第一篇:新人教版八年級數(shù)學(xué)下冊《16.1二次根式(第1課時)》教案
新人教版八年級數(shù)學(xué)下冊《16.1二次根式(第1課時)》教案
一、復(fù)習(xí)引入
(學(xué)生活動)請同學(xué)們獨立完成下列三個問題:
問題1:已知反比例函數(shù)y=,那么它的圖象在第一象限橫、?縱坐標(biāo)相等的點的坐標(biāo)是___________.
問題2:如圖,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB邊的長是__________.
問題3:甲射擊6次,各次擊中的環(huán)數(shù)如下:8、7、9、9、7、8,那么甲這次射擊的方差是S2,那么S=_________. 問題1:橫、縱坐標(biāo)相等,即x=y,所以x2=3.因為點在第一象限,所以x=,所以所求點的坐標(biāo)(,).
問題2:由勾股定理得AB=問題3:由方差的概念得S=.二、探索新知
很明顯、、,都是一些正數(shù)的算術(shù)平方根.像這樣一些正數(shù)的算術(shù)平方根的式子,我們就把它稱二次根式.因此,一般地,我們把形如(a≥0)?的式子叫做二次根式,“”稱為二次根號.
(學(xué)生活動)議一議: 1.-1有算術(shù)平方根嗎?
例1.下列式子,哪些是二次根式,哪些不是二次根式:、、、(x0)、、、-、、(x≥0,y?≥0).
第 1 頁
分析:二次根式應(yīng)滿足兩個條件:第一,有二次根號“”;第二,被開方數(shù)是正數(shù)或0.
解:二次根式有:、(x0)、、-、(x≥0,y≥0);不是二次根式的有:、、、.
例2.當(dāng)x是多少時,在實數(shù)范圍內(nèi)有意義?
分析:由二次根式的定義可知,被開方數(shù)一定要大于或等于?
第 2 頁
第二篇:八年級數(shù)學(xué)《二次根式》
杰瑞學(xué)院《二次根式》專題訓(xùn)練
一、細(xì)心填一填(每小題3分,共30分)、1、當(dāng)m時,式子3?m有意義.2、若a<0,則a23、計算:3132?3122=.4、計算:3?1113??,?3335、長方形的一邊的長是2,面積為6,則另一邊的長為.6、若(a?2)2?2?a,則a的取值范圍是_______.7、a?2??3?0,則(a-b)2?________.8、計算:(3?2)2005(3?2)2006?
9、當(dāng)?x有最小值.10、觀察下列式子:?111111?2,2??3,3??4?,請你將猜想到的規(guī)律用含自然數(shù)33445
5n(n≥1)的代數(shù)式表示出來的是.二、精心選一選(每小題3分,共30分)
11、下列代數(shù)式中,x能取一切實數(shù)的是()A
1xB.x?1CxDx2?
412、化簡?32的結(jié)果是()
A.3B.-3C.±3D.913、若1?x?3,則?x?(x?3)的值是()
A.-2B.4C.2X-4D.214、若2aa成立,則()?bB.a?0,b?0;C.a?0bD.a?0 bA.a?0,b?0;
15、若x?x?6?x(x?6),則()
A.x≥6B.x≥0C.0≤X≤6D.x為一切實數(shù).16、若x,y都是實數(shù),且2x?1??2x?y?0,則xy的值為()
A、0 B、0.5 C、2D、不能確定
17、下列四個等式中不成立的是()
A.2?1?2(3?1)
(3?1)(?1)?2(?1)??12B.2(2?3)?2?6
C.(1?2)2?3?22D.(?2)2?3?218、計算:48?23?75的結(jié)果是()
AB.1C.5D.6?7519、已知x、y為實數(shù),y?x?2?2?x?4,則yx的值等于()
A.8B.4C.6D.1620、若正三角形的邊長為2cm,則這個正三角形的面積是()
AB.C.5D.53三、認(rèn)真做一做(共40分)
21、化簡或計算(每題5分,共20分)
(1)45?380(2)
2? 7
(3)(3?3)?(4)(2?2)(3?22)822、已知a??2,b?2?
3(6分),求a2b?ab2的值。
23、解方程:x?2?23x(6分)
24、如圖,某水壩的橫斷面是梯形,壩頂寬CD為8米,壩高為20米,斜坡AD的坡比為1:3,斜坡AD的坡比為1:2,求壩底AB的長(精確到0.1米)(8分)
四、努力試一試(共20分)
1、如圖,數(shù)軸上表示12的對應(yīng)點分別為A、B,點B關(guān)于點A的對稱點C,則C點表示
2、已知m是的整數(shù)部分,n是的小數(shù)部分,則n2-
3、已知實數(shù)a、b滿足4a?b?11?
