第一篇:橢圓及其標(biāo)準(zhǔn)方程說課教案
《橢圓及其標(biāo)準(zhǔn)方程》說課教案
我說課的題目是全日制普通高級中學(xué)教科書(試驗修訂本.必修)《數(shù)學(xué)》第二冊、第八章《圓錐曲線》、第一節(jié)《橢圓及其標(biāo)準(zhǔn)方程》。
一、概說:
1、教材分析:
橢圓及其標(biāo)準(zhǔn)方程是圓錐曲線的基礎(chǔ),它的學(xué)習(xí)方法對整個這一章具有導(dǎo)向和引領(lǐng)作用,直接影響其他圓錐曲線的學(xué)習(xí)。是后繼學(xué)習(xí)的基礎(chǔ)和范示。同時,也是求曲線方程的深化和鞏固。
2、教學(xué)分析:
橢圓及其標(biāo)準(zhǔn)方程是培養(yǎng)學(xué)生觀察、分析、發(fā)現(xiàn)、概括、推理和探索能力的極好素材。本節(jié)課通過創(chuàng)設(shè)情景、動手操作、總結(jié)歸納,應(yīng)用提升等探究性活動,培養(yǎng)學(xué)生的數(shù)學(xué)創(chuàng)新精神和實踐能力,使學(xué)生掌握坐標(biāo)法的規(guī)律,掌握數(shù)學(xué)學(xué)科研究的基本過程與方法。
3、學(xué)生分析:
高中二年級學(xué)生正值身心發(fā)展的鼎盛時期,思維活躍,又有了相應(yīng)知識基礎(chǔ),所以他們樂于探索、敢于探究。但高中生的邏輯思維能力尚屬經(jīng)驗型,運(yùn)算能力不是很強(qiáng),有待于訓(xùn)練。
基于上述分析,我采取的是教學(xué)方法是“問題誘導(dǎo)--啟發(fā)討論--探索結(jié)果”以及“直觀觀察--歸納抽象--總結(jié)規(guī)律”的一種研究性教學(xué)方法,注重“引、思、探、練”的結(jié)合。
引導(dǎo)學(xué)生學(xué)習(xí)方式發(fā)生轉(zhuǎn)變,采用激發(fā)興趣、主動參與、積極體驗、自主探究的學(xué)習(xí),形成師生互動的教學(xué)氛圍。
我設(shè)定的教學(xué)重點(diǎn)是:橢圓定義的理解及標(biāo)準(zhǔn)方程的推導(dǎo)。教學(xué)難點(diǎn)是:標(biāo)準(zhǔn)方程的推導(dǎo)。
二、目標(biāo)說明:
1、知識目標(biāo):掌握橢圓的定義,掌握橢圓標(biāo)準(zhǔn)方程的兩種形式及其推導(dǎo)過程。
2、能力目標(biāo):通過對橢圓概念的引入教學(xué),培養(yǎng)學(xué)生的觀察能力和探索能力。通過橢圓的標(biāo)準(zhǔn)方程的推導(dǎo)提高學(xué)生運(yùn)用坐標(biāo)法解決幾何問題的能力。
3、思想目標(biāo):通過本次課的學(xué)習(xí)滲透數(shù)形結(jié)合和等價轉(zhuǎn)化的思想方法,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,培養(yǎng)學(xué)生的學(xué)習(xí)興趣和創(chuàng)新意識。
三、過程說明:
1、新課導(dǎo)入:以影音文件“海爾波譜彗星的運(yùn)行軌道示意圖”導(dǎo)入,呈現(xiàn)方式具有新異性,激發(fā)學(xué)習(xí)興趣;畫板畫圖,增強(qiáng)動手操作意識,直觀形象從而引入橢圓定義,進(jìn)而研究橢圓標(biāo)準(zhǔn)方程。
2、新課呈現(xiàn):
學(xué)生通過觀看文件、動手操作,然后自己總結(jié)橢圓定義,符合從感性上升為理性的認(rèn)知規(guī)律,而且提升了抽象概括的能力。然后,進(jìn)行推導(dǎo)橢圓的標(biāo)準(zhǔn)方程,培養(yǎng)運(yùn)算能力,進(jìn)而探討標(biāo)準(zhǔn)方程的特點(diǎn)。教師作為熱烈討論的平等氛圍中的引導(dǎo)者,鼓勵學(xué)生大膽探究、勇于創(chuàng)新,積極談?wù)摵蛥⑴c體驗,培養(yǎng)嚴(yán)謹(jǐn)?shù)倪壿嬎季S,抽象概括的能力,滲透數(shù)學(xué)美學(xué)教育,掌握數(shù)形結(jié)合的重要數(shù)學(xué)思想,最后的幾個探究性問題鼓勵學(xué)生積極探索,敢于探究,轉(zhuǎn)變學(xué)習(xí)方式。
3、鞏固應(yīng)用
根據(jù)定義及其標(biāo)準(zhǔn)方程,設(shè)計三組九道練習(xí)題,引導(dǎo)學(xué)生聯(lián)系、思考、討論、反饋、矯正,增強(qiáng)運(yùn)用能力。
4、繼續(xù)探究:
(1)觀察橢圓形狀,不同原因在哪里;
(2)改變繩長或變換焦點(diǎn)位置再畫橢圓,發(fā)現(xiàn)關(guān)系;(3)用幾何畫板交流畫圖,觀察形狀變化;(4)如何描述形狀變化?
