第一篇:高中數(shù)學(xué)公式定理記憶口訣匯總
高中數(shù)學(xué)公式定理記憶口訣匯總
高中數(shù)學(xué)公式定理記憶口訣之集合與函數(shù) 《集合與函數(shù)》
內(nèi)容子交并補(bǔ)集,還有冪指對(duì)函數(shù)。性質(zhì)奇偶與增減,觀察圖象最明顯。復(fù)合函數(shù)式出現(xiàn),性質(zhì)乘法法則辨,若要詳細(xì)證明它,還須將那定義抓。指數(shù)與對(duì)數(shù)函數(shù),兩者互為反函數(shù)。底數(shù)非1的正數(shù),1兩邊增減變故。函數(shù)定義域好求。分母不能等于0,偶次方根須非負(fù),零和負(fù)數(shù)無對(duì)數(shù);正切函數(shù)角不直,余切函數(shù)角不平;其余函數(shù)實(shí)數(shù)集,多種情況求交集。兩個(gè)互為反函數(shù),單調(diào)性質(zhì)都相同;圖象互為軸對(duì)稱,Y=X是對(duì)稱軸;求解非常有規(guī)律,反解換元定義域;反函數(shù)的定義域,原來函數(shù)的值域。冪函數(shù)性質(zhì)易記,指數(shù)化既約分?jǐn)?shù);函數(shù)性質(zhì)看指數(shù),奇母奇子奇函數(shù),奇母偶子偶函數(shù),偶母非奇偶函數(shù);圖象第一象限內(nèi),函數(shù)增減看正負(fù)。高中數(shù)學(xué)公式定理記憶口訣之三角函數(shù) 《三角函數(shù)》
三角函數(shù)是函數(shù),象限符號(hào)坐標(biāo)注。函數(shù)圖象單位圓,周期奇偶增減現(xiàn)。同角關(guān)系很重要,化簡證明都需要。正六邊形頂點(diǎn)處,從上到下弦切割;中心記上數(shù)字1,連結(jié)頂點(diǎn)三角形;向下三角平方和,倒數(shù)關(guān)系是對(duì)角,頂點(diǎn)任意一函數(shù),等于后面兩根除。誘導(dǎo)公式就是好,負(fù)化正后大化小,變成稅角好查表,化簡證明少不了。二的一半整數(shù)倍,奇數(shù)化余偶不變,將其后者視銳角,符號(hào)原來函數(shù)判。兩角和的余弦值,化為單角好求值,余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱。計(jì)算證明角先行,注意結(jié)構(gòu)函數(shù)名,保持基本量不變,繁難向著簡易變。逆反原則作指導(dǎo),升冪降次和差積。條件等式的證明,方程思想指路明。萬能公式不一般,化為有理式居先。公式順用和逆用,變形運(yùn)用加巧用;1加余弦想余弦,1減余弦想正弦,冪升一次角減半,升冪降次它為范;三角函數(shù)反函數(shù),實(shí)質(zhì)就是求角度,先求三角函數(shù)值,再判角取值范圍;利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集;高中數(shù)學(xué)公式定理記憶口訣之不等式 《不等式》
解不等式的途徑,利用函數(shù)的性質(zhì)。對(duì)指無理不等式,化為有理不等式。高次向著低次代,步步轉(zhuǎn)化要等價(jià)。數(shù)形之間互轉(zhuǎn)化,幫助解答作用大。證不等式的方法,實(shí)數(shù)性質(zhì)威力大。求差與0比大小,作商和1爭高下。直接困難分析好,思路清晰綜合法。非負(fù)常用基本式,正面難則反證法。還有重要不等式,以及數(shù)學(xué)歸納法。圖形函數(shù)來幫助,畫圖建模構(gòu)造法。高中數(shù)學(xué)公式定理記憶口訣之?dāng)?shù)列
《數(shù)列》
等差等比兩數(shù)列,通項(xiàng)公式N項(xiàng)和。兩個(gè)有限求極限,四則運(yùn)算順序換。數(shù)列問題多變幻,方程化歸整體算。數(shù)列求和比較難,錯(cuò)位相消巧轉(zhuǎn)換,取長補(bǔ)短高斯法,裂項(xiàng)求和公式算。歸納思想非常好,編個(gè)程序好思考:一算二看三聯(lián)想,猜測(cè)證明不可少。還有數(shù)學(xué)歸納法,證明步驟程序化: 首先驗(yàn)證再假定,從K向著K加1,推論過程須詳盡,歸納原理來肯定。
高中數(shù)學(xué)公式定理記憶口訣之復(fù)數(shù)
《復(fù)數(shù)》
虛數(shù)單位i一出,數(shù)集擴(kuò)大到復(fù)數(shù)。一個(gè)復(fù)數(shù)一對(duì)數(shù),橫縱坐標(biāo)實(shí)虛部。
對(duì)應(yīng)復(fù)平面上點(diǎn),原點(diǎn)與它連成箭。箭桿與X軸正向,所成便是輻角度。
箭桿的長即是模,常將數(shù)形來結(jié)合。代數(shù)幾何三角式,相互轉(zhuǎn)化試一試。
