)的一個性質(zhì),學(xué)生渴望進(jìn)一步學(xué)習(xí),這種積極心態(tài)是學(xué)生學(xué)好本節(jié)課的情感基礎(chǔ)。 本班學(xué)生特點 本班為酒泉中學(xué)高一(4)班,學(xué)生數(shù)學(xué)素養(yǎng)較好。三.教學(xué)模式 《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(實驗)》指出:“高中數(shù)學(xué)課程應(yīng)倡導(dǎo)自主探索等學(xué)習(xí)數(shù)學(xué)的方式,這些方式有助于發(fā)揮學(xué)生學(xué)習(xí)的主動性,使學(xué)生的學(xué)習(xí)過程成為在教師引導(dǎo)下的‘再創(chuàng)造’過程。” 因此,根據(jù)教學(xué)內(nèi)容和學(xué)生的認(rèn)知、能力水平,本節(jié)課作為新授課主要采取教師啟發(fā)式教學(xué)法和學(xué)生探究式教學(xué)法。以設(shè)置情境、設(shè)問和疑問進(jìn)行層層引導(dǎo),激發(fā)學(xué)生積極思考,逐步將感性認(rèn)識提升到理性認(rèn)識,培養(yǎng)和發(fā)展學(xué)生的抽象思維能力。引導(dǎo)學(xué)生提出疑問,進(jìn)行思考,從而創(chuàng)造性的解決問題,最終形成概念,培養(yǎng)學(xué)生的創(chuàng)造性思維和批判精神。 五個環(huán)節(jié):創(chuàng)設(shè)情境,引入新課;初步探索,概念形成;概念深化,延伸拓展;證法探究,應(yīng)用定義;小結(jié)評價,作業(yè)創(chuàng)新 四.教學(xué)設(shè)計 為達(dá)到本節(jié)課的教學(xué)目標(biāo),突出重點,突破難點,我把教學(xué)過程設(shè)計為五個環(huán)節(jié):創(chuàng)設(shè)情境,引入新課;初步探索,概念形成;概念深化,延伸拓展;證法探究,應(yīng)用定義;小結(jié)評價,作業(yè)創(chuàng)新 單調(diào)性的概念是本節(jié)課的重點,而形成過程則是本節(jié)課的難點,為了突破這一難點,讓學(xué)生能夠充分感受單調(diào)性概念的形成過程,經(jīng)歷觀察發(fā)現(xiàn)、抽象概括,自主建構(gòu)單調(diào)性概念的過程,本節(jié)課設(shè)置了前三個環(huán)節(jié),后兩個環(huán)節(jié)的設(shè)計,是為了使學(xué)生對函數(shù)單調(diào)性認(rèn)識的再次深化。 (一)創(chuàng)設(shè)情境,引入新課 數(shù)學(xué)課程標(biāo)準(zhǔn)中提出“通過已學(xué)過的函數(shù)特別是二次函數(shù)理解函數(shù)的單調(diào)性”,因此在本節(jié)課的開始,我作了這樣的情境創(chuàng)設(shè),從學(xué)生熟知的一次函數(shù)和二次函數(shù)入手,從初中對函數(shù)增減性的認(rèn)識過渡到對函數(shù)單調(diào)性的直觀感受。 提出問題1:分別作出函數(shù)y=x,二次函數(shù)y=2x,y=-2x和y=x的圖象,并且觀察函數(shù)變化規(guī)律? 2首先引導(dǎo)學(xué)生觀察兩個一次函數(shù)圖象,獲得信息:第一個圖象從左向右逐漸上升,y隨x的增大而增大;第二個圖象從左向右逐漸下降,y隨x的增大而減小。然后讓學(xué)生明確,對于自變量變化時,函數(shù)值具有這兩種變化規(guī)律的函數(shù),我們分別稱為增函數(shù)和減函數(shù).二次函數(shù)的增減性要分段說明,進(jìn)而提出問題:二次函數(shù)是增函數(shù)還是減函數(shù)? 進(jìn)一步討論得出:增減性是函數(shù)的局部性質(zhì) 據(jù)此,學(xué)生已經(jīng)對單調(diào)性有了直觀認(rèn)識,緊接著,我提出問題二:能否用自己的理解說說什么是增函數(shù),什么是減函數(shù)? 