引導(dǎo)學(xué)生探究欲望,開展研究性學(xué)習(xí)。
四、評價說明:
本節(jié)課的學(xué)生評價堅持形成性評價和階段性評價相結(jié)合的原則。
(一)形成性評價:從操作能力、概括能力、學(xué)習(xí)興趣、交流合作、情緒情感方面對學(xué)習(xí)效果進(jìn)行過程評價。對出現(xiàn)問題的學(xué)生,教師指出其可取之處并耐心引導(dǎo),這樣有助于培養(yǎng)他們勇于面對挫折,持之以恒地科學(xué)探索精神;當(dāng)學(xué)生做的精彩有創(chuàng)新,教師給予學(xué)生充分的鼓勵,從而進(jìn)一步激發(fā)學(xué)生創(chuàng)造的潛能,提高他們的創(chuàng)新能力。
(二)階段性評價:從單元測試、期中測試等方面對學(xué)生的階段性學(xué)習(xí)成果進(jìn)行測試。評價結(jié)果以每次測試成績和學(xué)生平時的綜合表現(xiàn)為依據(jù)。同時要進(jìn)行學(xué)生的自我評價以及教師對行動的綜合性評價。
(三)教師自我反思評價:本課充分體現(xiàn)了“一個為本,四個調(diào)整”的新課程理念。
五、說課總結(jié):
這節(jié)課使用計算機(jī)網(wǎng)絡(luò)技術(shù),展現(xiàn)知識的發(fā)生過程,是學(xué)生始終處于問題探索研究狀態(tài)之中,激情引趣。注重數(shù)學(xué)科學(xué)研究方法的掌握,是研究性教學(xué)的一次有益嘗試。有利于改變學(xué)生的學(xué)習(xí)方式,有利于學(xué)生自主探究,有利于學(xué)生的實踐能力和創(chuàng)新意識的培養(yǎng)
第二篇:《橢圓及其標(biāo)準(zhǔn)方程》說課教案2
高中數(shù)學(xué)第二冊第八章第一節(jié)《橢圓及其標(biāo)準(zhǔn)方程》說課教案
今天我說課的題目是是《橢圓及其標(biāo)準(zhǔn)方程》,下面我對本課題進(jìn)行分析。
一、教材分析:
《橢圓及其標(biāo)準(zhǔn)方程》是選自人教版高中數(shù)學(xué)第二冊第八章第一節(jié)。本節(jié)共分兩個課時。我說課的內(nèi)容是第一課時。橢圓及其標(biāo)準(zhǔn)方程是圓錐曲線的基礎(chǔ),它的學(xué)習(xí)方法對整個這一章具有導(dǎo)向和引領(lǐng)作用,直接影響其他圓錐曲線的學(xué)習(xí)。是后繼學(xué)習(xí)的基礎(chǔ)和范示。同時,也是求曲線方程的深化和鞏固。二.教學(xué)目標(biāo)分析
1、知識與技能目標(biāo):
理解橢圓定義、掌握標(biāo)準(zhǔn)方程及其推導(dǎo)。
2、過程與方法目標(biāo):注重數(shù)形結(jié)合,掌握解析法研究幾何問題的一般方法,注重探索能力的培養(yǎng)。
3、情感、態(tài)度和價值觀目標(biāo):
(1)探究方法激發(fā)學(xué)生的求知欲,培養(yǎng)濃厚的學(xué)習(xí)興趣。
(2)進(jìn)行數(shù)學(xué)美育的滲透,用哲學(xué)的觀點(diǎn)指導(dǎo)學(xué)習(xí)。
三、說教學(xué)的重難點(diǎn)
本著《橢圓及其標(biāo)準(zhǔn)方程》新課程標(biāo)準(zhǔn),在吃透教材基礎(chǔ)上,我確定了以下教學(xué)重點(diǎn)和難點(diǎn)。