代數(shù)運(yùn)算的實(shí)質(zhì),有i多項(xiàng)式運(yùn)算。i的正整數(shù)次慕,四個(gè)數(shù)值周期現(xiàn)。
一些重要的結(jié)論,熟記巧用得結(jié)果。虛實(shí)互化本領(lǐng)大,復(fù)數(shù)相等來轉(zhuǎn)化。
利用方程思想解,注意整體代換術(shù)。幾何運(yùn)算圖上看,加法平行四邊形,減法三角法則判;乘法除法的運(yùn)算,逆向順向做旋轉(zhuǎn),伸縮全年模長短。
三角形式的運(yùn)算,須將輻角和模辨。利用棣莫弗公式,乘方開方極方便。
輻角運(yùn)算很奇特,和差是由積商得。四條性質(zhì)離不得,相等和模與共軛,兩個(gè)不會(huì)為實(shí)數(shù),比較大小要不得。復(fù)數(shù)實(shí)數(shù)很密切,須注意本質(zhì)區(qū)別。高中數(shù)學(xué)公式定理記憶口訣之排列組合 《排列、組合、二項(xiàng)式定理》
加法乘法兩原理,貫穿始終的法則。與序無關(guān)是組合,要求有序是排列。兩個(gè)公式兩性質(zhì),兩種思想和方法。歸納出排列組合,應(yīng)用問題須轉(zhuǎn)化。排列組合在一起,先選后排是常理。特殊元素和位置,首先注意多考慮。不重不漏多思考,捆綁插空是技巧。排列組合恒等式,定義證明建模試。關(guān)于二項(xiàng)式定理,中國楊輝三角形。兩條性質(zhì)兩公式,函數(shù)賦值變換式。高中數(shù)學(xué)公式定理記憶口訣之立體幾何
《立體幾何》
點(diǎn)線面三位一體,柱錐臺(tái)球?yàn)榇?。距離都從點(diǎn)出發(fā),角度皆為線線成。垂直平行是重點(diǎn),證明須弄清概念。線線線面和面面、三對(duì)之間循環(huán)現(xiàn)。方程思想整體求,化歸意識(shí)動(dòng)割補(bǔ)。計(jì)算之前須證明,畫好移出的圖形。立體幾何輔助線,常用垂線和平面。射影概念很重要,對(duì)于解題最關(guān)鍵。異面直線二面角,體積射影公式活。公理性質(zhì)三垂線,解決問題一大片。高中數(shù)學(xué)公式定理記憶口訣之平面解析幾何 《平面解析幾何》
有向線段直線圓,橢圓雙曲拋物線,參數(shù)方程極坐標(biāo),數(shù)形結(jié)合稱典范。笛卡爾的觀點(diǎn)對(duì),點(diǎn)和有序?qū)崝?shù)對(duì),兩者—一來對(duì)應(yīng),開創(chuàng)幾何新途徑。兩種思想相輝映,化歸思想打前陣;都說待定系數(shù)法,實(shí)為方程組思想。三種類型集大成,畫出曲線求方程,給了方程作曲線,曲線位置關(guān)系判。四件工具是法寶,坐標(biāo)思想?yún)?shù)好;平面幾何不能丟,旋轉(zhuǎn)變換復(fù)數(shù)求。解析幾何是幾何,得意忘形學(xué)不活。圖形直觀數(shù)入微,數(shù)學(xué)本是數(shù)形學(xué)。
第二篇:高中數(shù)學(xué)公式和定理
高中數(shù)學(xué)公式和定理
數(shù)學(xué)公式和定理揭示了數(shù)學(xué)知識(shí)的基本規(guī)律,具有一定的形式符號(hào)化的抽象性和概括性的特征,是學(xué)生數(shù)學(xué)認(rèn)知水平發(fā)展的重要學(xué)習(xí)載體.要學(xué)好數(shù)學(xué),必須對(duì)公式和定理有十分正確透徹的理解,也就是說,牢固掌握并能靈活運(yùn)用數(shù)學(xué)公式和定理是提高數(shù)學(xué)能力的重要前提.在教學(xué)過程中我積累了一些經(jīng)驗(yàn),下面我就數(shù)學(xué)公式和定理的教學(xué)談?wù)勎业囊恍w會(huì).
在數(shù)學(xué)公式和定理的學(xué)習(xí)中,需要學(xué)生具備多方面的能力,如對(duì)新舊知識(shí)聯(lián)系的理解能力,對(duì)數(shù)學(xué)規(guī)律的歸納與探究能力,對(duì)公式與定理的推理與演繹能力,對(duì)知識(shí)的存儲(chǔ)、記憶與應(yīng)用能力等.
數(shù)學(xué)公式和定理教學(xué)容易產(chǎn)生“一背二套”、“公式加例題”的形式,這種形式的教學(xué)往往使學(xué)生頭腦里只留下公式、定理的外殼,忽視它們的來龍去脈,不明確它們運(yùn)用的條件和范圍.事實(shí)上在公式與定理的教學(xué)中一般應(yīng)有如下五個(gè)環(huán)節(jié):引入,推導(dǎo),條件和特例,應(yīng)用,最后把它們納入學(xué)生的知識(shí)體系.因此,教師在教學(xué)中注意創(chuàng)設(shè)情景、激發(fā)興趣,充分發(fā)揮學(xué)生在學(xué)習(xí)中的主體作用,就能避免學(xué)生的死記硬背,生搬硬套,做到“活學(xué)活用”.
