欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      數(shù)學(xué)教學(xué)中如何培養(yǎng)學(xué)生的思維能力(大全五篇)

      時(shí)間:2019-05-15 03:41:07下載本文作者:會員上傳
      簡介:寫寫幫文庫小編為你整理了多篇相關(guān)的《數(shù)學(xué)教學(xué)中如何培養(yǎng)學(xué)生的思維能力》,但愿對你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫還可以找到更多《數(shù)學(xué)教學(xué)中如何培養(yǎng)學(xué)生的思維能力》。

      第一篇:數(shù)學(xué)教學(xué)中如何培養(yǎng)學(xué)生的思維能力

      數(shù)學(xué)教學(xué)中如何培養(yǎng)學(xué)生的思維能力

      練習(xí)是數(shù)學(xué)教學(xué)重要的組成部分,恰到好處的習(xí)題,不僅能鞏固知識,形成技能,而且能啟發(fā)思維,培養(yǎng)能力。在教學(xué)過程中,除注意增加變式題、綜合題外,適當(dāng)設(shè)計(jì)一些開放型習(xí)題,可以培養(yǎng)學(xué)生思維的深刻性和靈活性,克服學(xué)生思維的呆板性。

      一、運(yùn)用不定型開放題,培養(yǎng)學(xué)生思維的深刻性

      不定型開放題,所給條件包含著答案不唯一的因素,在解題的過程中,必須利用已有的知識,結(jié)合有關(guān)條件,從不同的角度對問題作全面分析,正確判斷,得出結(jié)論,從而培養(yǎng)學(xué)生思維的深刻性。

      如,學(xué)習(xí)分?jǐn)?shù)時(shí),學(xué)生對“分率”和“用分?jǐn)?shù)表示的具體數(shù)量”往往混淆不清,以致解題時(shí)在該知識點(diǎn)上出現(xiàn)錯(cuò)誤,教師雖反復(fù)指出它們的區(qū)別,卻難以收到理想的效果。在學(xué)習(xí)分?jǐn)?shù)應(yīng)用題后,讓學(xué)生做這樣一道習(xí)題:“有兩根同樣長的繩子,第一根截去9/10,第二根截去9/10米,哪一根繩子剩下的部分長?”此題出示后,有的學(xué)生說:“一樣長?!庇械膶W(xué)生說:“不一定?!蔽易寣W(xué)生討論哪種說法對,為什么?學(xué)生紛紛發(fā)表意見,經(jīng)過討論,統(tǒng)一認(rèn)識:“因?yàn)閮筛K子的長度沒有確定,第一根截去的長度就無法確定,所以哪一根繩子剩下的部分長也就無法確定,必須知道繩子原來的長度,才能確定哪根繩子剩下的部分長?!边@時(shí)再讓學(xué)生討論:兩根繩子剩下部分的長度有幾種情況?經(jīng)過充分的討論,最后得出如下結(jié)論:當(dāng)繩子的長度是1米時(shí),第一根的9/10等于9/10米,所以兩根繩子剩下的部分一樣長;當(dāng)繩子的長度大于1米時(shí),第一根繩子的9/10大于9/10米,所以第二根繩子剩下的長;當(dāng)繩子的長度小于1米時(shí),第一根繩子的9/10小于9/10米,由于繩子的長度小于9/10米時(shí),就無法從第二根繩子上截去9/10米,所以當(dāng)繩子的長度小于1米而大于9/10米時(shí),第一根繩子剩下的部分長。

      這樣的練習(xí),加深了學(xué)生對“分率”和“用分?jǐn)?shù)表示的具體數(shù)量”的區(qū)別的認(rèn)識,鞏固了分?jǐn)?shù)應(yīng)用題的解題方法,培養(yǎng)了學(xué)生思維的深刻性,提高了全面分析、解決問題的能力。

      二、運(yùn)用多向型開放題,培養(yǎng)學(xué)生思維的廣闊性

      多向型開放題,對同一個(gè)問題可以有多種思考方向,使學(xué)生產(chǎn)生縱橫聯(lián)想,啟發(fā)學(xué)生一題多解、一題多變、一題多思,訓(xùn)練學(xué)生的發(fā)散思維,培養(yǎng)學(xué)生思維的廣闊性和靈活性。

      如:甲乙兩隊(duì)合修一條長1500米的公路,20天完成,完工時(shí)甲隊(duì)比乙隊(duì)多修100米,乙隊(duì)每天修35米,甲隊(duì)每天修多少米?

      這道題從不同的角度思考,得出了不同的解法:

      (1)先求出乙隊(duì)20天修的,根據(jù)全長和乙隊(duì)20天修的可以求出甲隊(duì)20天修的,然后求甲隊(duì)每天修的。

      算式是(1500-35×20)÷20

      (2)先求出乙隊(duì)20天修的,根據(jù)乙隊(duì)20天修的和甲隊(duì)比乙隊(duì)多修100米可以求出甲隊(duì)20天修的,然后求甲隊(duì)每天修的。

      算式是:(35×20+100)÷20

      (3)可以先求出兩隊(duì)平均每天共修多少米,再求甲隊(duì)每天修多少米。

      算式是:1500÷20-35

      (4)可以先求出甲隊(duì)每天比乙隊(duì)多修多少米,再求甲隊(duì)每天修多少米。

      算式是:100÷20+35

      (5)假設(shè)乙隊(duì)和甲隊(duì)修的同樣多,那么兩隊(duì)20天共修(1500+100)米,然后求兩隊(duì)每天修的,再求甲隊(duì)每天修的。

      算式是:(1500+100)÷20÷2

      ......然后引導(dǎo)學(xué)生比較哪種方法最簡便,哪種思路最簡捷。

      這類題,可以給學(xué)生最大的思維空間,使學(xué)生從不同的角度分析問題,探究數(shù)量間的相互關(guān)系,并能從不同的解法中找出最簡捷的方法,提高學(xué)生初步的邏輯思維能力,從而培養(yǎng)學(xué)生思維的廣闊性和靈活性。

      三、運(yùn)用多余型開放題,培養(yǎng)學(xué)生思維品質(zhì)的批判性

      多余型開放題,將題目中的有用條件和無用條件混在一起,產(chǎn)生干擾因素,這就需要在解題時(shí),認(rèn)真分析條件與問題的關(guān)系,充分利用有用條件,舍棄無用條件,學(xué)會排除干擾因素,提高學(xué)生的鑒別能力,從而培養(yǎng)學(xué)生思維的批判性。

      如:一根繩子長25米,第一次用去8米,第二次用去12米,這根繩子比原來短了多少米?

      由于受封閉式解題習(xí)慣的影響,學(xué)生往往會產(chǎn)生一種凡是題中出現(xiàn)的條件都要用上的思維定勢,不對題目進(jìn)行認(rèn)真分析,錯(cuò)誤地列式為:25-8-12或25-(8+12)。

      做題時(shí)引導(dǎo)學(xué)生畫圖分析,使學(xué)生明白:要求這根繩子比原來短了多少米,實(shí)際上就是求兩次一共用去多少米,這里25米是與解決問題無關(guān)的條件,正確的列式是:8+12。

      通過引導(dǎo)分析這類題,可以防止學(xué)生濫用題中的條件,有利于培養(yǎng)學(xué)生思維的批判性,提高學(xué)生明辨是非、去偽存真的鑒別能力。

      四、運(yùn)用隱藏型開放題,培養(yǎng)學(xué)生思維的縝密性

      隱藏型開放題,是解題所需的某些條件隱藏在題目的背后,如不注意容易遺漏。在解題時(shí)既要考慮問題及明確的條件,又要考慮與問題有關(guān)的隱藏著的條件。這樣有利于培養(yǎng)學(xué)生認(rèn)真細(xì)致的審題習(xí)慣和思維的縝密性。

      如:做一個(gè)長8分米、寬5分米的面袋,至少需要白布多少平方米?