結(jié)合增減性是局部性質(zhì),學(xué)生會用直觀描述回答:在一個區(qū)間里,y隨x增大而增大,則是增函數(shù);y隨x增大而減小就是減函數(shù)。 學(xué)生用圖象的感性認(rèn)識初步描述了單調(diào)性,下面進(jìn)一步將學(xué)生從感性向理性進(jìn)行引導(dǎo) (二)初步探索,概念形成 提出問題三:以y=x+1在(0,+∞)上單調(diào)性為例,如何用精確的數(shù)學(xué)語言來描述函數(shù)的單調(diào)性? 這是本節(jié)課的難點,因此我將概念形成設(shè)置了三個階段 1.提問學(xué)生什么是“隨著” 經(jīng)討論得出,隨著是由于當(dāng)x取一定的值時,y有確定值與之對應(yīng),因此x變化時,y會根據(jù)法則隨著x發(fā)生變化 2.如何刻畫“增大”? 要表示大小關(guān)系,學(xué)生會想到取點,比大小,學(xué)生也許會用特殊點說明問題,比如x取2、3,2<3,對應(yīng)的函數(shù)值是5<10 提出質(zhì)疑:這個點的變化能否說明y隨著x增大而增大,進(jìn)一步引導(dǎo)學(xué)生從特殊到一般,進(jìn)入第三階段,對“任取”的理解。 3.對“任取”的理解 針對特殊值,學(xué)生可能會舉反例證明其是不充分的,那么應(yīng)該如何取值呢?學(xué)生可能會多取一些,也可能會想到將取值區(qū)間任意小,進(jìn)一步討論得出“任取”二字。 用對隨著的理解再次深化函數(shù)概念,用對增大的理解得到要表示大小關(guān)系,最后再強調(diào)取值的任意性,這樣就實現(xiàn)了從“圖形語言”到 “文字語言”到 “符號語言”的過渡,實現(xiàn)“形”到“數(shù)”的轉(zhuǎn)換,形成了單調(diào)性的定義。 得到定義后,再提出如何得到f(x1) (三)概念深化,延伸拓展 通過上面的問題,學(xué)生已經(jīng)從描述性語言過渡到嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)語言。而對嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)語言學(xué)生還缺乏準(zhǔn)確理解,因此在這里通過問題深入研討加深學(xué)生對單調(diào)性概念的理解。 2提出問題四:能否說從這個例子能得到什么結(jié)論? 在它的定義域上是減函數(shù)? 學(xué)生思考、討論,提出自己觀點 學(xué)生可能會提出反例,如x1=-1,x2=1 進(jìn)一步得出結(jié)論: 函數(shù)在定義域內(nèi)的兩個區(qū)間A,B上都是增(減)函數(shù),函數(shù)在A∪B上不一定是增(減)函數(shù) 教師給出例子進(jìn)行說明: 進(jìn)一步提問: 函數(shù)在定義域內(nèi)的兩個區(qū)間A,B上都是增(減)函數(shù),何時函數(shù)在A∪B上也是增(減)函數(shù)。 學(xué)生會提出將函數(shù)圖象進(jìn)行變形(如x<0時圖象向下平移) 性 回歸定義,強調(diào)任意 在問題四的背景下解決本題,體會在運動中滿足任意性。拓展探究:已知函數(shù) 是(-∞,+∞)上的增函數(shù),求a的取值范圍.這個問題有一定難度,但是學(xué)生在前面集合的學(xué)習(xí)中已經(jīng)接觸過在運動中求參數(shù)a的取值范圍,此處可看作是對前面學(xué)習(xí)的鞏固。 (四)證法探究,應(yīng)用定義 在概念已經(jīng)完善的基礎(chǔ)上,提出例1 例1:證明函數(shù) 在(0,+)上是增函數(shù) 本環(huán)節(jié)是對函數(shù)單調(diào)性概念的準(zhǔn)確應(yīng)用,本題采用前面出現(xiàn)過的函數(shù),一方面希望學(xué)生體會到函數(shù)圖象和數(shù)學(xué)語言從不同角度刻畫概念,另一方面避免學(xué)生遇到障礙,而是把注意力都集中在單調(diào)性定義的應(yīng)用上。 