一、知識(shí)引入多樣化,激發(fā)學(xué)生求知欲
公式、定理的引入是發(fā)展學(xué)生思維、培養(yǎng)探索能力的首要環(huán)節(jié).一開始的引入如能把學(xué)生吸引住,將大大激發(fā)學(xué)生的求知欲,使他們的思維處于最亢奮的狀態(tài).在平時(shí)的教學(xué)中,我發(fā)現(xiàn),“開門見山”式的引入雖然省時(shí)省力,但學(xué)生學(xué)習(xí)缺乏興趣,只等著老師講.而針對(duì)不同的公式與定理,采用多樣化的引入,能很好地吸引學(xué)生,激發(fā)他們的探究欲望.在教學(xué)實(shí)踐中,我常常采用以下幾種引入的方法:
1、實(shí)踐引入:
教師要善于搜集與公式和定理相關(guān)的、有趣味的模型,使學(xué)生在接觸課題時(shí),就產(chǎn)生強(qiáng)烈的探求欲望.例如在引入線面垂直的判定定理時(shí),先讓學(xué)生自己動(dòng)手做一個(gè)實(shí)驗(yàn):如圖,拿一張矩形紙片,對(duì)折后略為展開,使矩形被折的一邊緊貼在桌面上,教師告訴學(xué)生,折痕和桌面是垂直的,這是為什么呢?學(xué)生一下子被吸引住了,急切地想知道這是為什么.
2、類比引入:
數(shù)學(xué)具有系統(tǒng)性,因此新公式、新定理可以由舊公式、舊定理通過類比遷移而來. 例如在引入余
選校網(wǎng)專業(yè)大全 歷年分?jǐn)?shù)線 上萬張大學(xué)圖片 大學(xué)視頻 院校庫
弦定理時(shí),先給出三角形的三邊a、b、c,其中c為最大邊.討論c2與a2?b2的關(guān)系.同學(xué)們已經(jīng)學(xué)過勾股定理,?C?900時(shí)有c2?a2?b2.教師向?qū)W生提出這樣的問題,在斜三角形中a2?b2與c2有什么關(guān)系?學(xué)生通過探究發(fā)現(xiàn),當(dāng)?C?900時(shí)有c2?a2?b2;當(dāng)?C?900時(shí)有c2?a2?b2.通過對(duì)三種三角形的類比,學(xué)生會(huì)有很大的興趣去討論它們之間存在怎樣的一種關(guān)系式.此時(shí)教師引導(dǎo)學(xué)生歸納出在△ABC中,三邊a、b、c有這樣一種關(guān)系:c2?a2?b2?m.進(jìn)而得出m的符號(hào)與?C的關(guān)系.這種引入方法,使學(xué)生對(duì)新公式、新定理不感到突然,而是舊公式、舊定理的延伸與擴(kuò)展.
3、發(fā)現(xiàn)法引入:
由于公式是對(duì)客觀實(shí)踐的抽象,為了完成這一過程,我?guī)ьI(lǐng)學(xué)生重涉前人探索之路去發(fā)現(xiàn)公式.這種發(fā)現(xiàn)式的引入,對(duì)培養(yǎng)學(xué)生觀察與探究能力有重要作用.在應(yīng)用這種引入方法時(shí),關(guān)鍵是創(chuàng)設(shè)使學(xué)生感興趣的情景.例如在學(xué)習(xí)等差數(shù)列求和公式時(shí),我給同學(xué)們講了他們都知道的高斯小時(shí)候求1?2???100的故事,并加上了故事的尾巴:“在高斯說出了他的方法后,老師又提出了新的問題,請(qǐng)學(xué)生計(jì)算1?4?7???98”,大家想一想,該如何計(jì)算?更一般的等差數(shù)列前n項(xiàng)a1?a2???an的計(jì)算公式我們能推導(dǎo)出來嗎?同學(xué)們興致盎然,通過獨(dú)立探究與合作討論,很快就得出了等差數(shù)列前n項(xiàng)和的公式.
二、重視推導(dǎo)和證明,弄清來龍去脈
公式的推導(dǎo)和定理的證明是教學(xué)的核心.由于第一環(huán)節(jié)恰當(dāng)?shù)匾?,學(xué)生的心理狀態(tài)是“興趣被激發(fā),對(duì)證明、推導(dǎo)有迫切感”,因此我抓住機(jī)會(huì)給予證明.如果在教學(xué)中不重視推導(dǎo),學(xué)生對(duì)它們的來龍去脈就會(huì)很模糊.在推導(dǎo)過程的教學(xué)中,我盡量發(fā)揮學(xué)生的主體作用,能讓學(xué)生推導(dǎo)的就讓學(xué)生推導(dǎo),并注意指出學(xué)生推導(dǎo)中的錯(cuò)誤.有些推導(dǎo)過程繁瑣的公式與定理,教師注重分析,講清為什么用這樣的方法.如果公式和定理有幾種推導(dǎo)方法,教學(xué)中不是面面俱到,而是讓學(xué)生課后思考不同的推導(dǎo)方法,在下一節(jié)課上進(jìn)行交流.
三、強(qiáng)調(diào)條件和特例
公式成立是要有一定條件的.學(xué)生學(xué)習(xí)公式的最大弱點(diǎn)是把公式作為“萬能公式”亂用亂套.因此教學(xué)中要強(qiáng)調(diào)公式成立的條件.如含有正切的三角公式的角的范圍是有限制的.在公式推導(dǎo)完成后,我常常讓學(xué)生做一個(gè)小練習(xí),從中發(fā)現(xiàn)他們忽略條件而產(chǎn)生的錯(cuò)誤,讓學(xué)生討論公式應(yīng)用中要注意公式成立的條件.
另外,公式雖具有一定的普遍意義,但對(duì)一些具有特殊條件的情形要給予注意,這就是公式的特例.如三角誘導(dǎo)公式及倍角公式是兩角和與差公式的特例.而一般結(jié)論往往是特例的發(fā)展與完善.如正弦定理是三角形面積公式的發(fā)展與推廣.