      解答此題時(shí),學(xué)生往往忽視了面袋有“兩層”這個(gè)隱藏的條件,錯(cuò)誤地列式為:8×5,正確列式應(yīng)為:8×5×2。

      解此類題時(shí)要引導(dǎo)學(xué)生認(rèn)真分析題意,找出題中的隱藏條件,使學(xué)生養(yǎng)成認(rèn)真審題的良好習(xí)慣,培養(yǎng)學(xué)生思維的縝密性。

      解答開放型習(xí)題,由于沒有現(xiàn)成的解題模式,解題時(shí)往往需要從多個(gè)不同角度進(jìn)行思考和深索,且有些問題的答案是不確定的,因而能激發(fā)學(xué)生豐富的想象力和強(qiáng)烈的好奇心,提高學(xué)生的學(xué)習(xí)興趣,調(diào)動學(xué)生主動參與的積極性。

      第二篇:數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生創(chuàng)造思維能力

      悅考網(wǎng)004km.cn

      數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生創(chuàng)造思維能力

      21世紀(jì)將是一個(gè)知識創(chuàng)新的世紀(jì),新世紀(jì)正在召喚大批高素質(zhì)創(chuàng)造型人才。人的創(chuàng)造力包括創(chuàng)造思維能力和創(chuàng)造個(gè)性兩個(gè)方面,而創(chuàng)造思維是創(chuàng)造力的核心。所謂創(chuàng)造思維就是與眾不同的思考。數(shù)學(xué)教學(xué)中所研究的創(chuàng)造思維,一般是指對思維主體來說是新穎獨(dú)到的一種思維活動。它包括發(fā)現(xiàn)新事物,提示新規(guī)律,創(chuàng)造新方法,解決新問題等思維過程。盡管這種思維結(jié)果通常并不是首次發(fā)現(xiàn)或前所未有的,但一定是思維主體自身的首次發(fā)現(xiàn)或超越常規(guī)的思考。它具有獨(dú)特性、求異性、批判性等思維特征,思考問題的突破常規(guī)和新穎獨(dú)特是創(chuàng)造思維的具體表現(xiàn)。這種思維能力是正常人經(jīng)過培養(yǎng)可以具備的。那么如何培養(yǎng)學(xué)生的創(chuàng)造思維能力呢?

      一、指導(dǎo)觀察

      觀察是信息輸入的通道,是思維探索的大門。敏銳的觀察力是創(chuàng)造思維的起步器。可以說,沒有觀察就沒有發(fā)現(xiàn),更不能有創(chuàng)造。兒童的觀察能力是在學(xué)習(xí)過程中實(shí)現(xiàn)的,在課堂中,怎樣培養(yǎng)學(xué)生的觀察力呢?

      首先,在觀察之前,要給學(xué)生提出明確而又具體的目的、任務(wù)和要求。其次,要在觀察中及時(shí)指導(dǎo)。比如要指導(dǎo)學(xué)生根據(jù)觀察的對象有順序地進(jìn)行觀察,要指導(dǎo)學(xué)生選擇適當(dāng)?shù)挠^察方法,要指導(dǎo)學(xué)生及時(shí)地對觀察的結(jié)果進(jìn)行分析總結(jié)等。第三,要科學(xué)地運(yùn)用直觀教具及現(xiàn)代教學(xué)技術(shù),以支持學(xué)生對研究的問題做仔細(xì)、深入的觀察。第四,要努力培養(yǎng)學(xué)生濃厚的觀察興趣。例如教學(xué)圓的認(rèn)識時(shí),我把一根細(xì)線的兩端各系一個(gè)小球,然后甩動其中一個(gè)小球,使它旋轉(zhuǎn)成一個(gè)圓。引導(dǎo)學(xué)生觀察小球被甩動時(shí),一端固定不動,另一端旋轉(zhuǎn)一周形成圓的過程。提問:“你發(fā)現(xiàn)了什么?”學(xué)生們紛紛發(fā)言:“小球旋轉(zhuǎn)形成了一個(gè)圓”小球始終繞著中心旋轉(zhuǎn)而不跑到別的地方去?!拔疫€看見好像有無數(shù)條線”??¨從這些學(xué)生樸素的語言中,其實(shí)蘊(yùn)含著豐富的內(nèi)涵,滲透了圓的定義:到定點(diǎn)的距離相等的點(diǎn)的軌跡??吹健盁o數(shù)條線”則為理解圓的半徑有無數(shù)條提供了感性材料。

      二、引導(dǎo)想象

      想象是思維探索的翅膀。愛因斯坦說:“想象比知識更重要,因?yàn)橹R是有限的,而想象可以包羅整個(gè)宇宙。”在教學(xué)中,引導(dǎo)學(xué)生進(jìn)行數(shù)學(xué)想象,往往能縮短解決問題的時(shí)間,獲得數(shù)學(xué)發(fā)現(xiàn)的機(jī)會,鍛煉數(shù)學(xué)思維。

      想象不同于胡思亂想。數(shù)學(xué)想象一般有以下幾個(gè)基本要素。第一,因?yàn)橄胂笸且环N知識飛躍性的聯(lián)結(jié),因此要有扎實(shí)的基礎(chǔ)知識和豐富的經(jīng)驗(yàn)的支持。第二,是要有能迅速擺脫表象干擾的敏銳的洞察力和豐富的想象力。第三,要有執(zhí)著追求的情感。因此,培養(yǎng)學(xué)生的想象力,首先要使學(xué)生學(xué)好有關(guān)的基礎(chǔ)知識。其次,新知識的產(chǎn)生除去推理外,常常包含前人的想象因素,因此在教學(xué)中應(yīng)根據(jù)教材潛在的因素,創(chuàng)設(shè)想象情境,提供想象材料,誘發(fā)學(xué)生的創(chuàng)造性想象。例悅考網(wǎng)004km.cn 悅考網(wǎng)004km.cn

      如,在復(fù)習(xí)三角形、平行四邊形、梯形面積時(shí),要求學(xué)生想象如何把梯形的上底變得與下底同樣長,這時(shí)變成什么圖形?與梯形面積有什么關(guān)系?如果把梯形上底縮短為0,這時(shí)又變成了什么圖形?與梯形面積有什么關(guān)系?問題一提出學(xué)生想象的閘門打開了:三角形可以看作上底為0的梯形,平行四邊形可以看作是上底和下底相等的梯形。這樣拓寬了學(xué)生思維的空間,培養(yǎng)了學(xué)生想象思維的能力。

      三、鼓勵(lì)求異

      求異思維是創(chuàng)造思維發(fā)展的基礎(chǔ)。它具有流暢性、變通性和創(chuàng)造性的特征。求異思維是指從不同角度,不同方向,去想別人沒想不到,去找別人沒有找到的方法和竅門。要求異必須富有聯(lián)想,好于假設(shè)、懷疑、幻想,追求盡可能新,盡可能獨(dú)特,即與眾不同的思路。課堂教學(xué)要鼓勵(lì)學(xué)生去大膽嘗試,勇于求異,激發(fā)學(xué)生創(chuàng)新欲望。例如:教學(xué)“分?jǐn)?shù)應(yīng)用題”時(shí),有這么一道習(xí)題:“修路隊(duì)修一條3600米的公路,前4天修了全長的1/6,照這樣的速度,修完余下的工轉(zhuǎn)程還要多少天?”就要引導(dǎo)學(xué)生從不同角度去思考,用不同方法去解答。用上具體量,解1;3600÷(3600×1/6÷4)-4;解2:(3600-3600×1/6)÷(3600×1/6÷4);解3:4×[(3600-3600×1/6)]÷(3600×1/6÷4)。思維較好的同學(xué)將本題與工程問題聯(lián)系起來,拋開3600米這個(gè)具體量,將全程看作單位“1”,解4:1÷(1/6÷4)-4;解5:(1-1/6)÷(1/6÷4);解6:4×(1÷1/6-1);此時(shí)學(xué)生思維處于高度活躍狀態(tài),又有同學(xué)想出解7:4÷1/6-4;解8:4×(1÷1/6)-4;解9:4×(6-1)。學(xué)生在求異思維中不斷獲得解決問題的簡捷方法,有利于各層次的同學(xué)參與,有利于創(chuàng)造思維能力的發(fā)展。

      四、誘發(fā)靈感

      靈感是一種直覺思維。它大體是指由于長期實(shí)踐,不斷積累經(jīng)驗(yàn)和知識而突然產(chǎn)生的富有創(chuàng)造性的思路。它是認(rèn)識上質(zhì)的飛躍。靈感的發(fā)生往往伴隨著突破和創(chuàng)新。

      在教學(xué)中,教師應(yīng)及時(shí)捕捉和誘發(fā)學(xué)生學(xué)習(xí)中出現(xiàn)的靈感,對于學(xué)生別出心裁的想法,違反常規(guī)的解答,標(biāo)新立異的構(gòu)思,哪怕只有一點(diǎn)點(diǎn)的新意,都應(yīng)及時(shí)給予肯定。同時(shí),還應(yīng)當(dāng)運(yùn)用數(shù)形結(jié)合、變換角度、類比形式等方法去誘導(dǎo)學(xué)生的數(shù)學(xué)直覺和靈感,促使學(xué)生能直接越過邏輯推理而尋找到解決問題的突破口。

      例如,有這樣的一道題:把3/

      7、6/

      13、4/

      9、12/25用“>”號排列起來。對于這道題,學(xué)生通常都是采用先通分再比較的方法,但由于公分母太大,解答非常麻煩。為此,我在教學(xué)中,安排學(xué)生回頭觀察后桌同學(xué)抄的題目(7/