教學(xué)重點(diǎn)是:橢圓定義的理解及標(biāo)準(zhǔn)方程的推導(dǎo)。
教學(xué)難點(diǎn) 是:標(biāo)準(zhǔn)方程的推導(dǎo)。
為了講清教材的重難點(diǎn),使學(xué)生能夠達(dá)到本課題設(shè)定的教學(xué)目標(biāo),我再從教法我學(xué)法上談?wù)劇?/p>
四、學(xué)情分析:
高中二年級學(xué)生正值身心發(fā)展的鼎盛時期,思維活躍,又有了相應(yīng)知識基礎(chǔ),所以他們樂于探索、敢于探究。但高中生的邏輯思維能力尚屬經(jīng)驗型,運(yùn)算能力不是很強(qiáng),有待于訓(xùn)練。
基于上述分析,我采取的是教學(xué)方法是“問題誘導(dǎo)--啟發(fā)討論--探索結(jié)果”以及“直觀觀察--歸納抽象--總結(jié)規(guī)律”的一種研究性教學(xué)方法,注重“引、思、探、練”的結(jié)合。
引導(dǎo)學(xué)生學(xué)習(xí)方式發(fā)生轉(zhuǎn)變,采用激發(fā)興趣、主動參與、積極體驗、自主探究的學(xué)習(xí),形成師生互動的教學(xué)氛圍。
我具體來談?wù)勥@一堂課的教學(xué)過程
2、教學(xué)分析:
橢圓及其標(biāo)準(zhǔn)方程是培養(yǎng)學(xué)生觀察、分析、發(fā)現(xiàn)、概括、推理和探索能力的極好素材。本節(jié)課通過創(chuàng)設(shè)情景、動手操作、總結(jié)歸納,應(yīng)用提升等探究性活動,培養(yǎng)學(xué)生的數(shù)學(xué)創(chuàng)新精神和實踐能力,使學(xué)生掌握坐標(biāo)法的規(guī)律,掌握數(shù)學(xué)學(xué)科研究的基本過程與方法。
五.教學(xué)過程
1、新課導(dǎo)入
:以影音文件“海爾波譜彗星的運(yùn)行軌道示意圖”導(dǎo)入,呈現(xiàn)方式具有新異性,激發(fā)學(xué)習(xí)興趣;畫板畫圖,增強(qiáng)動手操作意識,直觀形象從而引入橢圓定義,進(jìn)而研究橢圓標(biāo)準(zhǔn)方程。
2、講授新課:
學(xué)生通過觀看文件、動手操作,然后自己總結(jié)橢圓定義,符合從感性上升為理性的認(rèn)知規(guī)律,而且提升了抽象概括的能力。然后,進(jìn)行推導(dǎo)橢圓的標(biāo)準(zhǔn)方程,培養(yǎng)運(yùn)算能力,進(jìn)而探討標(biāo)準(zhǔn)方程的特點(diǎn)。教師作為熱烈討論的平等氛圍中的引導(dǎo)者,鼓勵學(xué)生大膽探究、勇于創(chuàng)新,積極談?wù)摵蛥⑴c體驗,培養(yǎng)嚴(yán)謹(jǐn)?shù)倪壿嬎季S,抽象概括的能力,滲透數(shù)學(xué)美學(xué)教育,掌握數(shù)形結(jié)合的重要數(shù)學(xué)思想,最后的幾個探究性問題鼓勵學(xué)生積極探索,敢于探究,轉(zhuǎn)變學(xué)習(xí)方式。
3、鞏固應(yīng)用
根據(jù)定義及其標(biāo)準(zhǔn)方程,設(shè)計兩道例題,引導(dǎo)學(xué)生聯(lián)系、思考、討論、反饋、矯正,增強(qiáng)運(yùn)用能力。
4、繼續(xù)探究:
(1)觀察橢圓形狀,不同原因在哪里;
(2)改變繩長或變換焦點(diǎn)位置再畫橢圓,發(fā)現(xiàn)關(guān)系;
(3)用幾何畫板交流畫圖,觀察形狀變化;
(4)如何描述形狀變化?