四、注重靈活應(yīng)用,提高學(xué)生學(xué)習(xí)能力數(shù)學(xué)教學(xué)的目的在于應(yīng)用,因此,在公式和定理的教學(xué)中,必須使學(xué)生靈活巧妙地應(yīng)用公式和定理,提高、培養(yǎng)學(xué)生實(shí)際運(yùn)用的能力.在此教學(xué)環(huán)節(jié)中要注意引導(dǎo)學(xué)生靈活應(yīng)用公式.
每個(gè)公式本身均可作各種變化,為了在更廣闊的背景中運(yùn)用公式,就需要對(duì)公式本身進(jìn)各種變形.這一層次的思維量大,可很好地培養(yǎng)學(xué)生思維的靈活性.例如:ai(i?1,2,?,n)為正數(shù),求證
222a12?a2?a2???an?a12?2(a1?a2???an),可把基本不等式a2?b2?2ab變形為
a2?b2?a?b
2來用.再如求tg200?tg400?tg200tg400的值,是將tg(???)的公式變形使用.
五、把公式和定理納入學(xué)生的知識(shí)體系
數(shù)學(xué)知識(shí)系統(tǒng)性強(qiáng).學(xué)生學(xué)習(xí)數(shù)學(xué)知識(shí)后,可以形成相應(yīng)的認(rèn)知結(jié)構(gòu).認(rèn)知結(jié)構(gòu)的發(fā)展,是“同化”與“順應(yīng)”調(diào)節(jié)的辨證統(tǒng)一.“同化”指的是新知識(shí)與舊知識(shí)相一致時(shí),新知識(shí)被納入原有認(rèn)知結(jié)構(gòu)中;“順應(yīng)”指的是新知識(shí)與舊知識(shí)不一致時(shí),對(duì)原有的認(rèn)知結(jié)構(gòu)進(jìn)行調(diào)節(jié),以適應(yīng)新的知識(shí)結(jié)構(gòu).如在復(fù)數(shù)的教學(xué)中,判別式小于零的實(shí)系數(shù)一元兩次方程的根與系數(shù)的關(guān)系可同化到學(xué)生已有的知識(shí)結(jié)構(gòu)中;而|z|2?z?z,就要學(xué)生將舊知識(shí)“順應(yīng)”到新的知識(shí)機(jī)構(gòu)中去.因此,在教學(xué)中我們要注意把新知識(shí)納入學(xué)生的認(rèn)知結(jié)構(gòu)中.為此,我在教學(xué)中充分注意以下幾點(diǎn):
1、注意公式推導(dǎo)過程中包含的數(shù)學(xué)思想方法.
在公式與定理的推導(dǎo)過程中,常常要用到數(shù)形結(jié)合,從特殊到一般,分類討論等數(shù)學(xué)思想方法.在推導(dǎo)過程中,教師常從特殊的情景出發(fā)進(jìn)行分析.例如,在推導(dǎo)sinx?a(|a|?1)解集時(shí),從a的特殊值開始進(jìn)行分析.在推導(dǎo)等比數(shù)列前n項(xiàng)和公式時(shí),要分q?1與q?1兩種情況討論.在教學(xué)中要充分挖掘公式與定理推導(dǎo)中的數(shù)學(xué)思想方法,可以有效地培養(yǎng)學(xué)生的思維的嚴(yán)密性與靈活性.
2、公式和定理的推廣及引申
由于學(xué)生學(xué)習(xí)的階段性和教材要求等原因,中學(xué)數(shù)學(xué)有許多公式和定理是可以推廣的,教會(huì)學(xué)生推廣,讓學(xué)生看清知識(shí)的內(nèi)部聯(lián)系,是把知識(shí)納入學(xué)生認(rèn)知結(jié)構(gòu)的有效途徑.例如三角形面積公式S?11absinC中bsinC就是a邊上的高,它其實(shí)就是初中所學(xué)的公式S?ah的另一種新的形式.再如學(xué)2
2習(xí)了祖暅原理后,讓學(xué)生把它引申到平面幾何的相應(yīng)命題.
3、比較與鑒別
比較與鑒別是把公式和定理納入學(xué)生認(rèn)知結(jié)構(gòu)的必由之路.在教學(xué)的后階段,一般是應(yīng)用所學(xué)新知識(shí)來解題.如果僅僅盯住新公式,學(xué)生就失去一次獨(dú)立選擇公式的機(jī)會(huì),這無助于學(xué)生認(rèn)知結(jié)構(gòu)的發(fā)展.特別是公式較多時(shí),學(xué)生一旦面臨復(fù)雜的問題,他們會(huì)無所適從.因此在教學(xué)中用注意公式的比較
與鑒別,選擇合適的公式解題,使學(xué)生的解題能力得到發(fā)展.例如有這樣一道題:在△ABC中,已知a?3,b?1,?B?300 ,求c邊的長.如果用正弦定理來解,要分兩步而且面臨∠A是一解還是兩解的選擇,而直接用余弦定理就可一步到位.在數(shù)學(xué)公式和定理的教學(xué)中,教師必須使學(xué)生到達(dá)以下目標(biāo):一是要用準(zhǔn)確的數(shù)學(xué)語言表述公式與定理的內(nèi)容;二是要學(xué)會(huì)分析其條件與結(jié)論間的內(nèi)在關(guān)系;三是要正確地掌握其證明及推導(dǎo)方法;四是要明確其使用的條件和適用的范圍及應(yīng)用的規(guī)律;五是要考慮對(duì)一些重要的公式和定理能否作適當(dāng)?shù)囊昱c推廣.我們?cè)诮虒W(xué)中,必須以適當(dāng)?shù)姆绞綄⒐胶投ɡ淼陌l(fā)生發(fā)展過程展示給學(xué)生,讓學(xué)生通過自主學(xué)習(xí)獲取知識(shí),并領(lǐng)悟公式和定理所包含的教學(xué)思想方法,靈活地掌握知識(shí),應(yīng)用知識(shí),達(dá)到提高分析問題,解決問題的能力.