      3、13/

      6、9/

      4、25/12),然后再想一想可以怎樣比較這些數(shù)的大小,倒過來的數(shù)字誘發(fā)了學(xué)生瞬間的靈感,使很多學(xué)生尋找到把這些分?jǐn)?shù)化成同分子分?jǐn)?shù)再比較大小的簡捷方法。

      悅考網(wǎng)004km.cn 悅考網(wǎng)004km.cn

      總之,人貴在創(chuàng)造,創(chuàng)造思維是創(chuàng)造力的核心。培養(yǎng)有創(chuàng)新意識和創(chuàng)造才能的人才是中華民族振興的需要,讓我們共同從課堂做起。

      與初三同學(xué)談如何學(xué)好數(shù)學(xué)

      經(jīng)過二年多的初中學(xué)習(xí),同學(xué)們隨著年齡的增長,知識的不斷豐富,學(xué)習(xí)自覺性的不斷增強(qiáng),理解力和思維能力的不斷提高,教材也隨之加深拓廣,老師的教學(xué)也由扶著同學(xué)們走路到逐漸放開手讓同學(xué)們自己走路,這是在中學(xué)階段深化學(xué)習(xí)的必由之路。

      二年多來,大部分同學(xué)的學(xué)習(xí)都取得了一定的進(jìn)步,有的同學(xué)很快就適應(yīng)了初中數(shù)學(xué)課程的學(xué)習(xí),通過自己的努力,進(jìn)步很大;但也有的同學(xué)一下子不能適應(yīng)初三階段緊張的學(xué)習(xí)和生活,自信心下降,與其他同學(xué)拉大了差距。隨著學(xué)習(xí)的進(jìn)一步深入,這種差距在順其自然的情況下還會不斷加大。

      為了同學(xué)們的前途和末來,我覺得同學(xué)們在學(xué)習(xí)中不能順其自然,而應(yīng)力求改變現(xiàn)狀,變被動學(xué)習(xí)為主動學(xué)習(xí),盡快把學(xué)習(xí)成績趕上去。根據(jù)我多年的教學(xué)經(jīng)驗(yàn),我認(rèn)為同學(xué)們掌握正確的數(shù)學(xué)思想和方法是至關(guān)重要的,是事半功倍的關(guān)鍵所在。

      通過二年多的學(xué)習(xí),想必同學(xué)們都有這樣的親身體會,在學(xué)初中的有關(guān)基礎(chǔ)知識內(nèi)容時(shí),只要認(rèn)真聽老師講解,都能聽得懂,所以要掌握一般的基礎(chǔ)知識并不難。練習(xí)中一步到位的與新知識有關(guān)的簡單題也并不難做,難的是較復(fù)雜一點(diǎn)的、與以前學(xué)過但自己又沒有掌握好的知識聯(lián)系在一起的綜合題。所謂“數(shù)學(xué)學(xué)習(xí),一步跟不上,則步步跟不上”,就是指這一類的題目。但這并不是說,因?yàn)檫@樣,就不要去學(xué)新知識,就學(xué)不好新知識。完全不是這么回事。即使你以前的知識都沒學(xué)好,仍然能依據(jù)新學(xué)的這些知識去解決有關(guān)的簡單問題。并且從中可以增強(qiáng)自己的自信心:我這節(jié)課認(rèn)真學(xué)了,聽懂了,會用學(xué)到的新知識去解決一些問題了。之所以碰到難一點(diǎn)的題我不會做,那是因?yàn)槲乙郧暗闹R沒學(xué)好,在某一個(gè)地方卡住了,做不下去了,只要我把以前的知識好好補(bǔ)一補(bǔ),像現(xiàn)在這樣把知識一點(diǎn)一滴地學(xué)到手,我就不信學(xué)習(xí)成績趕不上去。

      事實(shí)是,前幾屆有好些個(gè)同學(xué)原本數(shù)學(xué)成績很差,到初三了才著急起來,認(rèn)真地持之以恒地補(bǔ)習(xí)舊知識,學(xué)習(xí)新知識,最后在中考時(shí)取得了較理想的成績。有的從平時(shí)考十幾、二十幾分到中考考出七、八十分,有的從五、六十分到中考考出一百多分。當(dāng)然,除這些同學(xué)自身的努力外,還與中考題大部分題目比較容易也有一定的關(guān)系(雖然中考是選拔性考試,但也要考慮到初中畢竟還是屬于九年義務(wù)教育階段,中考面臨的是全體同學(xué)們,必然要照顧到絕大多數(shù)同學(xué)的實(shí)際情況;中考成績也是體現(xiàn)九年義務(wù)教育階段素質(zhì)教育成果的一個(gè)重要方面,因此中考題里面始終都會有大量基礎(chǔ)題。)但再容易的題目也要你能掌握有關(guān)知識的最基礎(chǔ)的東西才行呀!如果你自暴自棄,每一節(jié)課都不認(rèn)真學(xué),連最簡單的題也不會做,我看你到中考時(shí)也只有望題興嘆,后悔莫及。有不少同學(xué)中考后都有這樣的感嘆:早知中考數(shù)學(xué)題這么容易,我平時(shí)學(xué)習(xí)只要稍微認(rèn)真一點(diǎn),平時(shí)測驗(yàn)悅考網(wǎng)004km.cn 悅考網(wǎng)004km.cn

      能真正拿個(gè)五、六十分(不是摻假的),中考拿個(gè)一百多分絕對沒問題。(中考數(shù)學(xué)滿分為150分)

      我介紹這些情況,目的只有一個(gè),就是勸那些怕數(shù)學(xué)的同學(xué)不要放棄數(shù)學(xué),數(shù)學(xué)的基礎(chǔ)知識并不難學(xué),相信每一位同學(xué)都能學(xué)好。應(yīng)樹立起自信心,相信自己,相信自己通過努力一定能與其他同學(xué)縮小差距!

      也許有的同學(xué)要問,那么怎樣努力呢?您能不能介紹一點(diǎn)行之有效且并不難學(xué)的好方法???當(dāng)然有,下面我就來談?wù)勅绾尾僮鞑拍苷嬲龑W(xué)好數(shù)學(xué)。

      一、該記的記,該背的背,不要以為理解了就行

      有的同學(xué)認(rèn)為,數(shù)學(xué)不像英語、社政,要背單詞、背年代、背人名、地名,數(shù)學(xué)靠的是智慧、技巧和推理。我說你只講對了一半。數(shù)學(xué)同樣也離不開記憶。試想一下,小學(xué)的加、減、乘、除運(yùn)算要不是背熟了“乘法九九表”,你能順利地進(jìn)行運(yùn)算嗎?盡管你理解了乘法是相同加數(shù)的和的運(yùn)算,但你在做9×9時(shí)用九個(gè)9去相加得出81就太不合算了。而用“九九八十一”得出就方便多了。同樣,是運(yùn)用大家熟記的法則做出來的。同時(shí),數(shù)學(xué)中還有大量的規(guī)定需要記憶,比如在化簡二次根式時(shí)規(guī)定:“如果沒有特別說明,本章根號內(nèi)的字母都是正數(shù)?!钡鹊?。因此,我覺得數(shù)學(xué)更像游戲,它有許多游戲規(guī)則(即數(shù)學(xué)中的定義、法則、公式、定理等),誰記住了這些游戲規(guī)則,誰就能順利地做游戲;誰違反了這些游戲規(guī)則,誰就被判錯(cuò),罰下。因此,數(shù)學(xué)的定義、法則、公式、定理等一定要記熟,有些最好能背誦,朗朗上口。比如大家熟悉的“乘法公式、求根公式”“特殊角三角函數(shù)值”等,我看我們的同學(xué)有的背得出,有的就背不出。在這里,我向背不出的同學(xué)敲一敲警鐘,如果背不出這些公式,將會對今后的學(xué)習(xí)造成很大的麻煩,因?yàn)榻窈蟮膶W(xué)習(xí)將會大量地用到這些公式和數(shù)據(jù)。

      對數(shù)學(xué)的定義、法則、公式、定理等,理解了的要記住,暫時(shí)不理解的也要記住,在記憶的基礎(chǔ)上、在應(yīng)用它們解決問題時(shí)再加深理解。打一個(gè)比方,數(shù)學(xué)的定義、法則、公式、定理就像木匠手中的斧頭、鋸子、墨斗、刨子等,沒有這些工具,木匠是打造不出家具的;有了這些工具,再加上嫻熟的手藝和智慧,就可以打出各式各樣精美的家具。同樣,記不住數(shù)學(xué)的定義、法則、公式、定理就很難解數(shù)學(xué)題。而記住了這些再配以一定的方法、技巧和敏捷的思維,就能在解數(shù)學(xué)題,甚至是解數(shù)學(xué)難題中得心應(yīng)手,左右逢源。