引導(dǎo)學(xué)生探究欲望,開展研究性學(xué)習(xí)。
四、評價說明:
本節(jié)課的學(xué)生評價堅持形成性評價和階段性評價相結(jié)合的原則。
(一)形成性評價:從操作能力、概括能力、學(xué)習(xí)興趣、交流合作、情緒情感方面對學(xué)習(xí)效果進(jìn)行過程評價。對出現(xiàn)問題的學(xué)生,教師指出其可取之處并耐心引導(dǎo),這樣有助于培養(yǎng)他們勇于面對挫折,持之以恒地科學(xué)探索精神;當(dāng)學(xué)生做的精彩有創(chuàng)新,教師給予學(xué)生充分的鼓勵,從而進(jìn)一步激發(fā)學(xué)生創(chuàng)造的潛能,提高他們的創(chuàng)新能力。
(二)階段性評價:從單元測試、期中測試等方面對學(xué)生的階段性學(xué)習(xí)成果進(jìn)行測試。評價結(jié)果以每次測試成績和學(xué)生平時的綜合表現(xiàn)為依據(jù)。同時要進(jìn)行學(xué)生的自我評價以及教師對行動的綜合性評價。
(三)教師自我反思評價:本課充分體現(xiàn)了“一個為本,四個調(diào)整”的新課程理念。
五、說課總結(jié):
這節(jié)課使用計算機(jī)網(wǎng)絡(luò)技術(shù),展現(xiàn)知識的發(fā)生過程,是學(xué)生始終處于問題探索研究狀態(tài)之中,激情引趣。注重數(shù)學(xué)科學(xué)研究方法的掌握,是研究性教學(xué)的一次有益嘗試。有利于改變學(xué)生的學(xué)習(xí)方式,有利于學(xué)生自主探究,有利于學(xué)生的實踐能力和創(chuàng)新意識的培養(yǎng)。
第三篇:《橢圓及其標(biāo)準(zhǔn)方程》說課教案專題
高中數(shù)學(xué)第二冊第八章第一節(jié)《橢圓及其標(biāo)準(zhǔn)方程》說課教案 我說課的題目是全日制普通高級中學(xué)教科書(試驗修訂本.必修)《數(shù)學(xué)》第二冊、第八章《圓錐曲線》、第一節(jié)《橢圓及其標(biāo)準(zhǔn)方程》。
一、概說:
1、教材分析:
橢圓及其標(biāo)準(zhǔn)方程是圓錐曲線的基礎(chǔ),它的學(xué)習(xí)方法對整個這一章具有導(dǎo)向和引領(lǐng)作用,直接影響其他圓錐曲線的學(xué)習(xí)。是后繼學(xué)習(xí)的基礎(chǔ)和范示。同時,也是求曲線方程的深化和鞏固。
2、教學(xué)分析:
橢圓及其標(biāo)準(zhǔn)方程是培養(yǎng)學(xué)生觀察、分析、發(fā)現(xiàn)、概括、推理和探索能力的極好素材。本節(jié)課通過創(chuàng)設(shè)情景、動手操作、總結(jié)歸納,應(yīng)用提升等探究性活動,培養(yǎng)學(xué)生的數(shù)學(xué)創(chuàng)新精神和實踐能力,使學(xué)生掌握坐標(biāo)法的規(guī)律,掌握數(shù)學(xué)學(xué)科研究的基本過程與方法。
3、學(xué)生分析:
高中二年級學(xué)生正值身心發(fā)展的鼎盛時期,思維活躍,又有了相應(yīng)知識基礎(chǔ),所以他們樂于探索、敢于探究。但高中生的邏輯思維能力尚屬經(jīng)驗型,運(yùn)算能力不是很強(qiáng),有待于訓(xùn)練。
基于上述分析,我采取的是教學(xué)方法是“問題誘導(dǎo)--啟發(fā)討論--探索結(jié)果”以及“直觀觀察--歸納抽象--總結(jié)規(guī)律”的一種研究性教學(xué)方法,注重“引、思、探、練”的結(jié)合。
引導(dǎo)學(xué)生學(xué)習(xí)方式發(fā)生轉(zhuǎn)變,采用激發(fā)興趣、主動參與、積極體驗、自主探究的學(xué)習(xí),形成師生互動的教學(xué)氛圍。
我設(shè)定的教學(xué)重點(diǎn)是:橢圓定義的理解及標(biāo)準(zhǔn)方程的推導(dǎo)。
教學(xué)難點(diǎn) 是:標(biāo)準(zhǔn)方程的推導(dǎo)。
二、目標(biāo)說明:
根據(jù)數(shù)學(xué)教學(xué)大綱要求確立“三位一體”的教學(xué)目標(biāo)。
1、知識與技能目標(biāo):
理解橢圓定義、掌握標(biāo)準(zhǔn)方程及其推導(dǎo)。