學(xué)生根據(jù)單調(diào)性定義進(jìn)行證明,教師在黑板上書寫證明步驟,再引導(dǎo)學(xué)生總結(jié)證明步驟。 提出例2判斷函數(shù)在(0,+∞)上的單調(diào)性。 根據(jù)定義進(jìn)行判斷,體會判斷可轉(zhuǎn)化成證明。 課標(biāo)中指出“形式化是數(shù)學(xué)的基本特征之一,但不能僅限于形式化的表達(dá)。高中課程強調(diào)返璞歸真”因此本題不再從證明角度,而是讓學(xué)生再次從定義出發(fā),尋求方法,并體會轉(zhuǎn)化思想。 進(jìn)一步提問:如果把(0,+∞)條件去掉,如何解這道題?為學(xué)生提供思考空間。 (五)小結(jié)評價,作業(yè)創(chuàng)新 從知識、方法兩個方面引導(dǎo)學(xué)生進(jìn)行總結(jié)。學(xué)生回顧函數(shù)單調(diào)性定義的探究過程;證明、判斷函數(shù)單調(diào)性的方法步驟;數(shù)學(xué)思想方法。 小結(jié)過程使學(xué)生對單調(diào)性概念的發(fā)生與發(fā)展過程有清晰的認(rèn)識,體會到數(shù)學(xué)概念形成的主要三個階段:直觀感受、文字描述和嚴(yán)格定義。 作業(yè)的設(shè)計實現(xiàn)了分層,既鞏固了基礎(chǔ),又給了學(xué)生充足的思考空間。 通過本節(jié)課的學(xué)習(xí),預(yù)計學(xué)生能理解單調(diào)性的定義,絕大多數(shù)學(xué)生能按照單調(diào)性的證明步驟進(jìn)行證明,能判斷函數(shù)的單調(diào)性,本節(jié)課的評價方式為課堂反饋、教師評價、學(xué)生自評相結(jié)合。 在本節(jié)課的設(shè)計中,我有一些新的嘗試,在教學(xué)過程中,創(chuàng)設(shè)一個探索的學(xué)習(xí)環(huán)境,通過設(shè)計一系列問題,使概念得到形成和深化,學(xué)生親身經(jīng)歷數(shù)學(xué)概念的產(chǎn)生與發(fā)展過程,從而逐步把握概念的實質(zhì)內(nèi)涵,深入理解概念。在情境設(shè)置中,嚴(yán)格按照課標(biāo)要求以二次函數(shù)y=x+1為例,經(jīng)歷畫圖、描述圖象、找單調(diào)區(qū)間、形成單調(diào)性定義、證明其單調(diào)性的過程,將學(xué)生對單調(diào)性的認(rèn)識從感性上升到理性,并將定義進(jìn)行應(yīng)用。五.板書設(shè)計 六.課堂評價 七.資源開發(fā) 2 函數(shù)的單調(diào)性說課稿(市級一等獎)函數(shù)單調(diào)性說課稿 《函數(shù)的單調(diào)性》說課稿(市級一等獎)旬陽縣神河中學(xué) 詹進(jìn)根 我說課的課題是《普通高中課程標(biāo)準(zhǔn)實驗教科書 必修1》第二章第三節(jié)——函數(shù)的單調(diào)性。我將根據(jù)新課標(biāo)的理念和高一學(xué)生的認(rèn)知特點設(shè)計本節(jié)課的教學(xué)。我從下面三個方面闡述我對這節(jié)課的理解和教學(xué)設(shè)計。 一、教材分析 1、教材內(nèi)容 本節(jié)課是北師大版(必修一)第二章函數(shù)第三節(jié)——函數(shù)的單調(diào)性,本節(jié)課內(nèi)容教材主要學(xué)習(xí)函數(shù)的單調(diào)性的概念,依據(jù)函數(shù)圖象判斷函數(shù)的單調(diào)性和應(yīng)用定義證明函數(shù)的單調(diào)性。 2、教材的地位和作用 函數(shù)是本章的核心概念,也是中學(xué)數(shù)學(xué)中的基本概念,函數(shù)貫穿整個高中數(shù)學(xué)課程。