參考資料:
李果民《中學(xué)數(shù)學(xué)教學(xué)建?!?廣西教育出版社2003年
選校網(wǎng)高考頻道 專業(yè)大全 歷年分?jǐn)?shù)線 上萬張大學(xué)圖片 大學(xué)視頻 院校庫(按ctrl 點(diǎn)擊打開)
選校網(wǎng)()是為高三同學(xué)和家長提 供高考選校信息的一個(gè)網(wǎng)站。國內(nèi)目前有2000多所高校,高考過后留給考生和家長選校的時(shí)間緊、高校多、專業(yè)數(shù)量更是龐大,高考選校信息紛繁、復(fù)雜,高三 同學(xué)在面對(duì)高考選校時(shí)會(huì)不知所措。選校網(wǎng)就是為考生整理高考信息,這里有1517專業(yè)介紹,近2000所高校簡介、圖片、視頻信息。選校網(wǎng),力致成為您最 強(qiáng)有力的選校工具!
產(chǎn)品介紹:
1.大學(xué)搜索:介紹近2000所高校最詳細(xì)的大學(xué)信息,包括招生簡章,以及考生最需要的學(xué)校招生辦公室聯(lián)系方式及學(xué)校地址等.2.高校專業(yè)搜索:這里包含了中國1517個(gè)專業(yè)介紹,考生查詢專業(yè)一目了然,同時(shí)包含了專業(yè)就業(yè)信息,給考生報(bào)考以就業(yè)參考。
3.圖片搜索:這里有11萬張全國高校清晰圖片,考生查詢學(xué)校環(huán)境、校園風(fēng)景可以一覽無余。4視頻搜索:視頻搜索包含了6162個(gè)視頻信息,大學(xué)視頻、城市視頻、訪談視頻都會(huì)在考生選校時(shí)給考生很大幫助。
5.問答:對(duì)于高考選校信息或者院校還有其他疑問將自己的問題寫在這里,你會(huì)得到詳盡解答。6新聞:高考新聞、大學(xué)新聞、報(bào)考信息等欄目都是為考生和家長量身定做,和同類新聞網(wǎng)站相比更有針對(duì)性。
7.千校榜:把高校分成各類,讓考生選校時(shí)根據(jù)類別加以區(qū)分,根據(jù)排名選擇自己喜歡的高校。8選校課堂:這里全部的信息都是以考生選校、選校技巧、經(jīng)驗(yàn)為核心,讓專家為您解答高考選校的經(jīng)驗(yàn)和技巧。
9.陽光大廳:考生經(jīng)過一年緊張的學(xué)習(xí)生活心理壓力有待緩解和釋放,陽光大廳給家長以心靈啟示,給考生心里以陽光。
10.港澳直通:很多考生都?jí)粝肴ハ愀郯拈T讀大學(xué),港澳直通,給考生的夢(mèng)想一個(gè)放飛的地方,港澳直通囊括了港澳大學(xué)的所有信息,將一切更直觀的呈現(xiàn)給考生。
11.選校社區(qū):注冊(cè)您真是的信息,在這里可以和大家分享您所在城市的到校信息,讀到好的選校文章也可以拿到這里,讓大家共同品嘗,您還可以加入到不同的大學(xué)、專業(yè)、城市群組,和大家一起討論這些話題分享信息。
選校網(wǎng),為你整合眾多高考選校信息,只為考生、家長能夠從中受益。讓我們共同為考生的未來,努力!我們?cè)诓粩嗤晟疲愿臃霞议L和同學(xué)們的需求。
陸續(xù)我們將推出城市印象頻道,讓大家了解學(xué)校所在城市的詳細(xì)情況;預(yù)報(bào)名系統(tǒng)(yubaoming.com),為您更加準(zhǔn)確地根據(jù)高考分?jǐn)?shù)填報(bào)志愿提供利器.......一切,貴在真實(shí)。
第三篇:高中數(shù)學(xué)公式口訣
高中數(shù)學(xué)公式口訣
一、《集合與函數(shù)》
內(nèi)容子交并補(bǔ)集,還有冪指對(duì)函數(shù)。性質(zhì)奇偶與增減,觀察圖象最明顯。
復(fù)合函數(shù)式出現(xiàn),性質(zhì)乘法法則辨,若要詳細(xì)證明它,還須將那定義抓。
指數(shù)與對(duì)數(shù)函數(shù),兩者互為反函數(shù)。底數(shù)非1的正數(shù),1兩邊增減變故。
函數(shù)定義域好求。分母不能等于0,偶次方根須非負(fù),零和負(fù)數(shù)無對(duì)數(shù)
正切函數(shù)角不直,余切函數(shù)角不平;其余函數(shù)實(shí)數(shù)集,多種情況求交集。
兩個(gè)互為反函數(shù),單調(diào)性質(zhì)都相同;圖象互為軸對(duì)稱,Y=X是對(duì)稱軸
求解非常有規(guī)律,反解換元定義域;反函數(shù)的定義域,原來函數(shù)的值域。
冪函數(shù)性質(zhì)易記,指數(shù)化既約分?jǐn)?shù);函數(shù)性質(zhì)看指數(shù),奇母奇子奇函數(shù),奇母偶子偶函數(shù),偶母非奇偶函數(shù);圖象第一象限內(nèi),函數(shù)增減看正負(fù)。
第四篇:高中數(shù)學(xué)公式及定理總結(jié)
乘法與因式分解
a^2-b^2=(a+b)(a-b)
a^3+b^3=(a+b)(a^2-ab+b^2)?