2、過程與方法目標(biāo):注重數(shù)形結(jié)合,掌握解析法研究幾何問題的一般方法,注重探索能力的培養(yǎng)。
3、情感、態(tài)度和價值觀目標(biāo):
(1)探究方法激發(fā)學(xué)生的求知欲,培養(yǎng)濃厚的學(xué)習(xí)興趣。
(2)進(jìn)行數(shù)學(xué)美育的滲透,用哲學(xué)的觀點(diǎn)指導(dǎo)學(xué)習(xí)。
三、過程說明:
依據(jù)“一個為本,四個調(diào)整”的新的教學(xué)理念和上述教學(xué)目標(biāo) 設(shè)計教學(xué)過程?!耙詫W(xué)生發(fā)展為本,新型的師生關(guān)系、新型的教學(xué)目標(biāo)、新型的教學(xué)方式、新型的呈現(xiàn)方式”體現(xiàn)如下:
(一)對教材的重組與拓展:根據(jù)教學(xué)目標(biāo),選擇教學(xué)內(nèi)容,遵循拓展、開放、綜合的原則。教材中對橢圓定義盡管很嚴(yán)密,但不夠直觀,所以增加了影音文件:海爾波譜彗星的運(yùn)行軌道圖,最后,讓學(xué)生交流用幾何畫板畫橢圓以及5個探究性問題,作為對教材的拓展。
(二)在教學(xué)過程 中的體現(xiàn):
1、新課導(dǎo)入
:以影音文件“海爾波譜彗星的運(yùn)行軌道示意圖”導(dǎo)入,呈現(xiàn)方式具有新異性,激發(fā)學(xué)習(xí)興趣;畫板畫圖,增強(qiáng)動手操作意識,直觀形象從而引入橢圓定義,進(jìn)而研究橢圓標(biāo)準(zhǔn)方程。
2、新課呈現(xiàn):
學(xué)生通過觀看文件、動手操作,然后自己總結(jié)橢圓定義,符合從感性上升為理性的認(rèn)知規(guī)律,而且提升了抽象概括的能力。然后,進(jìn)行推導(dǎo)橢圓的標(biāo)準(zhǔn)方程,培養(yǎng)運(yùn)算能力,進(jìn)而探討標(biāo)準(zhǔn)方程的特點(diǎn)。教師作為熱烈討論的平等氛圍中的引導(dǎo)者,鼓勵學(xué)生大膽探究、勇于創(chuàng)新,積極談?wù)摵蛥⑴c體驗,培養(yǎng)嚴(yán)謹(jǐn)?shù)倪壿嬎季S,抽象概括的能力,滲透數(shù)學(xué)美學(xué)教育,掌握數(shù)形結(jié)合的重要數(shù)學(xué)思想,最后的幾個探究性問題鼓勵學(xué)生積極探索,敢于探究,轉(zhuǎn)變學(xué)習(xí)方式。
3、鞏固應(yīng)用
根據(jù)定義及其標(biāo)準(zhǔn)方程,設(shè)計三組九道練習(xí)題,引導(dǎo)學(xué)生聯(lián)系、思考、討論、反饋、矯正,增強(qiáng)運(yùn)用能力。
4、繼續(xù)探究:
(1)觀察橢圓形狀,不同原因在哪里;
(2)改變繩長或變換焦點(diǎn)位置再畫橢圓,發(fā)現(xiàn)關(guān)系;
(3)用幾何畫板交流畫圖,觀察形狀變化;(4)如何描述形狀變化?
引導(dǎo)學(xué)生探究欲望,開展研究性學(xué)習(xí)。
四、評價說明:
本節(jié)課的學(xué)生評價堅持形成性評價和階段性評價相結(jié)合的原則。
(一)形成性評價:從操作能力、概括能力、學(xué)習(xí)興趣、交流合作、情緒情感方面對學(xué)習(xí)效果進(jìn)行過程評價。對出現(xiàn)問題的學(xué)生,教師指出其可取之處并耐心引導(dǎo),這樣有助于培養(yǎng)他們勇于面對挫折,持之以恒地科學(xué)探索精神;當(dāng)學(xué)生做的精彩有創(chuàng)新,教師給予學(xué)生充分的鼓勵,從而進(jìn)一步激發(fā)學(xué)生創(chuàng)造的潛能,提高他們的創(chuàng)新能力。
(二)階段性評價:從單元測試、期中測試等方面對學(xué)生的階段性學(xué)習(xí)成果進(jìn)行測試。評價結(jié)果以每次測試成績和學(xué)生平時的綜合表現(xiàn)為依據(jù)。同時要進(jìn)行學(xué)生的自我評價以及教師對行動的綜合性評價。
(三)教師自我反思評價:本課充分體現(xiàn)了“一個為本,四個調(diào)整”的新課程理念。
五、說課總結(jié):
