第一篇:二次根式的除法-教學(xué)教案
知識結(jié)構(gòu):
重點難點分析:
是商的二次根式的性質(zhì)及利用性質(zhì)進(jìn)行二次根式的化簡與運(yùn)算,利用分母有理化化簡.商的算術(shù)平方根的性質(zhì)是本節(jié)的主線,學(xué)生掌握性質(zhì)在二次根使得化簡和運(yùn)算的運(yùn)用是關(guān)鍵,從化簡與運(yùn)算由引出初中重要的內(nèi)容之一分母有理化,分母有理化的理解決定了最簡二次根式化簡的掌握.教學(xué)難點是二次根式的除法與商的算術(shù)平方根的關(guān)系及應(yīng)用.二次根式的除法與乘法既有聯(lián)系又有區(qū)別,強(qiáng)調(diào)根式除法結(jié)果的一般形式,避免分母上含有根號.由于分母有理化難度和復(fù)雜性大,要讓學(xué)生首先理解分母有理化的意義及計算結(jié)果形式.教法建議:
1.本節(jié)內(nèi)容是在有積的二次根式性質(zhì)的基礎(chǔ)后學(xué)習(xí),因此可以采取學(xué)生自主探索學(xué)習(xí)的模式,通過前一節(jié)的復(fù)習(xí),讓學(xué)生通過具體實例再結(jié)合積的性質(zhì),對比、歸納得到商的二次根式的性質(zhì).教師在此過程中給與適當(dāng)?shù)闹笇?dǎo),提出問題讓學(xué)生有一定的探索方向.2.本節(jié)內(nèi)容可以分為三課時,第一課時討論商的算術(shù)平方根的性質(zhì),并運(yùn)用這一性質(zhì)化簡較簡單的二次根式(被開方數(shù)的分母可以開得盡方的二次根式);第二課時討論二次根式的除法法則,并運(yùn)用這一法則進(jìn)行簡單的二次根式的除法運(yùn)算以及二次根式的乘除混合運(yùn)算,這一課時運(yùn)算結(jié)果不包括根號出現(xiàn)內(nèi)出現(xiàn)分式或分?jǐn)?shù)的情況;第三課時討論分母有理化的概念及方法,并進(jìn)行二次根式的乘除法運(yùn)算,把運(yùn)算結(jié)果分母有理化.這樣安排使內(nèi)容由淺入深,各部分相互聯(lián)系,因此及彼,層層展開.3.引導(dǎo)學(xué)生思考“想一想”中的內(nèi)容,培養(yǎng)學(xué)生思維的深刻性,教師組織學(xué)生思考、討論過程中,鼓勵中國學(xué)習(xí)聯(lián)盟膽猜想,積極探索,運(yùn)用類比、歸納和從特殊到一般的思考方法激發(fā)學(xué)生創(chuàng)造性的思維.教學(xué)設(shè)計示例
一、教學(xué)目標(biāo)
1.掌握商的算術(shù)平方根的性質(zhì),能利用性質(zhì)進(jìn)行二次根式的化簡與運(yùn)算;
2.會進(jìn)行簡單的二次根式的除法運(yùn)算;
3.使學(xué)生掌握分母有理化概念,并能利用分母有理化解決二次根式的化簡及近似計算問題;
4.培養(yǎng)學(xué)生利用二次根式的除法公式進(jìn)行化簡與計算的能力;
5.通過二次根式公式的引入過程,滲透從特殊到一般的歸納方法,提高學(xué)生的歸納總結(jié)能力;
6.通過分母有理化的教學(xué),滲透數(shù)學(xué)的簡潔性.二、教學(xué)重點和難點
1.重點:會利用商的算術(shù)平方根的性質(zhì)進(jìn)行二次根式的化簡,會進(jìn)行簡單的二次根式的除法運(yùn)算,還要使學(xué)生掌握二次根式的除法采用分母有理化的方法進(jìn)行.
2.難點:二次根式的除法與商的算術(shù)平方根的關(guān)系及應(yīng)用.
三、教學(xué)方法
從特殊到一般總結(jié)歸納的方法以及類比的方法,在學(xué)習(xí)了二次根式乘法的基礎(chǔ)上本小節(jié)
內(nèi)容可引導(dǎo)學(xué)生自學(xué),進(jìn)行總結(jié)對比.
四、教學(xué)手段
利用投影儀.