      二、了解幾個(gè)重要的數(shù)學(xué)思想

      1、“方程”的思想

      數(shù)學(xué)是研究事物的空間形式和數(shù)量關(guān)系的,初中最重要的數(shù)量關(guān)系是等量關(guān)系,其次是不等量關(guān)系。最常見的等量關(guān)系就是“方程”。比如等速運(yùn)動中,路程、速度和時(shí)間三者之間就有一種等量關(guān)系,可以建立一個(gè)相關(guān)等式:速度×?xí)r悅考網(wǎng)004km.cn 悅考網(wǎng)004km.cn

      間=路程,在這樣的等式中,一般會有已知量,也有未知量,像這樣含有未知量的等式就是“方程”,而通過方程里的已知量求出未知量的過程就是解方程。我們在小學(xué)就已經(jīng)接觸過簡易方程,而初一則比較系統(tǒng)地學(xué)習(xí)解一元一次方程,并總結(jié)出解一元一次方程的五個(gè)步驟。如果學(xué)會并掌握了這五個(gè)步驟,任何一個(gè)一元一次方程都能順利地解出來。初二和初三我們學(xué)習(xí)了解一元二次方程、二元二次方程組、簡單的三角方程;到了高中我們還將學(xué)習(xí)指數(shù)方程、對數(shù)方程、線性方程組、參數(shù)方程、極坐標(biāo)方程等。解這些方程的思維幾乎一致,都是通過一定的方法將它們轉(zhuǎn)化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解一元一次方程的五個(gè)步驟或者解一元二次方程的求根公式加以解決。物理中的能量守恒,化學(xué)中的化學(xué)平衡式,現(xiàn)實(shí)中的大量實(shí)際應(yīng)用,都需要建立方程,通過解方程來求出結(jié)果。因此,同學(xué)們一定要將解一元一次方程和解一元二次方程學(xué)好,進(jìn)而為學(xué)好其它形式的方程打好基礎(chǔ)。

      所謂的“方程”思想就是對于數(shù)學(xué)問題,特別是現(xiàn)實(shí)當(dāng)中碰到的未知量和已知量的錯(cuò)綜復(fù)雜的關(guān)系,善于用“方程”的觀點(diǎn)去構(gòu)建有關(guān)的方程,進(jìn)而用解方程的方法去解決它。

      2、“數(shù)形結(jié)合”的思想

      大千世界,“數(shù)”與“形”無處不在。任何事物,剝?nèi)ニ馁|(zhì)的方面,只剩下形狀和大小這兩個(gè)屬性,就交給數(shù)學(xué)去研究了。初中數(shù)學(xué)的兩個(gè)分支——代數(shù)和幾何,代數(shù)是研究“數(shù)”的,幾何是研究“形”的。但是,研究代數(shù)要借助“形”,研究幾何要借助“數(shù)”,“數(shù)形結(jié)合”是一種趨勢,越學(xué)下去,“數(shù)”與“形”越密不可分,到了高中,就出現(xiàn)了專門用代數(shù)方法去研究幾何問題的一門課,叫做“解析幾何”。在初三,建立平面直角坐標(biāo)系后,研究函數(shù)的問題就離不開圖象了。往往借助圖象能使問題明朗化,比較容易找到問題的關(guān)鍵所在,從而解決問題。在今后的數(shù)學(xué)學(xué)習(xí)中,要重視“數(shù)形結(jié)合”的思維訓(xùn)練,任何一道題,只要與“形”沾得上一點(diǎn)邊,就應(yīng)該根據(jù)題意畫出草圖來分析一番,這樣做,不但直觀,而且全面,整體性強(qiáng),容易找出切入點(diǎn),對解題大有益處。嘗到甜頭的人慢慢會養(yǎng)成一種“數(shù)形結(jié)合”的好習(xí)慣。

      3、“對應(yīng)”的思想

      “對應(yīng)”的思想由來已久,比如我們將一支鉛筆、一本書、一棟房子對應(yīng)一個(gè)抽象的數(shù)“1”,將兩只眼睛、一對耳環(huán)、雙胞胎對應(yīng)一個(gè)抽象的數(shù)“2”;隨著學(xué)習(xí)的深入,我們還將“對應(yīng)”擴(kuò)展到對應(yīng)一種形式,對應(yīng)一種關(guān)系,等等。比如我們在化簡求值計(jì)算中,將式子中有關(guān)字母或某個(gè)整體的值,對應(yīng)代入,直接算出原式的結(jié)果。又比如我們到初三綜合學(xué)習(xí)了與圓有關(guān)的角,圓心角、圓周角、弦切角的數(shù)量關(guān)系必須“對應(yīng)”同一段弧才能成立。這就是運(yùn)用“對應(yīng)”的思想和方法來解題。初

      二、初三我們還看到數(shù)軸上的點(diǎn)與實(shí)數(shù)之間的一一對應(yīng),悅考網(wǎng)004km.cn 悅考網(wǎng)004km.cn

      直角坐標(biāo)平面上的點(diǎn)與一對有序?qū)崝?shù)之間的一一對應(yīng),函數(shù)與其圖象之間的對應(yīng)??傊皩?yīng)”的思想在今后的學(xué)習(xí)中將會發(fā)揮越來越大的作用。

      4、“轉(zhuǎn)化”的思想

      解數(shù)學(xué)題最根本的途徑是“化難為易,化繁為簡,化未知為已知”,也就是把復(fù)雜繁難的數(shù)學(xué)問題通過一定的數(shù)學(xué)思維、方法和手段,逐漸將它轉(zhuǎn)變成一個(gè)大家熟知的簡單的數(shù)學(xué)形式,然后通過大家所熟悉的數(shù)學(xué)運(yùn)算把它解決。

      比如,我們學(xué)校要擴(kuò)大校園,需要向某村征地。而某村給了一塊形狀不規(guī)則的地,如何丈量它的面積呢?首先,使用適當(dāng)?shù)臏y量工具,依據(jù)一定的比例,將實(shí)際地形繪制成紙上圖形,然后將紙上圖形分割成若干塊梯形、長方形、三角形,利用學(xué)過的面積計(jì)算方法,計(jì)算出這些圖形的面積之和,也就得到了這塊不規(guī)則地形的總面積。在這里,我們把無法計(jì)算的不規(guī)則圖形轉(zhuǎn)化成了可以計(jì)算的規(guī)則圖形,從而解決了土地丈量問題。另外,我們前面提到的各種多元方程、高次方程,利用“消元”、“降次”等方法,最終都可以把它們轉(zhuǎn)化成一元一次方程或一元二次方程,然后用已知的步驟或公式把它們解決。

      “轉(zhuǎn)化和替代”的思想,是解題的最重要的思維習(xí)慣。面對難題,面對沒有見過的題,首先就要想到“轉(zhuǎn)化”,也總是能夠“轉(zhuǎn)化”的。平時(shí),要多留心老師是怎樣解題的,是怎樣“化難為易、化繁為簡、化未知為已知”的。同學(xué)之間也應(yīng)多交流交流“成功轉(zhuǎn)化”的體會,深入理解“轉(zhuǎn)化”的真正含義,切實(shí)掌握“轉(zhuǎn)化”的思維和技巧。

      三、自學(xué)能力的培養(yǎng)是深化學(xué)習(xí)的必由之路

      在學(xué)習(xí)新概念、新運(yùn)算時(shí),老師們總是通過已有知識自然而然過渡到新知識,水到渠成,亦即所謂“溫故而知新”。因此說,數(shù)學(xué)是一門能自學(xué)的學(xué)科,自學(xué)成才最典型的例子就是數(shù)學(xué)家華羅庚。

      我們在課堂上聽老師講解,不光是學(xué)習(xí)新知識,更重要的是潛移默化老師的那種數(shù)學(xué)思維習(xí)慣,逐漸地培養(yǎng)起自己對數(shù)學(xué)的一種悟性。去年年底我去浙江教育學(xué)院開會時(shí),杭二中吳副校長的一番話使我感觸良多。他說:我是教物理的,可是經(jīng)常外出,同學(xué)們物理學(xué)得好,不是我教出來的,而是他們自己悟出來的。當(dāng)然,吳副校長是謙虛的,但他說明了一個(gè)道理,同學(xué)們不能被動地學(xué)習(xí),而應(yīng)主動地學(xué)習(xí)。一個(gè)班里幾十個(gè)學(xué)生,同一個(gè)老師教,差異那么大,這就是學(xué)習(xí)主動性問題了。