a^3-b^3=(a-b(a^2+ab+b^2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解-b+√(b^2-4ac)/2a-b-√(b^2-4ac)/2a根與系數(shù)的關(guān)系 X1+X2=-b/a X1*X2=c/a 注:韋達(dá)定理 判別式
b^2-4ac=0 注:方程有兩個(gè)相等的實(shí)根
b^2-4ac>0 注:方程有兩個(gè)不等的實(shí)根
b^2-4ac<0 注:方程沒有實(shí)根,有共軛復(fù)數(shù)根
三角函數(shù)公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA)
cot(A-B)=(cotAcotB+1)/(cotB-cotA)
倍角公式
tan2A=2tanA/[1-(tanA)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2-1=1-2(sina)^
2半角公式
sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA))cot(A/2)=-√((1+cosA)/((1-cosA))和差化積
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B))
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
某些數(shù)列前n項(xiàng)和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2-
2+4+6+8+10+12+14+…+(2n)=n(n+1)
51^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6
1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/
41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/
3正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圓半徑
余弦定理 b^2=a^2+c^2-2accosB 注:角B是邊a和邊c的夾角
圓的標(biāo)準(zhǔn)方程(x-a)^2+(y-b)^2=^r2 注:(a,b)是圓心坐標(biāo)
圓的一般方程 x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0
拋物線標(biāo)準(zhǔn)方程 y^2=2px y^2=-2px x^2=2py x^2=-2py
直棱柱側(cè)面積 S=c*h 斜棱柱側(cè)面積 S=c'*h
正棱錐側(cè)面積 S=1/2c*h' 正棱臺(tái)側(cè)面積 S=1/2(c+c')h'
圓臺(tái)側(cè)面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2
圓柱側(cè)面積 S=c*h=2pi*h 圓錐側(cè)面積 S=1/2*c*l=pi*r*l
弧長公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r
錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h
斜棱柱體積 V=S'L 注:其中,S'是直截面面積,L是側(cè)棱長
柱體體積公式 V=s*h 圓柱體 V=pi*r2h
定理
平行線分線段成比例定理 三條平行線截兩條直線,所得的對(duì)應(yīng) 線段成比例87 推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對(duì)應(yīng)線段成比例
定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊
平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例
定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似
相似三角形判定定理1 兩角對(duì)應(yīng)相等,兩三角形相似(ASA)
直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似
判定定理2 兩邊對(duì)應(yīng)成比例且夾角相等,兩三角形相似(SAS)
判定定理3 三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)
定理 如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三 角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似
性質(zhì)定理1 相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比
性質(zhì)定理2 相似三角形周長的比等于相似比
性質(zhì)定理3 相似三角形面積的比等于相似比的平方
任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等 于它的余角的正弦值
100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等 于它的余角的正切值
101圓是定點(diǎn)的距離等于定長的點(diǎn)的**
102圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的**
103圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的**
104同圓或等圓的半徑相等
105到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半 徑的圓
106和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線107到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線
108到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距 離相等的一條直線
109定理 不在同一直線上的三點(diǎn)確定一個(gè)圓。
110垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧
111推論1 ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條?、谙业拇怪逼椒志€經(jīng)過圓心,并且平分弦所對(duì)的兩條弧
③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧112推論2 圓的兩條平行弦所夾的弧相等
113圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形