五、教學(xué)過程
(一)引入新課
學(xué)生回憶及得算數(shù)平方根和性質(zhì):(a≥0,b≥0)是用什么樣的方法引出的?(上述積的算術(shù)平方根的性質(zhì)是由具體例子引出的.)
學(xué)生觀察下面的例子,并計算:
由學(xué)生總結(jié)上面兩個式的關(guān)系得:
類似地,每個同學(xué)再舉一個例子,然后由這些特殊的例子,得出:
(二)新課
商的算術(shù)平方根.
一般地,有(a≥0,b>0)
商的算術(shù)平方根等于被除式的算術(shù)平方根除以除式的算術(shù)平方根.
讓學(xué)生討論這個式子成立的條件是什么?a≥0,b>0,對于為什么b>0,要使學(xué)生通過討論明確,因為b=0時分母為0,沒有意義.
引導(dǎo)學(xué)生從運(yùn)算順序看,等號左邊是將非負(fù)數(shù)a除以正數(shù)b求商,再開方求商的算術(shù)平方根,等號右邊是先分別求被除數(shù)、除數(shù)的算術(shù)平方根,然后再求兩個算術(shù)平方根的商,根據(jù)商的算術(shù)平方根的性質(zhì)可以進(jìn)行簡單的二次根式的化簡與運(yùn)算.
例1 化簡:
(1);
(2);
(3);
解∶(1)
(2)
(3)
說明:如果被開方數(shù)是帶分?jǐn)?shù),在運(yùn)算時,一般先化成假分?jǐn)?shù);本節(jié)根號下的字母均為正數(shù).例2 化簡:
(1);
(2);
解:(1)
(2)
讓學(xué)生觀察例題中分母的特點,然后提出,的問題怎樣解決?
再總結(jié):這一小節(jié)開始講的二次根式的化簡,只限于所得結(jié)果的式子中分母可以完全開的盡方的情況,的問題,我們將在今后的學(xué)習(xí)中解決.學(xué)生討論本節(jié)課所學(xué)內(nèi)容,并進(jìn)行小結(jié).
(三)小結(jié)
1.商的算術(shù)平方根的性質(zhì).(注意公式成立的條件)
2.會利用商的算術(shù)平方根的性質(zhì)進(jìn)行簡單的二次根式的化簡.
(四)練習(xí)
1.化簡:
(1);
(2);
(3).2.化簡:
(1);
(2);
(3)
六、作業(yè)
教材p.183習(xí)題11.3;a組1.
七、板書設(shè)計
第二篇:“二次根式的除法”教案
“二次根式的除法”教案
教學(xué)目的:
知識與技能:使學(xué)生掌握二次根式的除法;使學(xué)生會用商的算術(shù)平方根的性質(zhì)及二次根式的除法化簡二次根式;使學(xué)生掌握分母有理化知識,并能利用它進(jìn)行二次根式的化簡及近似計算。
過程與方法:通過在學(xué)習(xí)過程中與二次根式乘法的對比學(xué)會類比學(xué)習(xí)的方法.態(tài)度與情感:在對條件討論的過程中培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度。
教學(xué)重點:會利用二次根式的除法及商的算術(shù)平方根的性質(zhì)對一些式子進(jìn)行化簡;會進(jìn)行分母有理化。
教學(xué)難點:分母有兩項的二次根式分母有理化
教學(xué)過程
一、復(fù)習(xí)
1、商的算術(shù)平方根的性質(zhì):
aa=(a≥0,b>0)。bb2、計算:(1)10.09?1442424;(2);(3)1
0.81?2252525248(1)1;(2);(3)。
159
5二、新課
1、二次根式的除法:
引導(dǎo)學(xué)生把商的算術(shù)平方根的性質(zhì): 得到
aa=(a≥0,b>0)反過來,即bb 二次根式的除法。
ab?a(a≥0,b>0),運(yùn)用這個式子,可以進(jìn)行簡b單的二次根式的除法運(yùn)算。
2、例題 例1 計算:
(1)7211,(2)1?。
266解:略
設(shè)計這道例題是為了引入分母有理化:如果是計算3?2時,只寫成3,2意義不大,可以把分子與分母都乘以2,最后得出:算。