在歷年的考題中???,函數(shù)的思想也是我們學(xué)習(xí)數(shù)學(xué)中的重要思想。在這一節(jié)中利用函數(shù)圖象研究函數(shù)性質(zhì)的數(shù)形結(jié)合思想將貫穿于整個高中數(shù)學(xué)教學(xué)。 函數(shù)的基本性質(zhì)包括單調(diào)性、奇偶性、周期性、對稱性、有界性。而我們今天學(xué)習(xí)的內(nèi)容就是函數(shù)基本性質(zhì)中的一種——單調(diào)性。函數(shù)的單調(diào)性是用代數(shù)方法研究函數(shù)圖象局部變化趨勢的。函數(shù)的單調(diào)性是學(xué)生初中學(xué)習(xí)了一次函數(shù)、二次函數(shù)、反比例函數(shù)圖象的基礎(chǔ)上對增減性有一個初步的感性認(rèn)識,是函數(shù)概念的延續(xù)和拓展,又是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)等內(nèi)容的基礎(chǔ),對進(jìn)一步探索、研究函數(shù)的其他性質(zhì)有著示范性的作用,對解決各種數(shù)學(xué)問題有著廣泛作用。此外在比較數(shù)的大小、極限、導(dǎo)數(shù)以及相關(guān)的數(shù)學(xué)綜合問題中也有廣泛的應(yīng)用,它是整個高中數(shù)學(xué)中起著承上啟下作用的核心知識之一。通過對本節(jié)課的學(xué)習(xí),讓學(xué)生領(lǐng)會函數(shù)單調(diào)性的概念、掌握證明函數(shù)單調(diào)性的步驟,并能運用單調(diào)性知識解決一些簡單的實際問題。通過上述活動,加深對函數(shù)本質(zhì)的認(rèn)識。更主要本節(jié)教學(xué)過程中還滲透了探索發(fā)現(xiàn)、數(shù)形結(jié)合、歸納轉(zhuǎn)化等數(shù)學(xué)思想方法,這對培養(yǎng)學(xué)生的創(chuàng)新意識、發(fā)展學(xué)生的思維能力,掌握數(shù)學(xué)的思想方法具有重大意義。 根據(jù)函數(shù)單調(diào)性在整個教材內(nèi)容中的地位和作用,并結(jié)合學(xué)生的認(rèn)知水平,本節(jié)課教學(xué)應(yīng)實現(xiàn)如下教學(xué)目標(biāo)。 3、教學(xué)目標(biāo) 知識與技能:理解函數(shù)單調(diào)性和單調(diào)函數(shù)的意義;會判斷和證明簡單函數(shù)的單調(diào)性。 過程與方法:培養(yǎng)從概念出發(fā),進(jìn)一步研究其性質(zhì)的意識及能力;體會感悟數(shù)形結(jié)合、分類討論的數(shù)學(xué)思想。 情感態(tài)度與價值觀:領(lǐng)會用運動的觀點去觀察分析事物的方法,培養(yǎng)學(xué)生細(xì)心觀察、認(rèn)真分析、嚴(yán)謹(jǐn)論證的良好思維習(xí)慣;由合適的例子引發(fā)學(xué)生探求數(shù)學(xué)知識的欲望,突出學(xué)生的主觀能動性,激發(fā)學(xué)生學(xué)習(xí)的興趣。 4(教學(xué)的重點和難點 教學(xué)重點: 函數(shù)單調(diào)性的概念,判斷并證明函數(shù)的單調(diào)性;1 函數(shù)單調(diào)性說課稿 教學(xué)難點: 根據(jù)定義證明函數(shù)的單調(diào)性和利用函數(shù)圖像證明單調(diào)性。 二、教法與學(xué)法 1(教學(xué)方法 本節(jié)課是函數(shù)單調(diào)性的起始課,根據(jù)教學(xué)內(nèi)容、教學(xué)目標(biāo)和學(xué)生的認(rèn)知水平,本節(jié)課主要采用“創(chuàng)設(shè)情景、問題探究、合作交流、歸納總結(jié)、聯(lián)系鞏固”的教學(xué)方式,這樣既增加了教師與學(xué)生、學(xué)生與學(xué)生之間的交流,又能激發(fā)學(xué)生的求知欲,調(diào)動學(xué)生積極性,使他們思路更加開闊,思維更加敏捷。 