      自學(xué)能力越強(qiáng),悟性就越高。隨著年齡的增長,同學(xué)們的依賴性應(yīng)不斷減弱,而自學(xué)能力則應(yīng)不斷增強(qiáng)。因此,要養(yǎng)成預(yù)習(xí)的習(xí)慣。在老師講新課前,要能夠運(yùn)用自己所學(xué)過的已掌握的舊知識去預(yù)習(xí)新課,結(jié)合新課中的新規(guī)定去分析、理解新的學(xué)習(xí)內(nèi)容。由于數(shù)學(xué)知識的無矛盾性,你所學(xué)過的數(shù)學(xué)知識永遠(yuǎn)都是有用悅考網(wǎng)004km.cn 悅考網(wǎng)004km.cn 的,都是正確的,數(shù)學(xué)的進(jìn)一步學(xué)習(xí)只是加深拓廣而已。因此,以前的數(shù)學(xué)學(xué)得扎實(shí),就為以后的進(jìn)取奠定了基礎(chǔ),就不難自學(xué)新課。同時(shí),在預(yù)習(xí)新課時(shí),碰到什么自己解決不了的問題,帶著問題去聽老師講解新課,收獲之大是不言而喻的。有些同學(xué)為什么聽老師講新課時(shí)總有一種似懂非懂的感覺,或者是“一聽就懂、一做就錯(cuò)”,就是因?yàn)闆]有預(yù)習(xí),沒有帶著問題學(xué),沒有將“要我學(xué)”真正變?yōu)椤拔乙獙W(xué)”,力求把知識變?yōu)樽约旱摹W(xué)來學(xué)去,知識還是別人的。檢驗(yàn)數(shù)學(xué)學(xué)得好不好的標(biāo)準(zhǔn)就是會不會解題。聽懂并記憶有關(guān)的定義、法則、公式、定理,只是學(xué)好數(shù)學(xué)的必要條件,能獨(dú)立解題、解對題才是學(xué)好數(shù)學(xué)的標(biāo)志。

      四、自信才能自強(qiáng)

      在以往的歷次考試中,總會看見有些同學(xué)的試卷出現(xiàn)許多空白,即有好幾題根本沒有動手去做。當(dāng)然,俗話說,藝高膽大,藝不高就膽不大。但是,做不出是一回事,沒有去做則是另一回事。稍為難一點(diǎn)的數(shù)學(xué)題都不是一眼就能看出它的解法和結(jié)果的。要去分析、探索、比比畫畫、寫寫算算,經(jīng)過迂回曲折的推理或演算,才顯露出條件和結(jié)論之間的某種聯(lián)系,整個(gè)思路才會明朗清晰起來。你都沒有動手去做,又怎么知道自己不會做呢?即使是老師,拿到一道難題,也不能立即答復(fù)你。也同樣要先分析、研究,找到正確的思路后才向你講授。不敢去做稍為復(fù)雜一點(diǎn)的題(不一定是難題,有些題只不過是敘述多一點(diǎn)),是缺乏自信心的表現(xiàn)。在數(shù)學(xué)解題中,自信心是相當(dāng)重要的。要相信自己,只要不超出自己的知識范疇,不管哪道題,總是能夠用自己所學(xué)過的知識把它解出來。要敢于去做題,要善于去做題。這就叫做“在戰(zhàn)略上藐視敵人,在戰(zhàn)術(shù)上重視敵人”。

      具體解題時(shí),一定要認(rèn)真審題,緊緊抓住題目的所有條件不放,不要忽略了任何一個(gè)條件,包括隱含條件。然后,從“所求”看“需知”,由“已知”看“可知”,構(gòu)筑“可知”和“需知”之間的橋梁,形成從“已知”到“所求”的通道,使問題得以順利解決。其實(shí),一道題和一類題之間有一定的共性,可以想想這一類題的一般思路和一般解法,但更重要的是抓住這一道題的特殊性,抓住這一道題與這一類題不同的地方。數(shù)學(xué)的題目幾乎沒有相同的,總有一個(gè)或幾個(gè)條件不盡相同,因此思路和解題過程也不盡相同。有些同學(xué)老師講過的題會做,其它的題就不會做,只會依樣畫葫蘆,題目有些小小變化就干瞪眼,無從下手。當(dāng)然,做題先從哪兒下手是一件棘手的事,不一定找得準(zhǔn)。但是,做題一定要抓住其特殊性則絕對沒錯(cuò)。選擇一個(gè)或幾個(gè)條件作為解題的突破口,看由這個(gè)條件能得出什么,得出的越多越好,然后從中選擇與其它條件有關(guān)的、或與結(jié)論有關(guān)的、或與題目中的隱含條件有關(guān)的,進(jìn)行推理或演算。一般難題都有多種解法,所謂“條條大路通羅馬”。要相信利用這道題的條件,加上自己學(xué)過的那些知識,一定能推出正確的結(jié)論。

      數(shù)學(xué)題目是無限的,但數(shù)學(xué)的思想和方法卻是有限的。我們只要學(xué)好了有關(guān)的基礎(chǔ)知識,掌握了必要的數(shù)學(xué)思想和方法,以不變應(yīng)萬變,就能順利地對付那無限的題目。題目并不是做得越多越好,題海無邊,總也做不完,但不做也不行,關(guān)鍵是一個(gè)“度”。在一定的限度內(nèi),我還是鼓勵(lì)同學(xué)們要“多做多練,因?yàn)槭鞇偪季W(wǎng)004km.cn 悅考網(wǎng)004km.cn

      能生巧;多看多想,才能見多識廣?!边@樣,通過強(qiáng)化的訓(xùn)練,培養(yǎng)自己良好的數(shù)學(xué)思維習(xí)慣,掌握正確的數(shù)學(xué)解題方法。那么到了中考的時(shí)候,由于題目類型見得多,所以能“觸類旁通,熟能生巧”,加快了速度,節(jié)省了時(shí)間,這一點(diǎn)在考試時(shí)間有限的中考時(shí)顯得特別重要。

      解數(shù)學(xué)題目需要豐富的知識,更需要自信心。沒有自信就會畏難,就會放棄;只有自信,才能勇往直前,才不會輕言放棄,才會加倍努力地學(xué)習(xí),才有希望攻克一道道難關(guān),到達(dá)成功的彼岸,創(chuàng)造屬于自己的輝煌的明天!

      資料來自:悅考網(wǎng)004km.cn 悅考網(wǎng)004km.cn

      第三篇:在教學(xué)中培養(yǎng)學(xué)生數(shù)學(xué)思維能力體會

      在教學(xué)中培養(yǎng)學(xué)生數(shù)學(xué)思維能力體會

      實(shí)驗(yàn)小學(xué) 張桂芳

      “順應(yīng)天性”的核心,是順應(yīng)人類的成長規(guī)律,在不同的發(fā)展階段用相應(yīng)的方法培養(yǎng)學(xué)生。數(shù)學(xué)課堂教學(xué)的實(shí)施是數(shù)學(xué)思維活動的展開過程,教師在教學(xué)中不應(yīng)以“傳授”思維過程和結(jié)論為主,而應(yīng)講究思維方法的探索、思維品質(zhì)的培養(yǎng)。下面,我結(jié)合自己的教學(xué)實(shí)踐,談?wù)勗谛W(xué)數(shù)學(xué)教學(xué)中如何培養(yǎng)學(xué)生的思維能力。

      一、以“境”提“思”,讓學(xué)生自主探索

      教學(xué)情景是一種特殊的教學(xué)環(huán)境,是教師為了發(fā)展學(xué)生的心理機(jī)能,通過調(diào)動“情商”來增強(qiáng)教學(xué)效果,而有目的創(chuàng)設(shè)的教學(xué)環(huán)境。構(gòu)建主義學(xué)習(xí)理論認(rèn)為:學(xué)習(xí)是學(xué)生主動的構(gòu)建活動,學(xué)習(xí)應(yīng)與一定的情景相聯(lián)系。在實(shí)際情景下進(jìn)行學(xué)習(xí),可以使學(xué)生利用原有的知識和經(jīng)驗(yàn)同化當(dāng)前要學(xué)習(xí)的新知識。這樣獲取的知識,不但便于保存,而且容易遷移到新的問題情景中去。因此,在教學(xué)中,如果讓知識出現(xiàn)在貼近學(xué)生實(shí)際又逼進(jìn)數(shù)學(xué)本質(zhì),而且更具一定思考性的情景中,更能激發(fā)學(xué)生“學(xué)”的興趣和積極性,使學(xué)生發(fā)現(xiàn)生活中處處有數(shù)學(xué),對數(shù)學(xué)產(chǎn)生親切感,讓學(xué)生積極、主動去探索。

      例如:教學(xué)“體積和體積單位”一課時(shí),某教師這樣導(dǎo)入。師:聽過烏鴉喝水的故事嗎? 生:聽過。

      師:烏鴉為什么會喝到水呢?能通過實(shí)驗(yàn)說明嗎?(學(xué)生動手實(shí)驗(yàn),把石子放入瓶中)師:你發(fā)現(xiàn)了什么? 生:水面升高了。師:是瓶中的水增加了嗎?