6,這樣完成了除法運(yùn)2所以二次根式除法運(yùn)算,通常還采用化去分母中根號的方法來進(jìn)行。把分母中的根號化去叫分母有理化。兩個含有二次根式的代數(shù)式相乘,如果它們的積不含二次根式,我們說這兩個代數(shù)式互為有理化因式,如上式中2是2的有理化因式。
例2 把下列各式分母有理化(課本P179例3): 練習(xí):把下列各式分母有理化:
(1)524;(2)
3m6m。
設(shè)計本例是為了說明解題時,要先化簡,再分母有理化。這樣可使運(yùn)算量減小.例3把下列各式分母有理化
12?3
解:12?3?1?(2?3)(2?3)(2?3)??2?3
設(shè)計這個例題的目的讓學(xué)生學(xué)會利用”平方差公式”對分母有兩項的二次根式進(jìn)行有理化的常用方法。
三、練習(xí):P179 練習(xí):
1、2。
四、小結(jié)
1、二次根式的除法分為二種情況:能除盡的直接用公式,不能除盡的用分母有理化。
2、進(jìn)行分母有理化前,要先化簡。
五、作業(yè)
1、P180習(xí)題A3、4;區(qū)同步指導(dǎo)練習(xí)練習(xí)2。
第三篇:二次根式除法教學(xué)設(shè)計
二次根式的除法
一、教學(xué)目標(biāo)
1.掌握商的算術(shù)平方根的性質(zhì),能利用性質(zhì)進(jìn)行二次根式的化簡與運(yùn)算;
2.會進(jìn)行簡單的二次根式的除法運(yùn)算;
3.使學(xué)生掌握分母有理化概念,并能利用分母有理化解決二次根式的化簡及近似計算問題;
4.培養(yǎng)學(xué)生利用二次根式的除法公式進(jìn)行化簡與計算的能力;
5.通過二次根式公式的引入過程,滲透從特殊到一般的歸納方法,提高學(xué)生的歸納總結(jié)能力;
6.通過分母有理化的教學(xué),滲透數(shù)學(xué)的簡潔性.二、教學(xué)重點和難點
1.重點:會利用商的算術(shù)平方根的性質(zhì)進(jìn)行二次根式的化簡,會進(jìn)行簡單的二次根式的除法運(yùn)算,還要使學(xué)生掌握二次根式的除法采用分母有理化的方法進(jìn)行.
2.難點:二次根式的除法與商的算術(shù)平方根的關(guān)系及應(yīng)用.
三、教學(xué)方法 從特殊到一般總結(jié)歸納的方法以及類比的方法,在學(xué)習(xí)了二次根式乘法的基礎(chǔ)上本小節(jié)
內(nèi)容可引導(dǎo)學(xué)生自學(xué),進(jìn)行總結(jié)對比.
四、教學(xué)手段
利用投影儀.
五、教學(xué)過程
(一)引入新課
學(xué)生回憶及得算數(shù)平方根和性質(zhì):(a≥0,b≥0)是用什么樣的方法引出的?(上述積的算術(shù)平方根的性質(zhì)是由具體例子引出的.)
學(xué)生觀察下面的例子,并計算: 由學(xué)生總結(jié)上面兩個式的關(guān)系得:
類似地,每個同學(xué)再舉一個例子,然后由這些特殊的例子,得出:
(二)新課
商的算術(shù)平方根.
一般地,有(a≥0,b>0)
商的算術(shù)平方 根等于被除式的算術(shù)平方根除以除式的算術(shù)平方根. 讓學(xué)生討論這個式子成立的條件是什么?a≥0,b>0,對于為什么b>0,要使學(xué)生通過討論明確,因為b=0時分母為0,沒有意義.
引導(dǎo)學(xué)生從運(yùn)算順序看,等號左邊是將非負(fù)數(shù)a除以正數(shù)b求商,再開方求商的算術(shù)平方根,等號右邊是先分別求被除數(shù)、除數(shù)的算術(shù)平方根,然后再求兩個算術(shù)平方根的商,根據(jù)商的算術(shù)平方根的性質(zhì)可以進(jìn)行簡單的二次根式的化簡與運(yùn)算.
例1 化簡:
說明:如果被開方數(shù)是帶分?jǐn)?shù),在運(yùn)算時,一般先化成假分?jǐn)?shù);本節(jié)根號下的字母均為正數(shù).例2 化簡:
讓學(xué)生觀察例題中分母的特點,然后提出,的問題怎樣解決?