4、國慶佳節(jié),李老師喬遷新居。一大早他就趕到家具城購買家具,當(dāng)卡車裝滿家具后高4米、寬2.8米。這輛卡車能否通過如圖所示的住宅社區(qū)大門。
21ab1?(?)的值。b?4a?3?0,求2abab3
第三篇:人教版八年級數(shù)學(xué)下冊16.1二次根式教案
二次根式
教學(xué)目標(biāo)
1.使學(xué)生進一步理解二次根式的意義及基本性質(zhì),并能熟練地化簡含二次根式的式子;
2.熟練地進行二次根式的加、減、乘、除混合運算. 教學(xué)重點和難點
重點:含二次根式的式子的混合運算.
難點:綜合運用二次根式的性質(zhì)及運算法則化簡和計算含二次根式的式子. 教學(xué)過程設(shè)計
一、復(fù)習(xí)
1.請同學(xué)回憶二次根式有哪些基本性質(zhì)?用式子表示出來,并說明各式成立的條件.
指出:二次根式的這些基本性質(zhì)都是在一定條件下才成立的,主要應(yīng)用于化簡二次根式.
2.二次根式的乘法及除法的法則是什么?用式子表示出來.
指出:二次根式的乘、除法則也是在一定條件下成立的.把兩個二次根式相除,計算結(jié)果要把分母有理化.
3.在二次根式的化簡或計算中,還常用到以下兩個二次根式的關(guān)系式:
4.在含有二次根式的式子的化簡及求值等問題中,常運用三個可逆的式子:
二、例題
例1 x取什么值時,下列各式在實數(shù)范圍內(nèi)有意義:
分析:
(1)題是兩個二次根式的和,x的取值必須使兩個二次根式都有意義;
(3)題是兩個二次根式的和,x的取值必須使兩個二次根式都有意義;(4)題的分子是二次根式,分母是含x的單項式,因此x的取值必須使二次根式有意義,同時使分母的值不等于零.
x≥-2且x≠0.
解因為n2-9≥0,9-n2≥0,且n-3≠0,所以n2=9且n≠3,所以
例3
分析:第一個二次根式的被開方數(shù)的分子與分母都可以分解因式.把它們分別分解因式后,再利用二次根式的基本性質(zhì)把式子化簡,化簡中應(yīng)注意利用題中的隱含條件3-a≥0和1-a>0.
解:因為1-a>0,3-a≥0,所以a<1,|a-2|=2-a.(a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)≥0.
這些性質(zhì)化簡含二次根式的式子時,要注意上述條件,并要闡述清楚是怎樣滿足這些條件的.
問:上面的代數(shù)式中的兩個二次根式的被開方數(shù)的式子如何化為完全平方式?
分析:先把第二個式子化簡,再把兩個式子進行通分,然后進行計算.
解
注意:
所以在化簡過程中,例6:
分析:如果把兩個式子通分,或把每一個式子的分母有理化再進行計算,這兩種方法的運算量都較大,根據(jù)式子的結(jié)構(gòu)特點,分別把兩個式子的分母看作一個整體,用換元法把式子變形,就可以使運算變?yōu)楹喗荩?/p>
a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),三、課堂練習(xí)1.選擇題:
A.a(chǎn)≤
2B.a(chǎn)≥2
C.a(chǎn)≠2
D.a(chǎn)<2
A.x+2
B.-x-2
C.-x+2
D.x-2
A.2x
B.2a
C.-2x
D.-2a
2.填空題:
4.計算:
四、小結(jié)
1.本節(jié)課復(fù)習(xí)的五個基本問題是“二次根式”這一章的主要基礎(chǔ)知識,同學(xué)們要深刻理解并牢固掌握.
2.在一次根式的化簡、計算及求值的過程中,應(yīng)注意利用題中的使二次根式有意義的條件(或題中的隱含條件),即被開方數(shù)為非負(fù)數(shù),以確定被開方數(shù)中的字母或式子的取值范圍.
3.運用二次根式的四個基本性質(zhì)進行二次根式的運算時,一定要注意論述每一個性質(zhì)中字母的取值范圍的條件.
4.通過例題的討論,要學(xué)會綜合、靈活運用二次根式的意義、基本性質(zhì)和法則以及有關(guān)多項式的因式分解,解答有關(guān)含二次根式的式子的化簡、計算及求值等問題.