      生:不是,是石子占了水的位置,把水?dāng)D上去了。

      師:說得非常好!如果烏鴉口渴得厲害,想盡快喝到水,你有辦法嗎?

      生:放大的石子。師:為什么要放大的石子?

      生:大石子占的位置大,水上升得快。

      這里教師巧妙地利用《烏鴉喝水》的故事,引導(dǎo)學(xué)生在故事情景中動手操作,初步體會物體占有空間。在課堂教學(xué)中,教師要能把握學(xué)生認(rèn)識、探究事物的心理傾向,創(chuàng)設(shè)與學(xué)生年齡特征相和諧的教學(xué)情景,使學(xué)生對要探究的知識產(chǎn)生積極的心理傾向,激發(fā)學(xué)生自主探索。

      二、以“舊”帶“新”,讓學(xué)生自主建構(gòu)

      學(xué)生的數(shù)學(xué)學(xué)習(xí)過程是一個(gè)以學(xué)生已有的知識和經(jīng)驗(yàn)為基礎(chǔ)的主動建構(gòu)過程,只有學(xué)生主動參與到學(xué)習(xí)活動中,才是有效的教學(xué)。建構(gòu)主義認(rèn)為,所謂學(xué)習(xí)的過程不是一個(gè)由教師向?qū)W生單向輸出、傳遞知識的過程,更不是一個(gè)學(xué)生機(jī)械、被動地接受信息的過程,而是一個(gè)學(xué)生積極主動地構(gòu)建這些知識的意義和自我發(fā)展的過程。很顯然,這個(gè)知識構(gòu)建的過程是不可能由別人來完成的,它必須借助于自己已有的知識經(jīng)驗(yàn)與新的知識經(jīng)驗(yàn)之間發(fā)生交互作用來完成。

      例如“除數(shù)是小數(shù)的除法”的教學(xué)不僅要讓學(xué)生知道計(jì)算法則,關(guān)鍵要讓學(xué)生明白為什么這樣計(jì)算?本節(jié)課的知識點(diǎn)源于:“商不變的規(guī)律和除數(shù)是整數(shù)除法的計(jì)算方法”,這些知識學(xué)生都已掌握。教學(xué)時(shí)教師就應(yīng)把研究新知識的權(quán)利交給學(xué)生,可以先讓學(xué)生根據(jù)商不變的性質(zhì),在()里填上適當(dāng)?shù)臄?shù) 0.12÷0.3=()÷3、3.72÷2.4=()÷24、1.36÷0.16=()÷16、0.672÷0.28=()÷28 然后引導(dǎo)學(xué)生觀察等號兩邊的算式,右邊的算式會算,左邊的還不會,對照左右兩邊你會作出怎樣的思考與推斷?從而得出除數(shù)是小數(shù)的除法可以轉(zhuǎn)化成除數(shù)是整數(shù)的除法。通過這樣的教學(xué),學(xué)生不僅僅掌握了本節(jié)課的知識,也使學(xué)生經(jīng)歷了獲取知識的過程,掌握獲取知識的方法,感受和體驗(yàn)學(xué)習(xí)成功的快樂。因此,數(shù)學(xué)教學(xué)不僅僅是

      課上40分鐘的教學(xué),要激活學(xué)生進(jìn)行有效的自主學(xué)習(xí)就要把課堂做大,把學(xué)生的課前、課后帶動起來。

      三、以“變”代“搬”,讓學(xué)生發(fā)散思維

      發(fā)散思維是創(chuàng)造思維的重要組成部分。它不受一定的解題模式的束縛,從問題個(gè)性中探求共性,尋求變異,沿著不同方向,不同角度去猜想、延伸、開拓。在數(shù)學(xué)教學(xué)中,一般可采用一題多解的訓(xùn)練,培養(yǎng)和鍛煉思維的發(fā)散性。

      例如,李軍家與學(xué)校之間的距離是1020米,李軍3分鐘走255米,照這樣計(jì)算,李軍到學(xué)校還需幾分鐘?啟發(fā)學(xué)生用不同的思考方法探解。

      解法1:求李軍到學(xué)校還需幾分鐘,就是求余下的路程所需的時(shí)間?!皬?分鐘行255米”,可求出李軍速度為(255÷3),而余下的路程是(1020-255),然后根據(jù)“路程÷速度=時(shí)間”得出:(1020-255)÷(255÷3)=9(分)。

      解法2:求李軍到學(xué)校還需幾分鐘,也可先求李軍走完全程的時(shí)間,然后減去已行路程的時(shí)間,即得到余下路程的時(shí)間1020÷(255÷3)-3=9(分)。

      解法3:用倍比法解,將已行的路程255米看作“1”倍數(shù),全程1020米是已行的255米的4 倍,行255米用3分鐘,那么行完全程1020米就得用12分鐘,然后減去已行的時(shí)間,即得出:3×(1020÷255)-3=9(分)。

      通過上述的練習(xí),引導(dǎo)學(xué)生從多種角度,不同方向思考問題,這不僅能提高學(xué)生靈活運(yùn)用知識的能力和解題技巧,而且可以發(fā)揮學(xué)生的獨(dú)特見解,增強(qiáng)思維發(fā)散性的輻射力。此外,一題多變、一空多填等訓(xùn)練,同樣也能培養(yǎng)和鍛煉學(xué)生發(fā)散性思維品質(zhì)。

      總之,培養(yǎng)學(xué)生思維能力的方法是多種多樣的,教師應(yīng)根據(jù)學(xué)生的具體情況,善于挖掘?qū)W生的潛能,采取有效的教學(xué)方法。在教學(xué)時(shí),把培養(yǎng)學(xué)生的思維能力貫穿于教學(xué)的全過程,這樣就能優(yōu)化學(xué)生的思維品質(zhì),發(fā)展學(xué)生的學(xué)習(xí)能力。

      第四篇:數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生創(chuàng)造思維能力

      21世紀(jì)將是一個(gè)知識創(chuàng)新的世紀(jì),新世紀(jì)正在召喚大批高素質(zhì)創(chuàng)造型人才。人的創(chuàng)造力包括創(chuàng)造思維能力和創(chuàng)造個(gè)性兩個(gè)方面,而創(chuàng)造思維是創(chuàng)造力的核心。所謂創(chuàng)造思維就是與眾不同的思考。數(shù)學(xué)教學(xué)中所研究的創(chuàng)造思維,一般是指對思維主體來說是新穎獨(dú)到的一種思維活動。它包括發(fā)現(xiàn)新事物,提示新規(guī)律,創(chuàng)造新方法,解決新問題等思維過程。盡管這種思維結(jié)果通常并不是首次發(fā)現(xiàn)或前所未有的,但一定是思維主體自身的首次發(fā)現(xiàn)或超越常規(guī)的思考。它具有獨(dú)特性、求異性、批判性等思維特征,思考問題的突破常規(guī)和新穎獨(dú)特是創(chuàng)造思維的具體表現(xiàn)。這種思維能力是正常人經(jīng)過培養(yǎng)可以具備的。那么如何培養(yǎng)學(xué)生的創(chuàng)造思維能力呢?

      一、指導(dǎo)觀察

      觀察是信息輸入的通道,是思維探索的大門。敏銳的觀察力是創(chuàng)造思維的起步器??梢哉f,沒有觀察就沒有發(fā)現(xiàn),更不能有創(chuàng)造。兒童的觀察能力是在學(xué)習(xí)過程中實(shí)現(xiàn)的,在課堂中,怎樣培養(yǎng)學(xué)生的觀察力呢?