114定理 在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦 相等,所對(duì)的弦的弦心距相等
115推論 在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等
116定理 一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半
117推論1 同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等
118推論2 半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所 對(duì)的弦是直徑
119推論3 如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形
120定理 圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它 的內(nèi)對(duì)角121①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
第五篇:高中數(shù)學(xué)公式口訣
高中數(shù)學(xué)公式口訣大全
一、《集合與函數(shù)》
內(nèi)容子交并補(bǔ)集,還有冪指對(duì)函數(shù)。性質(zhì)奇偶與增減,觀察圖象最明顯。
復(fù)合函數(shù)式出現(xiàn),性質(zhì)乘法法則辨,若要詳細(xì)證明它,還須將那定義抓。
指數(shù)與對(duì)數(shù)函數(shù),兩者互為反函數(shù)。底數(shù)非1的正數(shù),1兩邊增減變故。
函數(shù)定義域好求。分母不能等于0,偶次方根須非負(fù),零和負(fù)數(shù)無對(duì)數(shù);
正切函數(shù)角不直,余切函數(shù)角不平;其余函數(shù)實(shí)數(shù)集,多種情況求交集。
兩個(gè)互為反函數(shù),單調(diào)性質(zhì)都相同;圖象互為軸對(duì)稱,Y=X是對(duì)稱軸;
求解非常有規(guī)律,反解換元定義域;反函數(shù)的定義域,原來函數(shù)的值域。
冪函數(shù)性質(zhì)易記,指數(shù)化既約分?jǐn)?shù);函數(shù)性質(zhì)看指數(shù),奇母奇子奇函數(shù),奇母偶子偶函數(shù),偶母非奇偶函數(shù);圖象第一象限內(nèi),函數(shù)增減看正負(fù)。
二、《三角函數(shù)》 三角函數(shù)是函數(shù),象限符號(hào)坐標(biāo)注。函數(shù)圖象單位圓,周期奇偶增減現(xiàn)。
同角關(guān)系很重要,化簡證明都需要。正六邊形頂點(diǎn)處,從上到下弦切割;
中心記上數(shù)字1,連結(jié)頂點(diǎn)三角形;向下三角平方和,倒數(shù)關(guān)系是對(duì)角,頂點(diǎn)任意一函數(shù),等于后面兩根除。誘導(dǎo)公式就是好,負(fù)化正后大化小,變成稅角好查表,化簡證明少不了。二的一半整數(shù)倍,奇數(shù)化余偶不變,將其后者視銳角,符號(hào)原來函數(shù)判。兩角和的余弦值,化為單角好求值,余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱。
計(jì)算證明角先行,注意結(jié)構(gòu)函數(shù)名,保持基本量不變,繁難向著簡易變。
逆反原則作指導(dǎo),升冪降次和差積。條件等式的證明,方程思想指路明。
萬能公式不一般,化為有理式居先。公式順用和逆用,變形運(yùn)用加巧用;
1加余弦想余弦,1
減余弦想正弦,冪升一次角減半,升冪降次它為范; 三角函數(shù)反函數(shù),實(shí)質(zhì)就是求角度,先求三角函數(shù)值,再判角取值范圍;
利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集;
三、《不等式》
解不等式的途徑,利用函數(shù)的性質(zhì)。對(duì)指無理不等式,化為有理不等式。
高次向著低次代,步步轉(zhuǎn)化要等價(jià)。數(shù)形之間互轉(zhuǎn)化,幫助解答作用大。
證不等式的方法,實(shí)數(shù)性質(zhì)威力大。求差與和1爭高下。
直接困難分析好,思路清晰綜合法。非負(fù)常用基本式,正面難則反證法。
還有重要不等式,以及數(shù)學(xué)歸納法。圖形函數(shù)來幫助,畫圖建模構(gòu)造法。
四、《數(shù)列》
等差等比兩數(shù)列,通項(xiàng)公式運(yùn)算順序換。
數(shù)列問題多變幻,方程化歸整體算。數(shù)列求和比較難,錯(cuò)位
0比大小,作商N(yùn)項(xiàng)和。兩個(gè)有限求極限,四則相消巧轉(zhuǎn)換,取長補(bǔ)短高斯法,裂項(xiàng)求和公式算。歸納思想非常好,編個(gè)程序好思考:
一算二看三聯(lián)想,猜測(cè)證明不可少。還有數(shù)學(xué)歸納法,證明步驟程序化: 首先驗(yàn)證再假定,從
K向著K加1,推論過程須詳盡,歸納原理來肯定。
五、《復(fù)數(shù)》
虛數(shù)單位i一出,數(shù)集擴(kuò)大到復(fù)數(shù)。一個(gè)復(fù)數(shù)一對(duì)數(shù),橫縱坐標(biāo)實(shí)虛部。
對(duì)應(yīng)復(fù)平面上點(diǎn),原點(diǎn)與它連成箭。箭桿與X軸正向,所成便是輻角度。
箭桿的長即是模,常將數(shù)形來結(jié)合。代數(shù)幾何三角式,相互轉(zhuǎn)化試一試。
代數(shù)運(yùn)算的實(shí)質(zhì),有i多項(xiàng)式運(yùn)算。i的正整數(shù)次慕,四個(gè)數(shù)值周期現(xiàn)。
一些重要的結(jié)論,熟記巧用得結(jié)果。虛實(shí)互化本領(lǐng)大,復(fù)數(shù)相等來轉(zhuǎn)化。
利用方程思想解,注意整體代換術(shù)。幾何運(yùn)算圖上看,加法平行四邊形,減法三角法則判;乘法除法的運(yùn)算,逆向順向做旋轉(zhuǎn),伸縮全年模長短。三角形式的運(yùn)算,須將輻角和模辨。利用棣莫弗公式,乘方開方極方便。
輻角運(yùn)算很奇特,和差是由積商得。四條性質(zhì)離不得,相等和模與共軛,兩個(gè)不會(huì)為實(shí)數(shù),比較大小要不得。復(fù)數(shù)實(shí)數(shù)很密切,須注意本質(zhì)區(qū)別。
六、《排列、組合、二項(xiàng)式定理》
加法乘法兩原理,貫穿始終的法則。與序無關(guān)是組合,要求有序是排列。
兩個(gè)公式兩性質(zhì),兩種思想和方法。歸納出排列組合,應(yīng)用問題須轉(zhuǎn)化。
排列組合在一起,先選后排是常理。特殊元素和位置,首先注意多考慮。
不重不漏多思考,捆綁插空是技巧。排列組合恒等式,定義證明建模試。
關(guān)于二項(xiàng)式定理,中國楊輝三角形。兩條性質(zhì)兩公式,函數(shù)賦值變換式。
七、《立體幾何》