五、作業(yè)
1.x是什么值時,下列各式在實數(shù)范圍內(nèi)有意義?
2.把下列各式化成最簡二次根式:
第四篇:《16.1 二次根式(第1課時)》教學(xué)設(shè)計案例
《16.1 二次根式(第1課時)》教學(xué)設(shè)計案例
湖北省通山縣教育局教研室 袁觀六
一、內(nèi)容和內(nèi)容解析
1.內(nèi)容
二次根式的概念.2.內(nèi)容解析
本節(jié)課是在學(xué)生學(xué)習(xí)了平方根、算術(shù)平方根、立方根的概念,會用根號表示數(shù)的平方根、立方根,知道開方與乘方互為逆運算的基礎(chǔ)上,來學(xué)習(xí)二次根式的概念.它不僅是對前面所學(xué)知識的綜合應(yīng)用,也為后面學(xué)習(xí)二次根式的性質(zhì)和四則運算打基礎(chǔ).教材先設(shè)置了三個實際問題,這些問題的結(jié)果都可以表示成二次根式的形式,它們都表示一些正數(shù)的算術(shù)平方根,由此引出二次根式的定義.再通過例1討論了二次根式中被開方數(shù)字母的取值范圍的問題,加深學(xué)生對二次根式的定義的理解.本節(jié)課的教學(xué)重點是:了解二次根式的概念;
二、目標(biāo)和目標(biāo)解析
1.教學(xué)目標(biāo)
(1)體會研究二次根式是實際的需要.
(2)了解二次根式的概念.
2.教學(xué)目標(biāo)解析
(1)學(xué)生能用二次根式表示實際問題中的數(shù)量和數(shù)量關(guān)系,體會研究二次根式的必要性.
(2)學(xué)生能根據(jù)算術(shù)平方根的意義了解二次根式的概念,知道被開方數(shù)必須是非負(fù)數(shù)的理由,知道二次根式本身是一個非負(fù)數(shù),會求二次根式中被開方數(shù)字母的取值范圍.
三、教學(xué)問題診斷分析
對于二次根式的定義,應(yīng)側(cè)重讓學(xué)生理解 “是非負(fù)數(shù),的算術(shù)平方根的雙重非負(fù)性,”即被開方數(shù)≥0
≥0也是非負(fù)數(shù).教學(xué)時注意引導(dǎo)學(xué)生回憶在實數(shù)一章所學(xué)習(xí)的有關(guān)平方根的意義和特征,幫助學(xué)生理解這一要求,從而讓學(xué)生得出二次根式成立的條件,并運用被開方數(shù)是非負(fù)數(shù)這一條件進行二次根式有意義的判斷.本節(jié)課的教學(xué)難點為:理解二次根式的雙重非負(fù)性.四、教學(xué)過程設(shè)計
1.創(chuàng)設(shè)情境,提出問題
問題1你能用帶有根號的的式子填空嗎?
(1)面積為3 的正方形的邊長為_______,面積為S 的正方形的邊長為_______.
(2)一個長方形圍欄,長是寬的2 倍,面積為130m?,則它的寬為______m.
(3)一個物體從高處自由落下,落到地面所用的時間 t(單位:s)與開始落下的高度h(單位:m)滿足關(guān)系 h =5t?,如果用含有h 的式子表示 t,則t= _____.
師生活動:學(xué)生獨立完成上述問題,用算術(shù)平方根表示結(jié)果,教師進行適當(dāng)引導(dǎo)和評價.【設(shè)計意圖】讓學(xué)生在填空過程中初步感知二次根式與實際生活的緊密聯(lián)系,體會研究二次根式的必要性.
問題2 上面得到的式子,分別表示什么意義?它們有什么共同特征?
師生活動:教師引導(dǎo)學(xué)生說出各式的意義,概括它們的共同特征:都表示一個非負(fù)數(shù)(包括字母或式子表示的非負(fù)數(shù))的算術(shù)平方根.
【設(shè)計意圖】為概括二次根式的概念作鋪墊.
2.抽象概括,形成概念
問題3 你能用一個式子表示一個非負(fù)數(shù)的算術(shù)平方根嗎?
師生活動:學(xué)生小組討論,全班交流.教師由此給出二次根式的定義:一般地,我們把形如
【設(shè)計意圖】讓學(xué)生體會由特殊到一般的過程,培養(yǎng)學(xué)生的概括能力.