      首先,在觀察之前,要給學(xué)生提出明確而又具體的目的、任務(wù)和要求。其次,要在觀察中及時(shí)指導(dǎo)。比如要指導(dǎo)學(xué)生根據(jù)觀察的對象有順序地進(jìn)行觀察,要指導(dǎo)學(xué)生選擇適當(dāng)?shù)挠^察方法,要指導(dǎo)學(xué)生及時(shí)地對觀察的結(jié)果進(jìn)行分析總結(jié)等。第三,要科學(xué)地運(yùn)用直觀教具及現(xiàn)代教學(xué)技術(shù),以支持學(xué)生對研究的問題做仔細(xì)、深入的觀察。第四,要努力培養(yǎng)學(xué)生濃厚的觀察興趣。例如教學(xué)圓的認(rèn)識時(shí),我把一根細(xì)線的兩端各系一個(gè)小球,然后 甩動其中一個(gè)小球,使它旋轉(zhuǎn)成一個(gè)圓。引導(dǎo)學(xué)生觀察小球被甩動時(shí),一端固定不動,另一端旋轉(zhuǎn)一周形成圓的過程。提問:“你發(fā)現(xiàn)了什么?”學(xué)生們紛紛發(fā)言:“小球旋轉(zhuǎn)形成了一個(gè)圓”小球始終繞著中心旋轉(zhuǎn)而不跑到別的地方去。“我還看見好像有無數(shù)條線”……¨從這些學(xué)生樸素的語言中,其實(shí)蘊(yùn)含著豐富的內(nèi)涵,滲透了圓的定義:到定點(diǎn)的距離相等的點(diǎn)的軌跡??吹健盁o數(shù)條線”則為理解圓的半徑有無數(shù)條提供了感性材料。

      二、引導(dǎo)想象

      想象是思維探索的翅膀。愛因斯坦說:“想象比知識更重要,因?yàn)橹R是有限的,而想象可以包羅整個(gè)宇宙?!痹诮虒W(xué)中,引導(dǎo)學(xué)生進(jìn)行數(shù)學(xué)想象,往往能縮短解決問題的時(shí)間,獲得數(shù)學(xué)發(fā)現(xiàn)的機(jī)會,鍛煉數(shù)學(xué)思維。

      想象不同于胡思亂想。數(shù)學(xué)想象一般有以下幾個(gè)基本要素。第一,因?yàn)橄胂笸且环N知識飛躍性的聯(lián)結(jié),因此要有扎實(shí)的基礎(chǔ)知識和豐富的經(jīng)驗(yàn)的支持。第二,是要有能迅速擺脫表象干擾的敏銳的洞察力和豐富的想象力。第三,要有執(zhí)著追求的情感。因此,培養(yǎng)學(xué)生的想象力,首先要使學(xué)生學(xué)好有關(guān)的基礎(chǔ)知識。其次,新知識的產(chǎn)生除去推理外,常常包含前人的想象因素,因此在教學(xué)中應(yīng)根據(jù)教材潛在的因素,創(chuàng)設(shè)想象情境,提供想象材料,誘發(fā)學(xué)生的創(chuàng)造性想象。例如,在復(fù)習(xí)三角形、平行四邊形、梯形面積時(shí),要求學(xué)生想象如何把梯形的上底變得與下底同樣長,這時(shí)變成什么圖形?與梯形面積有什么關(guān)系?如果把梯形上底縮短為0,這時(shí)又變成了什么圖形?與梯形面積有什么關(guān)系?問題一提出學(xué)生想象的閘門打開了:三角形可以看作上底為0的梯形,平行四邊形可以看作是上底和下底相等的梯形。這樣拓寬了學(xué)生思維的空間,培養(yǎng)了學(xué)生想象思維的能力。

      三、鼓勵(lì)求異

      求異思維是創(chuàng)造思維發(fā)展的基礎(chǔ)。它具有流暢性、變通性和創(chuàng)造性的特征。求異思維是指從不同角度,不同方向,去想別人沒想不到,去找別人沒有找到的方法和竅門。要求異必須富有聯(lián)想,好于假設(shè)、懷疑、幻想,追求盡可能新,盡可能獨(dú)特,即與眾不同的思路。課堂教學(xué)要鼓勵(lì)學(xué)生去大膽嘗試,勇于求異,激發(fā)學(xué)生創(chuàng)新欲望。例如:教學(xué)“分?jǐn)?shù)應(yīng)用題”時(shí),有這么一道習(xí)題:“修路隊(duì)修一條3600米的公路,前4天修了全長的1/6,照這樣的速度,修完余下的工

      程還要多少天?”就要引導(dǎo)學(xué)生從不同角度去思考,用不同方法去解答。用上具體量,解1;3600÷(3600×1/6÷4)-4;解2:(3600-3600×1/6)÷(3600×1/6÷4);解3:4×[(3600-3600×1/6)] ÷(3600×1/6÷4)。思維較好的同學(xué)將本題與工程問題聯(lián)系起來,拋開3600米這個(gè)具體量,將全程看作單位“1”,解4:1÷(1/6÷4)-4;解5:(1-1/6)÷(1/6÷4);解6:4×(1÷1/6-1);此時(shí)學(xué)生思維處于高度活躍狀態(tài),又有同學(xué)想出 解7:4÷1/6-4;解8:4×(1÷1/6)-4;解9:4×(6-1)。學(xué)生在求異思維中不斷獲得解決問題的簡捷方法,有利于各層次的同學(xué)參與,有利于創(chuàng)造思維能力的發(fā)展。

      四、誘發(fā)靈感

      靈感是一種直覺思維。它大體是指由于長期實(shí)踐,不斷積累經(jīng)驗(yàn)和知識而突然產(chǎn)生的富有創(chuàng)造性的思路。它是認(rèn)識上質(zhì)的飛躍。靈感的發(fā)生往往伴隨著突破和創(chuàng)新。

      在教學(xué)中,教師應(yīng)及時(shí)捕捉和誘發(fā)學(xué)生學(xué)習(xí)中出現(xiàn)的靈感,對于學(xué)生別出心裁的想法,違反常規(guī)的解答,標(biāo)新立異的構(gòu)思,哪怕只有一點(diǎn)點(diǎn)的新意,都應(yīng)及時(shí)給予肯定。同時(shí),還應(yīng)當(dāng)運(yùn)用數(shù)形結(jié)合、變換角度、類比形式等方法去誘導(dǎo)學(xué)生的數(shù)學(xué)直覺和靈感,促使學(xué)生能直接越過邏輯推理而尋找到解決問題的突破口。

      例如,有這樣的一道題:把3/

      7、6/

      13、4/

      9、12/25用“>”號排列起來。對于這道題,學(xué)生通常都是采用先通分再比較的方法,但由于公分母太大,解答非常麻煩。為此,我在教學(xué)中,安排學(xué)生回頭觀察后桌同學(xué)抄的題目(7/

      3、13/

      6、9/

      4、25/12),然后再想一想可以怎樣比較這些數(shù)的大小,倒過來的數(shù)字誘發(fā)了學(xué)生瞬間的靈感,使很多學(xué)生尋找到把這些分?jǐn)?shù)化成同分子分?jǐn)?shù)再比較大小的簡捷方法。

      總之,人貴在創(chuàng)造,創(chuàng)造思維是創(chuàng)造力的核心。培養(yǎng)有創(chuàng)新意識和創(chuàng)造才能的人才是中華民族振興的需要,讓我們共同從課堂做起。

      第五篇:高中數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生的數(shù)學(xué)思維能力

      高中數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生的數(shù)學(xué)思維能力

      摘 要:數(shù)學(xué)思維能力是學(xué)習(xí)數(shù)學(xué)的很重要的前提,如果不培養(yǎng)好,學(xué)習(xí)數(shù)學(xué)就是很難很吃力的。本文從四個(gè)方面談思維能力的培養(yǎng)。

      關(guān)鍵詞:數(shù)學(xué)推理;數(shù)學(xué)概括;數(shù)學(xué)判斷;數(shù)學(xué)探索

      一、問題提出

      中學(xué)數(shù)學(xué)教學(xué),一方面要傳授數(shù)學(xué)知識,使學(xué)生具備數(shù)學(xué)基礎(chǔ)知識的素養(yǎng);另一方面,要通過數(shù)學(xué)知識的傳授,培養(yǎng)學(xué)生能力,發(fā)展智力,這是數(shù)學(xué)教學(xué)中一個(gè)非常重要的方面,應(yīng)引起高度重視,在諸多能力中,我認(rèn)為思維能力是核心。

      數(shù)學(xué)教學(xué)就是指數(shù)學(xué)思維活動的教學(xué),數(shù)學(xué)教學(xué)實(shí)質(zhì)上就是學(xué)生在教師指導(dǎo)下,通過數(shù)學(xué)思維活動,學(xué)習(xí)數(shù)學(xué)家思維活動的成果,并發(fā)展數(shù)學(xué)思維,使學(xué)生的數(shù)學(xué)思維結(jié)構(gòu)向數(shù)學(xué)家的思維結(jié)構(gòu)轉(zhuǎn)化的過程。

      對數(shù)學(xué)思維的研究,是數(shù)學(xué)教學(xué)研究的核心,數(shù)學(xué)思維的發(fā)展規(guī)律,對數(shù)學(xué)教學(xué)的實(shí)踐活動具有根本性的指導(dǎo)意義,因此,在數(shù)學(xué)教學(xué)中如何發(fā)展學(xué)生的數(shù)學(xué)思維,培養(yǎng)學(xué)生的數(shù)學(xué)思維能力是一個(gè)廣泛而值得探討的課題。