點(diǎn)線面三位一體,柱錐臺(tái)球?yàn)榇?。距離都從點(diǎn)出發(fā),角度皆為線線成。
垂直平行是重點(diǎn),證明須弄清概念。線線線面和面面、三對(duì)之間循環(huán)現(xiàn)。方程思想整體求,化歸意識(shí)動(dòng)割補(bǔ)。計(jì)算之前須證明,畫好移出的圖形。
立體幾何輔助線,常用垂線和平面。射影概念很重要,對(duì)于解題最關(guān)鍵。
異面直線二面角,體積射影公式活。公理性質(zhì)三垂線,解決問題一大片。
八、《平面解析幾何》
有向線段直線圓,橢圓雙曲拋物線,參數(shù)方程極坐標(biāo),數(shù)形結(jié)合稱典范。
笛卡爾的觀點(diǎn)對(duì),點(diǎn)和有序?qū)崝?shù)對(duì),兩者—一來對(duì)應(yīng),開創(chuàng)幾何新途徑。
兩種思想相輝映,化歸思想打前陣;都說待定系數(shù)法,實(shí)為方程組思想。
三種類型集大成,畫出曲線求方程,給了方程作曲線,曲線位置關(guān)系判。
四件工具是法寶,坐標(biāo)思想?yún)?shù)好;平面幾何不能丟,旋轉(zhuǎn)變換復(fù)數(shù)求。
解析幾何是幾何,得意忘形學(xué)不活。圖形直觀數(shù)入微,數(shù)學(xué)本是數(shù)形學(xué)。
1.誘導(dǎo)公式
sin(-a)=-sin(a)
cos(-a)=cos(a)
sin(π2-a)=cos(a)
cos(π2-a)=sin(a)
sin(π2+a)=cos(a)
cos(π2+a)=-sin(a)
sin(π-a)=sin(a)
cos(π-a)=-cos(a)
sin(π+a)=-sin(a)
cos(π+a)=-cos(a)
2.兩角和與差的三角函數(shù)
sin(a+b)=sin(a)cos(b)+cos(α)sin(b)
cos(a+b)=cos(a)cos(b)-sin(a)sin(b)
sin(a-b)=sin(a)cos(b)-cos(a)sin(b)
cos(a-b)=cos(a)cos(b)+sin(a)sin(b)
tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b)
tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b)
3.和差化積公式sin(a)+sin(b)=2sin(a+b2)cos(a-b2)
sin(a)?sin(b)=2cos(a+b2)sin(a-b2)
cos(a)+cos(b)=2cos(a+b2)cos(a-b2)
cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)
4.二倍角公式
sin(2a)=2sin(a)cos(b)
cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a)5.半角公式sin2(a2)=1-cos(a)2
cos2(a2)=1+cos(a)2
tan(a2)=1-cos(a)sin(a)=sina1+cos(a)
6.萬能公式
sin(a)=2tan(a2)1+tan2(a2)
cos(a)=1-tan2(a2)1+tan2(a2)
tan(a)=2tan(a2)1-tan2(a2)7.其它公式(推導(dǎo)出來的)
a?sin(a)+b?cos(a)=a2+b2sin(a+c)其中 tan(c)=ba a?sin(a)+b?cos(a)=a2+b2cos(a-c)其中 tan(c)=ab
1+sin(a)=(sin(a2)+cos(a2))2
1-sin(a)=(sin(a2)-cos(a2))2公式分類公式表達(dá)式乘法與因式分解
a2-b2=(a+b)(a-b)
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b)(a2+ab+b2)三角不等式
|a+b|≤|a|+|b|
|a-b|≤|a|+|b|
|a|≤b<=>-b≤a≤b|a-b|≥|a|-|b|
-|a|≤a≤|a|
一元二次方程的解
-b+√(b2-4ac)/2a
-b-b+√(b2-4ac)/2a
根與系數(shù)的關(guān)系
X1+X2=-b/a
X1*X2=c/a注:韋達(dá)定理判別式
b2-4a=0
注:方程有相等的兩實(shí)根b2-4ac>0
注:方程有一個(gè)實(shí)根b2-4ac<0
注:方程有共軛復(fù)數(shù)根三角函數(shù)公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)
ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式
tan2A=2tanA/(1-tan2A)
ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式
sin(A/2)=√((1-cosA)/2)
sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)
cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))
tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))
ctg(A/2)=-√((1+cosA)/((1-cosA))和差化積
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB
tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB
-ctgA+ctgBsin(A+B)/sinAsinB某些數(shù)列前n項(xiàng)和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)
12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理
a/sinA=b/sinB=c/sinC=2R注:
其中 R
表示三角形的外接圓半徑余弦定理
b2=a2+c2-2accosB注:角B是邊a和邊c的夾角圓的標(biāo)準(zhǔn)方程
(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標(biāo)圓的一般方程
x2+y2+Dx+Ey+F=0注:D2+E2-4F>0拋物線標(biāo)準(zhǔn)方程
y2=2px
y2=-2px
x2=2py
x2=-2py直棱柱側(cè)面積
S=c*h斜棱柱側(cè)面積
S=c'*h
正棱錐側(cè)面積
S=1/2c*h'正棱臺(tái)側(cè)面積
S=1/2(c+c')h'
圓臺(tái)側(cè)面積
S=1/2(c+c')l=pi(R+r)l球的表面積
S=4pi*r2
圓柱側(cè)面積
S=c*h=2pi*h圓錐側(cè)面積
S=1/2*c*l=pi*r*l 弧長公式
l=a*r
a是圓心角的弧度數(shù)r >0扇形面積公式
s=1/2*l*r錐體體積公式
V=1/3*S*H圓錐體體積公式
V=1/3*pi*r2h
斜棱柱體積
V=S'L
注:其中,S'是直截面面積,L是側(cè)棱長柱體體積公式
V=s*h圓柱