2(教學(xué)手段 教學(xué)中使用多媒體輔助教學(xué),目的是充分發(fā)揮其快捷、生動、形象的特點,為學(xué)生提供直觀感性的材料,有助于學(xué)生對問題的理解和認(rèn)識。 3(學(xué)法 高一學(xué)生知識上已經(jīng)掌握了一次函數(shù)、二次函數(shù)、反比例函數(shù)的圖象和基本性質(zhì)等內(nèi)容,但對知識的理解和方法的掌握上不完備,反應(yīng)在解題中就是思維不嚴(yán)密,過程不完整;能力上具備了一定的觀察、類比、分析、歸納能力,但知識整合和主動遷移的能力較弱,數(shù)形結(jié)合的意識和思維的深刻性還需進(jìn)一步培養(yǎng)和加強,所以應(yīng)從下面兩方面來提高學(xué)生的水平。 (1)讓學(xué)生利用圖形直觀感受;(2)讓學(xué)生“設(shè)問、嘗試、歸納、總結(jié)、運用”,重視學(xué)生的主動參與,注重信息反饋,通過引導(dǎo)學(xué)生多思、多說、多練,使認(rèn)識得到深化。 三、教學(xué)過程 本節(jié)課的教學(xué)過程包括:創(chuàng)設(shè)情境,引入課題;歸納探索,形成概念;鞏固提高,深化概念;歸納小結(jié),提高認(rèn)識.具體過程如下:(一)創(chuàng)設(shè)情境,引入課題 我們知道,函數(shù)是刻畫事物變化的工具。在2003年抗擊非典型肺炎時,衛(wèi)生部門對疫情進(jìn)行了通報。如下圖是北京從4月21日到5月19日期間每日新增病例的變化統(tǒng)計圖。 思考如何用數(shù)學(xué)語言刻畫疫情變化, [設(shè)計意圖]:通過實際生活中的例子讓學(xué)生對圖像的上升和下降有一個初步感性認(rèn)識,為下一步對概念的理性認(rèn)識作好鋪墊。同時通過多媒體展示,能夠提高學(xué)生的興趣,增強直觀性,拉近數(shù)學(xué)與實際的距離,感受數(shù)學(xué)源于生活,讓學(xué)生學(xué)會用數(shù)學(xué)的眼光去關(guān)注生活。函數(shù)單調(diào)性說課稿(二)歸納探索,形成概念 在本階段的教學(xué)中,為使學(xué)生充分感受數(shù)學(xué)概念的形成與發(fā)展過程和數(shù)形結(jié)合的數(shù)學(xué)思想,加深對函數(shù)單調(diào)性的本質(zhì)的認(rèn)識,我設(shè)計了幾個環(huán)節(jié),引導(dǎo)學(xué)生分別完成對單調(diào)性定義的認(rèn)識.1、提出問題,觀察變化 12問題:分別做出函數(shù)的圖像,指出上面四yxyxyxy,,,,,2,1, x 個函數(shù)圖象在哪個區(qū)間是上升的,在哪個區(qū)間是下降的, 8 688 86466 44422 22-10-5510-10-5510-10-5510-10-5510-2-2-2-2-4-4-4-6-4-6-6-8-6-8-8-8 12 yx,,2yx,,1yx,y,x 通過學(xué)生熟悉的圖像,及時引導(dǎo)學(xué)生觀察,函數(shù)圖像上A點的運動情況,引導(dǎo)學(xué)生能用自然語言描述出,隨著增大時圖像變化規(guī)律。讓學(xué)生大膽的去說,x 老師逐步修正、完善學(xué)生的說法,最后給出正確答案。 【設(shè)計意圖】 新課標(biāo)十分注重初中與高中的銜接,注重通過函數(shù)的圖像,研究函數(shù)的基本性質(zhì)。以學(xué)生們熟悉的函數(shù)為切入點,盡量做到從直觀入手,順應(yīng)同學(xué)們的認(rèn)知規(guī)律。