這節(jié)課使用計算機(jī)網(wǎng)絡(luò)技術(shù),展現(xiàn)知識的發(fā)生過程,是學(xué)生始終處于問題探索研究狀態(tài)之中,激情引趣。注重數(shù)學(xué)科學(xué)研究方法的掌握,是研究性教學(xué)的一次有益嘗試。有利于改變學(xué)生的學(xué)習(xí)方式,有利于學(xué)生自主探究,有利于學(xué)生的實踐能力和創(chuàng)新意識的培養(yǎng)。
第四篇:橢圓及其標(biāo)準(zhǔn)方程教案
橢圓及其標(biāo)準(zhǔn)方程教案
教學(xué)目標(biāo):
(一)知識目標(biāo):掌握橢圓的定義及其標(biāo)準(zhǔn)方程,能正確推導(dǎo)橢圓的標(biāo)準(zhǔn)方程,會由標(biāo)準(zhǔn)方程求出橢圓的交點(diǎn)和焦距;
(二)能力目標(biāo):通過對橢圓概念的引入和標(biāo)準(zhǔn)方程的推導(dǎo),培養(yǎng)學(xué)生分析、探索的能力,增強(qiáng)學(xué)生運(yùn)用代數(shù)法解決幾何問題的能力;
(三)情感目標(biāo):激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣、提高學(xué)生的審美情趣、培養(yǎng)學(xué)生勇于探索,敢于創(chuàng)新的精神。
教學(xué)重點(diǎn):橢圓的定義和橢圓的標(biāo)準(zhǔn)方程的推導(dǎo)。教學(xué)難點(diǎn):橢圓標(biāo)準(zhǔn)方程的推導(dǎo)。
教學(xué)方法:探究式教學(xué)法(教師通過問題誘導(dǎo)→啟發(fā)討論→探索結(jié)果,引導(dǎo)學(xué)生直觀觀察→歸納抽象→總結(jié)規(guī)律,使學(xué)生在獲得知識的同時,能夠掌握方法、提升能力。)
教具準(zhǔn)備:自制教具(圓柱體、細(xì)繩)。
教學(xué)過程:(一)啟發(fā)誘導(dǎo),推陳出新
1、復(fù)習(xí)舊知識:拉直一根細(xì)線,一端固定,作一個圓,由此回憶圓的定義(到一點(diǎn)的距離等于定長的點(diǎn)的軌跡),圓的標(biāo)準(zhǔn)方程;
2、提出新問題:到兩點(diǎn)的距離等于定長的點(diǎn)是什么軌跡呢? 嘗試作圖;
3、創(chuàng)設(shè)情境,引出課題:“橢圓及其標(biāo)準(zhǔn)方程”。(二)小組合作,形成概念
下面請同學(xué)們思考下面的問題:
1、在作圖時,視筆尖為動點(diǎn),線的兩個固定的端點(diǎn)為定點(diǎn),動點(diǎn)到兩定點(diǎn)距離之和符合什么條件?其軌跡如何?
2、改變兩端點(diǎn)之間的距離,使其與繩長相等,畫出的圖形還是橢圓嗎?
3、當(dāng)繩長小于兩圖釘之間的距離時,還能畫出圖形嗎?
學(xué)生經(jīng)過動手操作→獨(dú)立思考→小組討論→共同交流的探究過程,得出這樣三個結(jié)論:橢圓、線段、不存在。
歸納出橢圓的定義:平面內(nèi)到兩個定點(diǎn)F1、F2的距離之和等于定長(大于F1F2)的點(diǎn)的軌跡叫做橢圓。這兩個定點(diǎn)叫做橢圓的焦點(diǎn),兩焦點(diǎn)的距離叫做橢圓的焦距。
(三)橢圓標(biāo)準(zhǔn)方程的推導(dǎo)
1、建立適當(dāng)坐標(biāo)系(讓學(xué)生根據(jù)自己的經(jīng)驗來確定)
原則:盡可能使方程的形式簡單、運(yùn)算簡單;主要應(yīng)使曲線對于坐標(biāo)軸具有較多的對稱性。
2、標(biāo)準(zhǔn)方程推導(dǎo)過程如下:
①建立直角坐標(biāo)系:以直線F1F2為x軸,線段F1F2的垂直平分線為y軸,建
立如圖所示的坐標(biāo)系;
②確定點(diǎn)的坐標(biāo):設(shè)F1F2?2c,則F1??c,0?,F(xiàn)2?c,0?,設(shè)P?x,y?是橢圓上的任意一點(diǎn);
③設(shè)定長為2a,由條件PF1?PF2?2a得
?x?c?2?y2??x?c?2?y2?2a;
x2y2④化簡:得到橢圓方程為2?2?1。
ab(通過學(xué)生自己動手推導(dǎo)方程是學(xué)生構(gòu)建知識的一個過程。)
3、歸納方程特點(diǎn),鞏固上述知識。
4、延伸:①焦點(diǎn)在y軸上:F1?0,?c?,F(xiàn)2?0,c?