追問:在二次根式的概念中,為什么要強調(diào)“a≥0”?
師生活動:教師引導(dǎo)學(xué)生討論,知道二次根式被開方數(shù)必須是非負(fù)數(shù)的理由.
【設(shè)計意圖】進一步加深學(xué)生對二次根式被開方數(shù)必須是非負(fù)數(shù)的理解.
3.辨析概念,應(yīng)用鞏固
例
1當(dāng)時怎樣的實數(shù)時,在實數(shù)范圍內(nèi)有意義?(a≥0)的式子叫做二次根式,“
”稱為二次根號.
師生活動:引導(dǎo)學(xué)生從概念出發(fā)進行思考,鞏固學(xué)生對二次根式的被開方數(shù)為非負(fù)數(shù)的理解.
例2 當(dāng)是怎樣的實數(shù)時,師生活動:先讓學(xué)生獨立思考,再追問.
【設(shè)計意圖】在辨析中,加深學(xué)生對二次根式被開方數(shù)為非負(fù)數(shù)的理解.
問題4 你能比較
師生活動:通過分得出
和
這兩種情況的討論,比較
與0的大小,引導(dǎo)學(xué)生
與0的大小嗎?
在實數(shù)范圍內(nèi)有意義?
呢?
≥0的結(jié)論,強化學(xué)生對二次根式本身為非負(fù)數(shù)的理解,【設(shè)計意圖】通過這一活動的設(shè)計,提高學(xué)生對所學(xué)知識的遷移能力和應(yīng)用意識;培養(yǎng)學(xué)生分類討論和歸納概括的能力.4.綜合運用,鞏固提高
練習(xí)1 完成教科書第3頁的練習(xí).練習(xí)2 當(dāng)x 是什么實數(shù)時,下列各式有意義.(1);(2);(3);(4).【設(shè)計意圖】 辨析二次根式的概念,確定二次根式有意義的條件.【設(shè)計意圖】設(shè)計有一定綜合性的題目,考查學(xué)生的靈活運用的能力,開闊學(xué)生的視野,訓(xùn)練學(xué)生的思維.5.總結(jié)反思
教師和學(xué)生一起回顧本節(jié)課所學(xué)主要內(nèi)容,并請學(xué)生回答以下問題.(1)本節(jié)課你學(xué)到了哪一類新的式子?
(2)二次根式有意義的條件是什么?二次根式的值的范圍是什么?
(3)二次根式與算術(shù)平方根有什么關(guān)系?
師生活動:教師引導(dǎo),學(xué)生小結(jié).【設(shè)計意圖】:學(xué)生共同總結(jié),互相取長補短,再一次突出本節(jié)課的學(xué)習(xí)重點,掌握解題方法.6.布置作業(yè):
教科書習(xí)題16.1第1,3,5,7,10題.
五、目標(biāo)檢測設(shè)計
1.下列各式中,一定是二次根式的是()A.B.C.D.【設(shè)計意圖】考查對二次根式概念的了解,要特別注意被開方數(shù)為非負(fù)數(shù).
2.當(dāng) 時,二次根式
無意義.
【設(shè)計意圖】考查二次根式無意義的條件,即被開方數(shù)小于0,要注意審題. 3.當(dāng)
時,二次根式
有最小值,其最小值是
.
【設(shè)計意圖】本題主要考查二次根式被開方數(shù)是非負(fù)數(shù)的靈活運用.
4.對于,小紅根據(jù)被開方數(shù)是非負(fù)數(shù),得出的取值范圍是≥.小慧認(rèn)為還應(yīng)考慮分母不為0的情況.你認(rèn)為小慧的想法正確嗎?試求出的取值范圍.
【設(shè)計意圖】考查二次根式的被開方數(shù)為非負(fù)數(shù)和一個式子的分母不能為0,解題時需要綜合考慮.
第五篇:八年級數(shù)學(xué)下冊:第18章二次根式復(fù)習(xí)教案(滬科版)
億庫教育網(wǎng) http://004km.cn
第18章 二次根式復(fù)習(xí)課
教學(xué)目標(biāo)
1.使學(xué)生進一步理解二次根式的意義及基本性質(zhì),并能熟練地化簡含二次根式的式子; 2.熟練地進行二次根式的加、減、乘、除混合運算. 教學(xué)重點和難點
重點:含二次根式的式子的混合運算.
難點:綜合運用二次根式的性質(zhì)及運算法則化簡和計算含二次根式的式子. 教學(xué)過程設(shè)計
一、復(fù)習(xí)
1.請同學(xué)回憶二次根式有哪些基本性質(zhì)?用式子表示出來,并說明各式成立的條件.