      二、注重?cái)?shù)學(xué)教學(xué)中培養(yǎng)學(xué)生能力

      1、抽象概括能力

      數(shù)學(xué)抽象概括能力是數(shù)學(xué)思維能力,也是數(shù)學(xué)能力的核心。它具體表現(xiàn)為對概括的獨(dú)特的熱情,發(fā)現(xiàn)在普遍現(xiàn)象中存在著差異的能力,在各類現(xiàn)象間建立聯(lián)系的能力,分離出問題的核心和實(shí)質(zhì)的能力,由特殊到一般的能力,從非本質(zhì)的細(xì)節(jié)中使自己擺脫出來的能力,把本質(zhì)的與非本質(zhì)的東西區(qū)分開來的能力,善于把具體問題抽象為數(shù)學(xué)模型的能力等方面。

      在數(shù)學(xué)抽象概括能力方面,不同數(shù)學(xué)能力的學(xué)生有不同的差異。具有數(shù)學(xué)能力的學(xué)生在收集數(shù)學(xué)材料所提供的信息時(shí),明顯表現(xiàn)出使數(shù)學(xué)材料形式化,能迅速地完成抽象概括的任務(wù),同時(shí)具有概括的欲望,樂意地、積極主動地進(jìn)行概括工作。

      2、推理能力

      數(shù)學(xué)運(yùn)算、證明以及數(shù)學(xué)發(fā)現(xiàn)活動都離不開推理,數(shù)學(xué)的知識體系實(shí)質(zhì)上就是用邏輯推理的方法構(gòu)成的命題系統(tǒng),因此,推理與數(shù)學(xué)關(guān)系密切,教學(xué)中應(yīng)注重推理能力的培養(yǎng)。邏輯推理在數(shù)學(xué)中是普遍存在的,應(yīng)予以重視,除邏輯推理能力而外,更要注意直覺推理能力的培養(yǎng),因?yàn)橹庇X推理使數(shù)學(xué)思維具有靈活性、敏捷性和創(chuàng)造性。

      3、選擇判斷能力

      選擇、判斷能力是數(shù)學(xué)創(chuàng)造能力的重要組成部分。選擇、判斷不僅表現(xiàn)為對數(shù)學(xué)推理的基礎(chǔ)過程及結(jié)論正誤的判定,還表現(xiàn)為對數(shù)學(xué)命題、事實(shí)、數(shù)學(xué)解題思路、方法合理性的估計(jì)以及在這個(gè)估計(jì)的基礎(chǔ)上作出的選擇,判斷能力實(shí)際上是思維者對思維過程的自我反饋能力。

      4、數(shù)學(xué)探索能力

      數(shù)學(xué)探索能力是在抽象概括能力、推理能力、選擇判斷能力基礎(chǔ)上發(fā)展起來的制造性思維能力,探索的過程實(shí)質(zhì)上是一個(gè)不斷提出設(shè)想,驗(yàn)證設(shè)想,修正和發(fā)展設(shè)想的過程,在數(shù)萬艾可 http://huiruiyiyao.51sole.com

      學(xué)中,它表現(xiàn)在提出數(shù)學(xué)問題,探求數(shù)學(xué)結(jié)論,探索解題途徑,尋找解題規(guī)律等一系列有意義的發(fā)現(xiàn)活動之中,而數(shù)學(xué)探索能力就集中地表現(xiàn)為提出設(shè)想和進(jìn)行轉(zhuǎn)換的本領(lǐng)。

      數(shù)學(xué)探索能力是數(shù)學(xué)思維能力中最富有創(chuàng)造性的要素,也是最難培養(yǎng)和發(fā)展的要素。探索能力強(qiáng)的學(xué)生,能迅速地輕易地從一種心理運(yùn)算轉(zhuǎn)到另一種心理運(yùn)算,表現(xiàn)出較強(qiáng)的靈活性,在對思維活動的定向、調(diào)節(jié)和控制上,有較強(qiáng)的監(jiān)控能力,對思維過程有較強(qiáng)的自我意識,善于提出問題,敢于大膽猜想。

      教學(xué)中如何培養(yǎng)學(xué)生的探索能力呢?筆者認(rèn)為,激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生始終處于探索未知世界的主動地位;在具體的教學(xué)中要善于引導(dǎo)學(xué)生推敲關(guān)鍵性的詞句。鼓勵(lì)學(xué)生勇于探索,善于探索,發(fā)揚(yáng)創(chuàng)新精神,提出獨(dú)立見解,形成探索意識。

      三、結(jié)束語

      數(shù)學(xué)教學(xué)與思維密切相關(guān),數(shù)學(xué)能力具有和一般能力不同的特性,因此,發(fā)展數(shù)學(xué)思維能力是數(shù)學(xué)教學(xué)的重要任務(wù),我們在發(fā)展學(xué)生數(shù)學(xué)思維能力的努力中,不僅要考慮到能力的一般要求,而且還要深入研究數(shù)學(xué)科學(xué)、數(shù)學(xué)活動和數(shù)學(xué)思維的特點(diǎn),尋求數(shù)學(xué)活動的規(guī)律,培養(yǎng)學(xué)生的數(shù)學(xué)思維能力。

      萬艾可 http://huiruiyiyao.51sole.com

      下載數(shù)學(xué)教學(xué)中如何培養(yǎng)學(xué)生的思維能力(大全五篇)word格式文檔
      下載數(shù)學(xué)教學(xué)中如何培養(yǎng)學(xué)生的思維能力(大全五篇).doc
      將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
      點(diǎn)此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        小學(xué)數(shù)學(xué)教學(xué)論文小學(xué)數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生思維能力

        小學(xué)數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生思維能力 為適應(yīng)素質(zhì)教育要求,目前,我市正在實(shí)施課程改革。新課程、新理念、新思維時(shí)時(shí)刻刻沖擊著我們這些教育者的頭腦,沖擊著我們的教學(xué)課堂, 這為小學(xué)......

        在數(shù)學(xué)教學(xué)中如何培養(yǎng)學(xué)生的思維能力

        在數(shù)學(xué)教學(xué)中如何培養(yǎng)學(xué)生的思維能力 【摘要】思維品質(zhì)的優(yōu)良與否是國民素質(zhì)的重要決定因素。為了促進(jìn)學(xué)生思維能力的發(fā)展,我們必須高度關(guān)注學(xué)生在數(shù)學(xué)學(xué)習(xí)過程中的思維活動,......

        初中數(shù)學(xué)教學(xué)中如何培養(yǎng)學(xué)生的思維能力

        初中數(shù)學(xué)教學(xué)中如何培養(yǎng)學(xué)生的思維能力 學(xué)生思維的形成過程一般都是從形象思維發(fā)展到經(jīng)驗(yàn)型的邏輯思維和理論型的邏輯思維,思維的不斷發(fā)展與教師在教學(xué)中有意識的培養(yǎng)有很大......

        小學(xué)數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生的思維能力的案例

        小學(xué)數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生的思維能力的案例 課堂教學(xué)的進(jìn)程就其本質(zhì)來說是師生思維共同活動的過程,是培養(yǎng)學(xué)生思維能力的過程。數(shù)學(xué)教學(xué)的過程,應(yīng)是培養(yǎng)學(xué)生思維能力的過程。發(fā)......

        在小學(xué)數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生的思維能力

        在小學(xué)數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生的思維能力 培養(yǎng)學(xué)生的思維能力是現(xiàn)代學(xué)校教學(xué)的一項(xiàng)基本任務(wù)。我們要培養(yǎng)社會主義現(xiàn)代化建設(shè)所需要的人才,其基本條件之一就是要具有獨(dú)立思考的能......

        在數(shù)學(xué)教學(xué)中如何培養(yǎng)學(xué)生的思維能力

        在數(shù)學(xué)教學(xué)中如何培養(yǎng)學(xué)生的思維能力 《數(shù)學(xué)新課標(biāo)》對數(shù)學(xué)中滲透的數(shù)學(xué)思想、方法劃分為三個(gè)層次,即“了解”、“理解”和“會應(yīng)用”。在教學(xué)中,要求學(xué)生“了解”數(shù)學(xué)思想有:......

        小學(xué)數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生的思維能力的案例

        小學(xué)數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生的思維能力的案例 在小學(xué)數(shù)學(xué)教學(xué)中,根據(jù)兒童的認(rèn)知規(guī)律,不斷對學(xué)生進(jìn)行思維的培養(yǎng)和訓(xùn)練,使其從小形成創(chuàng)新意識,是我們教學(xué)的重要目的。數(shù)學(xué)教學(xué)的過程,......

        數(shù)學(xué)教學(xué)中創(chuàng)造性思維能力的培養(yǎng)

        數(shù)學(xué)教學(xué)中創(chuàng)造性思維能力的培養(yǎng)桐鄉(xiāng)市高級中學(xué)李玉林知識經(jīng)濟(jì)就是以知識為基礎(chǔ)的經(jīng)濟(jì)。知識經(jīng)濟(jì)是以智力資源為依托,以高科技產(chǎn)業(yè)為支柱,以信息技術(shù)為核心,以不斷創(chuàng)新為靈魂,以......