再總結(jié):這一小節(jié)開始講的二次根式的化簡,只限于所得結(jié)果的式子中分母可以完全開的盡方的情況,的問題,我們將在今后的學(xué)習(xí)中解決.學(xué)生討論本節(jié)課所學(xué)內(nèi)容,并進(jìn)行小結(jié).
(三)小結(jié)
1.商的算術(shù)平方根的性質(zhì).(注意公式成立的條件)
2.會利用商的算術(shù)平方根的性質(zhì)進(jìn)行簡單的二次根式的化簡.
四、練習(xí)
五、小結(jié)
六、作業(yè) 教材P10習(xí)題16.2 第1、2、4題.
七、板書設(shè)計
第四篇:《二次根式的除法》教學(xué)反思
《二次根式的除法》教學(xué)反思
這個內(nèi)容分兩個課時來上,內(nèi)容較多,但能運(yùn)用講解 — 訓(xùn)練 — 講解 — 訓(xùn)練的教學(xué)方法,使學(xué)生能動手動腦相結(jié)合,在學(xué)習(xí)中比較能集中精神;練習(xí)中還運(yùn)用多種教學(xué)手段,如板演、小組比賽等形式,使很多學(xué)生開始對數(shù)學(xué)的學(xué)習(xí)產(chǎn)生濃厚的興趣。不足的是在講“分母有理化”時沒有提出“分母有理化”,且這方面的練習(xí)較少,學(xué)生也還很不熟練。
在設(shè)計課堂內(nèi)容教學(xué)時,以問題的方式提出本節(jié)課要解決的問題,讓學(xué)生自主探究,在探究過程中注意觀察知識產(chǎn)生發(fā)展的全過程,從而讓學(xué)生的學(xué)習(xí)情感和學(xué)習(xí)品質(zhì)得到升華,學(xué)生的創(chuàng)新精神得到發(fā)展。本課時設(shè)計充分反映了課堂教學(xué)的靈活性與探究性,基本達(dá)到了通過再創(chuàng)造培養(yǎng)學(xué)生創(chuàng)新精神和創(chuàng)造能力的教學(xué)目標(biāo)。
第五篇:二次根式的除法說課稿
二次根式的除法說課稿
一、教材分析
本節(jié)內(nèi)容是在積的二次根式性質(zhì)的基礎(chǔ)上學(xué)習(xí),因此可以采取學(xué)生自主探索學(xué)習(xí)的模式,通過前一節(jié)的復(fù)習(xí),讓學(xué)生通過具體實例再結(jié)合積的性質(zhì),對比、歸納得到商的二次根式的性質(zhì).二、重點難點分析:
本節(jié)課是商的二次根式的性質(zhì)及利用性質(zhì)進(jìn)行二次根式的化簡與運(yùn)算,利用分母有理化化簡.商的算術(shù)平方根的性質(zhì)是本節(jié)的主線,學(xué)生掌握性質(zhì)在二次根使得化簡和運(yùn)算的運(yùn)用是關(guān)鍵,從化簡與運(yùn)算由引出初中重要的內(nèi)容之一分母有理化,分母有理化的理解決定了最簡二次根式化簡的掌握.教學(xué)難點是二次根式的除法與商的算術(shù)平方根的關(guān)系及應(yīng)用.二次根式的除法與乘法既有聯(lián)系又有區(qū)別,強(qiáng)調(diào)根式除法結(jié)果的一般形式,避免分母上含有根號.由于分母有理化難度和復(fù)雜性大,要讓學(xué)生首先理解分母有理化的意義及計算結(jié)果形式.三、教法運(yùn)用:
1.本節(jié)內(nèi)容是在有積的二次根式性質(zhì)的基礎(chǔ)后學(xué)習(xí),因此可以采取學(xué)生自主探索學(xué)習(xí)的模式,通過前一節(jié)的復(fù)習(xí),讓學(xué)生通過具體實例再結(jié)合積的性質(zhì),對比、歸納得到商的二次根式的性質(zhì).教師在此過程中給與適當(dāng)?shù)闹笇?dǎo),提出問題讓學(xué)生有一定的探索方向.2.本節(jié)內(nèi)容可以分為兩階段,第一階段討論商的算術(shù)平方根的性質(zhì),并運(yùn)用這一性質(zhì)化簡較簡單的二次根式(被開方數(shù)的分母可以開得盡方的二次根式);第二階段討論二次根式的除法法則,并運(yùn)用這一法則進(jìn)行簡單的二次根式的除法運(yùn)算以及二次根式的乘除混合運(yùn)算,這一課時運(yùn)算結(jié)果不包括根號出現(xiàn)內(nèi)出現(xiàn)分式或分?jǐn)?shù)的情況。