指出:二次根式的這些基本性質(zhì)都是在一定條件下才成立的,主要應(yīng)用于化簡二次根式.
2.二次根式的乘法及除法的法則是什么?用式子表示出來.
指出:二次根式的乘、除法則也是在一定條件下成立的.把兩個二次根式相除,計算結(jié)果要把分母有理化.
3.在二次根式的化簡或計算中,還常用到以下兩個二次根式的關(guān)系式:
4.在含有二次根式的式子的化簡及求值等問題中,常運用三個可逆的式子:
億庫教育網(wǎng)
http://004km.cn 億庫教育網(wǎng) http://004km.cn
二、例題
例1 x取什么值時,下列各式在實數(shù)范圍內(nèi)有意義:
分析:
(1)題是兩個二次根式的和,x的取值必須使兩個二次根式都有意義;
(3)題是兩個二次根式的和,x的取值必須使兩個二次根式都有意義;
(4)題的分子是二次根式,分母是含x的單項式,因此x的取值必須使二次根式有意義,同時使分母的值不等于零.
億庫教育網(wǎng)
http://004km.cn 億庫教育網(wǎng) http://004km.cn
x≥-2且x≠0.
解因為n-9≥0,9-n≥0,且n-3≠0,所以n=9且n≠3,所以
222
例3
分析:第一個二次根式的被開方數(shù)的分子與分母都可以分解因式.把它們分別分解因式后,再利用二次根式的基本性質(zhì)把式子化簡,化簡中應(yīng)注意利用題中的隱含條件3-a≥0和1-a>0.
解 因為1-a>0,3-a≥0,所以 a<1,|a-2|=2-a.
(a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)≥0.
億庫教育網(wǎng)
http://004km.cn 億庫教育網(wǎng) http://004km.cn
這些性質(zhì)化簡含二次根式的式子時,要注意上述條件,并要闡述清楚是怎樣滿足這些條件的.
問:上面的代數(shù)式中的兩個二次根式的被開方數(shù)的式子如何化為完全平方式?
億庫教育網(wǎng)
http://004km.cn 億庫教育網(wǎng) http://004km.cn
分析:先把第二個式子化簡,再把兩個式子進行通分,然后進行計算.
解
注意:
億庫教育網(wǎng)
http://004km.cn
億庫教育網(wǎng) http://004km.cn
所以在化簡過程中,例6
分析:如果把兩個式子通分,或把每一個式子的分母有理化再進行計算,這兩種方法的運算量都較大,根據(jù)式子的結(jié)構(gòu)特點,分別把兩個式子的分母看作一個整體,用換元法把式子變形,就可以使運算變?yōu)楹喗荩?/p>
a+b=2(n+2),ab=(n+2)-(n-4)=4(n+2),三、課堂練習(xí)
1.選擇題:
A.a(chǎn)≤2 B.a(chǎn)≥2
C.a(chǎn)≠2 D.a(chǎn)<2
A.x+2 B.-x-2
C.-x+2 D.x-2
A.2x
B.2a
C.-2x
D.-2a
億庫教育網(wǎng)
http://004km.cn 億庫教育網(wǎng) http://004km.cn
2.填空題:
4.計算:
億庫教育網(wǎng)
http://004km.cn 億庫教育網(wǎng) http://004km.cn
四、小結(jié)
1.本節(jié)課復(fù)習(xí)的五個基本問題是“二次根式”這一章的主要基礎(chǔ)知識,同學(xué)們要深刻理解并牢固掌握.
2.在一次根式的化簡、計算及求值的過程中,應(yīng)注意利用題中的使二次根式有意義的條件(或題中的隱含條件),即被開方數(shù)為非負(fù)數(shù),以確定被開方數(shù)中的字母或式子的取值范圍.
3.運用二次根式的四個基本性質(zhì)進行二次根式的運算時,一定要注意論述每一個性質(zhì)中字母的取值范圍的條件.
4.通過例題的討論,要學(xué)會綜合、靈活運用二次根式的意義、基本性質(zhì)和法則以及有關(guān)多項式的因式分解,解答有關(guān)含二次根式的式子的化簡、計算及求值等問題.
五、作業(yè)
1.x是什么值時,下列各式在實數(shù)范圍內(nèi)有意義?
2.把下列各式化成最簡二次根式:
億庫教育網(wǎng)
http://004km.cn