第三個、第四個函數(shù)圖像的上升與下降要分段說明,通過討論使學(xué)生明確函數(shù)的單調(diào)性是對定義域內(nèi)某個區(qū)間而言的,是函數(shù)的局部性質(zhì)(2、步步深化,形成概念 2觀察函數(shù)y=x隨自變量x 變化的情況,設(shè)置啟發(fā)式問題:(1)在y軸的右側(cè)部分圖象具有什么特點,(2)如果在y軸右側(cè)部分取兩個點(x,y),(x,y),當(dāng)x 【設(shè)計意圖】通過啟發(fā)式提問,實現(xiàn)學(xué)生從“圖形語言”到 “文字語言”到 “符號語言”認(rèn)識函數(shù)的單調(diào)性,實現(xiàn)“形”到“數(shù)”的轉(zhuǎn)換。另外,對“任意性”的理解,我特設(shè)計了問題(2)、(3),達(dá)到步步深入,從而突破難點,突出重點的目的。通過對以上問題的分析,從正、反兩方面領(lǐng)會函數(shù)單調(diào)性。師生共同總結(jié)出單調(diào)增函數(shù)的定義,并解讀定義中的關(guān)鍵詞,如:區(qū)間內(nèi),任意,當(dāng)<時,xx12都有<。f(x)f(x)12 仿照單調(diào)增函數(shù)定義,由學(xué)生說出單調(diào)減函數(shù)的定義。3 函數(shù)單調(diào)性說課稿 教師總結(jié)歸納單調(diào)性和單調(diào)區(qū)間的定義。 注意強調(diào):函數(shù)的單調(diào)性是函數(shù)在定義域某個區(qū)間上的局部性質(zhì),也就是說,一個函數(shù)在不同的區(qū)間上可以有不同的單調(diào)性。 【設(shè)計意圖】通過問題的分解,引導(dǎo)學(xué)生步步深入,直至找到最準(zhǔn)確的數(shù)學(xué)語言來描述定義。體現(xiàn)從簡單到復(fù)雜、具體到抽象的認(rèn)知過程。在課堂教學(xué)中教師引導(dǎo)學(xué)生探索獲得知識、技能的途徑和方法。通過探索,培養(yǎng)學(xué)生的觀察能力和運動變化的觀點,同時充分利用圖形的直觀性,滲透了數(shù)形結(jié)合的思想,學(xué)生在探索的過程中品嘗到了自己勞作后的甘甜,感受到耕耘后的豐收喜悅,更激起了學(xué)生的探索創(chuàng)新意識。 3(鞏固提高,深化概念 本環(huán)節(jié)在前面研究的基礎(chǔ)上,加深學(xué)生進(jìn)一步理解函數(shù)單調(diào)性定義本質(zhì),完成對概念的再一次認(rèn)識.練習(xí)1:如下圖給出的函數(shù),你能說出它的函數(shù)值隨自變量值的變化情yx況嗎? 怎樣用數(shù)學(xué)語言表達(dá)函數(shù)值的增減變化呢? 1f(x),例1 說出函數(shù)的單調(diào)區(qū)間,并指明在該區(qū)間上的單調(diào)性.x 練習(xí)2:判斷下列說法是否正確 (1)定義在R上的函數(shù)滿足,則函數(shù)是R上的增函數(shù)。f(x)f(2),f(1)(2)定義在R上的函數(shù)滿足,則函數(shù)是R上不是減函數(shù)。f(x)f(2),f(1)1(3)已知函數(shù),因為是增函數(shù)。所以函數(shù)fx()y,ff(1)(2),,x,,(4)定義在R上的函數(shù)在,,0,上是增函數(shù),在0,,,上也是增函數(shù),f(x)則函數(shù)是R上的增函數(shù)。 (5)函數(shù)在上都是減函數(shù),所以在 上是減函數(shù)。 例2 畫出函數(shù)的圖像,判斷它的單調(diào)性,并加以證明。f(x),3x,2 通過對上述幾題討論,加深學(xué)生對定義的理解。強調(diào)以下三點,完成本階段的教學(xué): ?單調(diào)性是對定義域內(nèi)某個區(qū)間而言的,離開了定義域和相應(yīng)區(qū)間就談不上單調(diào)性。函數(shù)單調(diào)性說課稿 ?有的函數(shù)在整個定義域內(nèi)單調(diào)(如一次函數(shù)),有的函數(shù)只在定義域內(nèi)的某些區(qū)間單調(diào)(如二次函數(shù)),有的函數(shù)根本沒有單調(diào)區(qū)間(如常函數(shù))。 ?函數(shù)在定義域內(nèi)的兩個區(qū)間A,B上都是增(或減)函數(shù),一般不能認(rèn)為函數(shù)在上是增(或減)函數(shù)。 【設(shè)計意圖】函數(shù)單調(diào)性定義產(chǎn)生是本節(jié)課的難點,難在:如何使學(xué)生從描述性語言過渡到嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)語言。而對嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)語言的準(zhǔn)確理解及正確應(yīng)用更是學(xué)生薄弱環(huán)節(jié),這里通過問題研討體現(xiàn)了以學(xué)生為主體,師生互動合作的教學(xué)新理念。例1主要是從圖形上判斷函數(shù)的單調(diào)性;例2主要對數(shù)形結(jié)合,定義法證明函數(shù)的單調(diào)性的只是鞏固與應(yīng)用.(四)歸納小結(jié),提高認(rèn)識 歸納小結(jié)是鞏固新知識不可或缺的環(huán)節(jié)之一,本節(jié)課我采用組織和指導(dǎo)學(xué)生自己談學(xué)習(xí)收獲的方式對所學(xué)知識進(jìn)行歸納,深化對數(shù)學(xué)思想方法的認(rèn)識,為后續(xù)學(xué)習(xí)打好基礎(chǔ)(1(本節(jié)小結(jié) 函數(shù)單調(diào)性定義,判斷函數(shù)單調(diào)性的方法(圖像、定義)在方法層面上,引導(dǎo)學(xué)生回顧判斷,證明函數(shù)單調(diào)性的方法和步驟;引導(dǎo)學(xué)生體會探究過程中用到的思想方法和思維方法,如數(shù)形結(jié)合,等價轉(zhuǎn)化,類比等。 2(布置作業(yè) 課后作業(yè)實施分層設(shè)置,書面作業(yè)、課后思考.作業(yè)布置:教材第38頁的第2,3,5題 思考交流:問題 如果可以證明對任意的,且,有xxab,(,),xx,1212fxfx()(),21,能斷定函數(shù)在上是增函數(shù)嗎? fx()(,)ab,0xx,21 【設(shè)計意圖】:目的是加深學(xué)生對定義的理解,讓學(xué)生體會這種敘述與定義的等價性,而且這種方法進(jìn)一步發(fā)展可以得到導(dǎo)數(shù)法,為今后用導(dǎo)數(shù)方法研究函數(shù)單調(diào)性埋下伏筆。 以上各個環(huán)節(jié),環(huán)環(huán)相扣,層層深入,注意調(diào)動學(xué)生自主探究與合作交流,努力實現(xiàn)教學(xué)目標(biāo),也使新課標(biāo)理念能夠得到很好的落實。 各位評委,本節(jié)課我在概念教學(xué)上進(jìn)行了一些嘗試.在教學(xué)過程中,我努力創(chuàng)設(shè)一個探索數(shù)學(xué)的學(xué)習(xí)環(huán)境,通過設(shè)計一系列問題,使學(xué)生在探究問題的過程中,親身經(jīng)歷數(shù)學(xué)概念的發(fā)生與發(fā)展過程,從而逐步把握概念的實質(zhì)內(nèi)涵,深入理解概念。函數(shù)單調(diào)性說課稿 附一:板書設(shè)計 函數(shù)的單調(diào)性 一、函數(shù)單調(diào)性的概念 三、例題講解 四、課堂練習(xí) 二、證明函數(shù)單調(diào)性的步驟 例1: 五、布置作業(yè) 例2: 小結(jié)和作業(yè)在多媒體上展示,這樣的板書簡明清楚,重點突出,加深學(xué)生對重點知識的理解和掌握,同時便于記憶,有利于提高教學(xué)效果.6 函數(shù)單調(diào)性說課稿 7第二篇:函數(shù)單調(diào)性
第三篇:函數(shù)的單調(diào)性說課稿(獲獎)
第四篇:必修1函數(shù)單調(diào)性說課稿
第五篇:函數(shù)的單調(diào)性