3.引導(dǎo)學(xué)生思考“想一想”中的內(nèi)容,培養(yǎng)學(xué)生思維的深刻性,教師組織學(xué)生思考、討論過程中,鼓勵學(xué)生大膽猜想,積極探索,運(yùn)用類比、歸納和從特殊到一般的思考方法激發(fā)學(xué)生創(chuàng)造性的思維.四、教學(xué)目標(biāo) 1.掌握商的算術(shù)平方根的性質(zhì),能利用性質(zhì)進(jìn)行二次根式的化簡與運(yùn)算; 2.會進(jìn)行簡單的二次根式的除法運(yùn)算;3.使學(xué)生掌握分母有理化概念,并能利用分母有理化解決二次根式的化簡及近似計算問題;
4.培養(yǎng)學(xué)生利用二次根式的除法公式進(jìn)行化簡與計算的能力;
5.通過二次根式公式的引入過程,滲透從特殊到一般的歸納方法,提高學(xué)生的歸納總結(jié)能力;
6.通過分母有理化的教學(xué),滲透數(shù)學(xué)的簡潔性.五、教學(xué)方法
從特殊到一般總結(jié)歸納的方法以及類比的方法,在學(xué)習(xí)了二次根式乘法的基礎(chǔ)上本小節(jié)
內(nèi)容可引導(dǎo)學(xué)生自學(xué),進(jìn)行總結(jié)對比.
六、教學(xué)手段 利用投影儀.
七、教學(xué)過程(一)引入新課
學(xué)生回憶及得算數(shù)平方根和性質(zhì):
(a≥0,b≥0)是用什么樣的方法引出的?(上述積的算術(shù)平方根的性質(zhì)是由具體例子引出的.)學(xué)生觀察下面的例子,并計算:
由學(xué)生總結(jié)上面兩個式的關(guān)系得:
類似地,每個同學(xué)再舉一個例子,然后由這些特殊的例子,得出:(二)新課
商的算術(shù)平方根.
一般地,有(a≥0,b>0)
商的算術(shù)平方根等于被除式的算術(shù)平方根除以除式的算術(shù)平方根. 讓學(xué)生討論這個式子成立的條件是什么?a≥0,b>0,對于為什么b>0,要使學(xué)生通過討論明確,因為b=0時分母為0,沒有意義.
引導(dǎo)學(xué)生從運(yùn)算順序看,等號左邊是將非負(fù)數(shù)a除以正數(shù)b求商,再開方求商的算術(shù)平方根,等號右邊是先分別求被除數(shù)、除數(shù)的算術(shù)平方根,然后再求兩個算術(shù)平方根的商,根據(jù)商的算術(shù)平方根的性質(zhì)可以進(jìn)行簡單的二次根式的化簡與運(yùn)算.
例1 化簡:
(1);(2);(3);
解∶(1)
(2)
(3)
說明:如果被開方數(shù)是帶分?jǐn)?shù),在運(yùn)算時,一般先化成假分?jǐn)?shù);本節(jié)根號下的字母均為正數(shù).例2 化簡:
(1);(2); 解:(1)
(2)
讓學(xué)生觀察例題中分母的特點,然后提出,的問題怎樣解決? 再總結(jié):這一小節(jié)開始講的二次根式的化簡,只限于所得結(jié)果的式子中分母可以完全開的盡方的情況,的問題,我們將在今后的學(xué)習(xí)中解決.學(xué)生討論本節(jié)課所學(xué)內(nèi)容,并進(jìn)行小結(jié).(三)小結(jié)
1.商的算術(shù)平方根的性質(zhì).(注意公式成立的條件)2.會利用商的算術(shù)平方根的性質(zhì)進(jìn)行簡單的二次根式的化簡.(四)練習(xí)1.化簡:
(1);(2);(3).2.化簡:
(1)(五)作業(yè) ;(2);(3)
教材p.183習(xí)題11.3;A組1.
八、板書設(shè)計