y2x2②方程:2?2?1
ab③a,b,c的關(guān)系:b2?a2?c2,a?b?0,a?c?0
(四)例題講解
例1:平面內(nèi)兩個定點(diǎn)的距離是8,寫出到這兩個定點(diǎn)距離的和是10的動點(diǎn)的軌跡方程。
解:這個軌跡是橢圓,兩個定點(diǎn)是焦點(diǎn),用F1、F2表示。
取過點(diǎn)F1和F2的直線為x軸,線段F1F2的垂直平分線為y軸。?2a?10,2c?8
?a?5,c?4,b2?a2?c2?52?42?9,即b?3
x2y2x2y2?這個橢圓的標(biāo)準(zhǔn)方程是2?2?1,即??1
25953(例1是鞏固橢圓的定義及標(biāo)準(zhǔn)方程)
x2y2x2y2??1與橢圓c2:??1的焦點(diǎn)。
例2:分別求橢圓c1:433解:?4?3
?橢圓c1的焦點(diǎn)在x軸上,橢圓c2的焦點(diǎn)在y 軸上
a2?4,b2?3,c?a2?b2?1
??1,?橢圓c1的兩個焦點(diǎn)分別是0?和?1,0? ?0,是?1?和?0,1?。
橢圓c2的兩個焦點(diǎn)分別(例2會由橢圓的標(biāo)準(zhǔn)方程求出橢圓的焦點(diǎn)坐標(biāo)和焦距)
(五)課堂練習(xí)
課本P61 A 1(2)(3)2(3)(4)(五)課堂小結(jié)
1、橢圓定義
2、焦點(diǎn)分別在x軸和y軸上的橢圓的標(biāo)準(zhǔn)方程(結(jié)合圖形,表述焦點(diǎn)坐標(biāo),焦距,系數(shù)的關(guān)系等)
3、考慮一下將橢圓平移到坐標(biāo)軸任意位置時的坐標(biāo),留給同學(xué)們課后思考
4、布置作業(yè):課本P61 A 1(1)(4)2(1)(2)
第五篇:橢圓及其標(biāo)準(zhǔn)方程教案
橢圓及其標(biāo)準(zhǔn)方程教案
湖北鄖陽中學(xué)
梁學(xué)文
教學(xué)目標(biāo):
使學(xué)生理解橢圓的定義,掌握橢圓的標(biāo)準(zhǔn)方程及標(biāo)準(zhǔn)方程的推導(dǎo)過程
培養(yǎng)學(xué)生運(yùn)用坐標(biāo)解決集合問題的能力
培養(yǎng)學(xué)生發(fā)現(xiàn)規(guī)律、尋求規(guī)律、認(rèn)識規(guī)律和用規(guī)律解決問題的能力 教學(xué)重點(diǎn):
橢圓的定義及標(biāo)準(zhǔn)方程的推導(dǎo) 教學(xué)難點(diǎn):
橢圓定義的理解 教學(xué)方法;探索法 教具準(zhǔn)備:
細(xì)繩一根 教學(xué)過程:
課前引入部分:
一、明確教學(xué)目標(biāo):告訴大家開始新的章節(jié):圓錐曲線,思考:為什么這三類曲線叫做圓錐曲線?
二、教具演示:在黑板用細(xì)繩演示到定點(diǎn)距離和等于定長的點(diǎn)的軌跡,請同學(xué)幫忙。分三類:繩長小于兩點(diǎn)距;等于;大于。
三、探索總結(jié):師生共同歸納得到:繩長等于點(diǎn)距,得到線段;繩長大于點(diǎn)距,得到橢圓;繩長小于點(diǎn)距,不能得到圖形。
定義及方程推導(dǎo):
一、定義引導(dǎo):
平面內(nèi)到兩定點(diǎn)F1、F2的距離之和等于常數(shù)(大于|F1F2|)的點(diǎn)的軌跡叫做橢圓.這兩個定點(diǎn)叫做橢圓的焦點(diǎn),兩焦點(diǎn)的距離叫做焦距.
學(xué)生開始只強(qiáng)調(diào)主要幾何特征——到兩定點(diǎn)F1、F2的距離之和等于常數(shù)、教師在演示中要從兩個方面加以強(qiáng)調(diào):
(1)將穿有粉筆的細(xì)線拉到圖板平面外,得到的不是橢圓,而是橢球形,使學(xué)生認(rèn)識到需加限制條件:“在平面內(nèi)”.
(2)這里的常數(shù)有什么限制嗎?教師邊演示邊提示學(xué)生注意:若常數(shù)=|F1F2|,則是線段F1F2;若常數(shù)<|F1F2|,則軌跡不存在;若要軌跡是橢圓,還必須加上限制條件:“此常數(shù)大于|F1F2|”.即兩定點(diǎn)的距離。
二、方程推導(dǎo) 1.標(biāo)準(zhǔn)方程的推導(dǎo)
由橢圓的定義,可以知道它的基本幾何特征,但對橢圓還具有哪些性質(zhì),我們還一無所知,所以需要用坐標(biāo)法先建立橢圓的方程.
如何建立橢圓的方程?根據(jù)求曲線方程的一般步驟,可分:(1)建系設(shè)點(diǎn);(2)點(diǎn)的集合;(3)代數(shù)方程;(4)化簡方程等步驟.
(1)建系設(shè)點(diǎn)
建立坐標(biāo)系應(yīng)遵循簡單和優(yōu)化的原則,如使關(guān)鍵點(diǎn)的坐標(biāo)、關(guān)鍵幾何量(距離、直線斜率等)的表達(dá)式簡單化,注意充分利用圖形的對稱性,使學(xué)生認(rèn)識到下列選取方法是恰當(dāng)?shù)模?/p>
以兩定點(diǎn)F1、F2的直線為x軸,線段F1F2的垂直平分線為y軸,建立直角坐標(biāo)系(如圖2-14).設(shè)|F1F2|=2c(c>0),M(x,y)為橢圓上任意一點(diǎn),則有F1(-1,0),F(xiàn)2(c,0).
(2)點(diǎn)的集合
由定義不難得出橢圓集合為: P={M||MF1|+|MF2|=2a}.(3)代數(shù)方程
(4)化簡方程 化簡方程可請一個反映比較快、書寫比較規(guī)范的同學(xué)板演,其余同學(xué)在下面完成,教師巡視,適當(dāng)給予提示:
①原方程要移項平方,否則化簡相當(dāng)復(fù)雜;注意兩次平方的理由詳見問題3說明.整理后,再平方得(a2-c2)x2+a2y2=a2(a2-c2)②為使方程對稱和諧而引入b,同時b還有幾何意義,下節(jié)課還要
(a>b>0).
關(guān)于證明所得的方程是橢圓方程,因教材中對此要求不高,可從略.
示的橢圓的焦點(diǎn)在x軸上,焦點(diǎn)是F1(-c,0)、F2(c,0).這里c2=a2-b2. 2.兩種標(biāo)準(zhǔn)方程的比較(引導(dǎo)學(xué)生歸納)
0)、F2(c,0),這里c2=a2-b2;
-c)、F2(0,c),這里c2=a2+b2,只須將(1)方程的x、y互換即可得到. 教師指出:在兩種標(biāo)準(zhǔn)方程中,∵a2>b2,∴可以根據(jù)分母的大小來判定焦點(diǎn)在哪一個坐標(biāo)軸上.
(三)例題與練習(xí)
例題
平面內(nèi)兩定點(diǎn)的距離是8,寫出到這兩定點(diǎn)的距離的和是10的點(diǎn)的軌跡的方程.
分析:先根據(jù)題意判斷軌跡,再建立直角坐標(biāo)系,采用待定系數(shù)法得出軌跡方程. 解:這個軌跡是一個橢圓,兩個定點(diǎn)是焦點(diǎn),用F1、F2表示.取過點(diǎn)F1和F2的直線為x軸,線段F1F2的垂直平分線為y軸,建立直角坐標(biāo)系.
∵2a=10,2c=8.
∴a=5,c=4,b2=a2-c2=52-45=9.∴b=3 因此,這個橢圓的標(biāo)準(zhǔn)方程是
請大家再想一想,焦點(diǎn)F1、F2放在y軸上,線段F1F2的垂直平分
練習(xí)1 寫出適合下列條件的橢圓的標(biāo)準(zhǔn)方程:
練習(xí)2 下列各組兩個橢圓中,其焦點(diǎn)相同的是
[
]
由學(xué)生口答,答案為D.(四)小結(jié) 1.定義:橢圓是平面內(nèi)與兩定點(diǎn)F1、F2的距離的和等于常數(shù)(大于|F1F2|)的點(diǎn)的軌跡.
3.圖形如圖2-
15、2-16.
4.焦點(diǎn):F1(-c,0),F(xiàn)2(c,0).F1(0,-c),F(xiàn)2(0,c).
五、布置作業(yè)
課后習(xí)題