欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      初中數(shù)學(xué)常用定理(精選5篇)

      時(shí)間:2019-05-12 20:58:33下載本文作者:會(huì)員上傳
      簡介:寫寫幫文庫小編為你整理了多篇相關(guān)的《初中數(shù)學(xué)常用定理》,但愿對(duì)你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫還可以找到更多《初中數(shù)學(xué)常用定理》。

      第一篇:初中數(shù)學(xué)常用定理

      1圓是定點(diǎn)的距離等于定長的點(diǎn)的集合2圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合3圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合4同圓或等圓的半徑相等

      5到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半

      徑的圓

      6和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直

      平分線

      7到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線

      8到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距

      離相等的一條直線

      9定理 不在同一直線上的三點(diǎn)確定一個(gè)圓。

      10垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧

      11推論1 ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條?、谙业拇怪逼椒志€經(jīng)過圓心,并且平分弦所對(duì)的兩條弧

      ③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧12推論2 圓的兩條平行弦所夾的弧相等

      13圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形

      14定理 在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦

      相等,所對(duì)的弦的弦心距相等

      15推論 在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩

      弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等

      16定理 一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半

      17推論1 同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等

      18推論2 半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所

      對(duì)的弦是直徑

      19推論3 如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形

      20定理 圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角

      21①直線L和⊙O相交 d<r

      ②直線L和⊙O相切 d=r

      ③直線L和⊙O相離 d>r

      22切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線23切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點(diǎn)的半徑

      24推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)

      25推論2 經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心

      26切線長定理 從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角

      27圓的外切四邊形的兩組對(duì)邊的和相等

      28弦切角定理 弦切角等于它所夾的弧對(duì)的圓周角

      29推論 如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等

      30相交弦定理 圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長的積相等

      第二篇:初中數(shù)學(xué)相關(guān)定理

      1,三角形內(nèi)角和定理三角形三個(gè)內(nèi)角的和等于180°

      2, 推論1直角三角形的兩個(gè)銳角互余

      3, 推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和

      4,推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角

      5, 全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等

      6, 邊角邊公理(SAS)有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等7, 角邊角公理(ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等8 推論(AAS)有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等9, 邊邊邊公理(SSS)有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等

      10, 斜邊、直角邊公理(HL)有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等定理1在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上13 角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合等腰三角形的性質(zhì)定理 等腰三角形的兩個(gè)底角相等(即等邊對(duì)等角)15 推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合17 推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì) 的邊也相等(等角對(duì)等邊)推論1三個(gè)角都相等的三角形是等邊三角形推論2有一個(gè)角等于60°的等腰三角形是等邊三角形在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半直角三角形斜邊上的中線等于斜邊上的一半定理線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等逆定理和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上25 線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合26 定理 1關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形定理 2如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線定理 3兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長線相交,那 么交點(diǎn)在對(duì)稱軸上逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,

      第三篇:初中數(shù)學(xué)幾何定理集錦

      初中數(shù)學(xué)幾何定理集錦

      1。同角(或等角)的余角相等。

      3。對(duì)頂角相等。

      5。三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角之和。

      6。在同一平面內(nèi)垂直于同一條直線的兩條直線是平行線。

      7。同位角相等,兩直線平行。

      12。等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合。

      16。直角三角形中,斜邊上的中線等于斜邊的一半。

      19。在角平分線上的點(diǎn)到這個(gè)角的兩邊距離相等。及其逆定理。

      21。夾在兩條平行線間的平行線段相等。夾在兩條平行線間的垂線段相等。

      22。一組對(duì)邊平行且相等、或兩組對(duì)邊分別相等、或?qū)蔷€互相平分的四邊形是平行四邊形。

      24。有三個(gè)角是直角的四邊形、對(duì)角線相等的平行四邊形是矩形。

      25。菱形性質(zhì):四條邊相等、對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角。

      27。正方形的四個(gè)角都是直角,四條邊相等。兩條對(duì)角線相等,并且互相垂直平分,每一條對(duì)角線平分一組對(duì)角。

      34。在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦、兩個(gè)弦心距中有一對(duì)相等,那么它們所對(duì)應(yīng)的其余各對(duì)量都相等。

      36。垂直于弦的直徑平分這條弦,并且平分弦所對(duì)弧。平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的弧。

      43。直角三角形被斜邊上的高線分成的兩個(gè)直角三角形和原三角形相似。

      46。相似三角形對(duì)應(yīng)高線的比,對(duì)應(yīng)中線的比和對(duì)應(yīng)角平分線的比都等于相似比。相似三角形面積的比等于相似比的平方。

      37.圓內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角等于它的內(nèi)對(duì)角。

      47。切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線。

      48。切線的性質(zhì)定理①經(jīng)過圓心垂直于切線的直線必經(jīng)過切點(diǎn)。②圓的切線垂直于經(jīng)過切點(diǎn)的半徑。③經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心。

      49。切線長定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等。連結(jié)圓外一點(diǎn)和圓心的直線,平分從這點(diǎn)向圓所作的兩條切線所夾的角。

      50。弦切角定理弦切角的度數(shù)等于它所夾的弧的度數(shù)的一半。弦切角等于它所夾的弧所對(duì)的圓周角。

      51。相交弦定理;切割線定理 ; 割線定理

      第四篇:初中數(shù)學(xué)定理證明

      初中數(shù)學(xué)定理證明

      數(shù)學(xué)定理

      三角形三條邊的關(guān)系

      定理:三角形兩邊的和大于第三邊

      推論:三角形兩邊的差小于第三邊

      三角形內(nèi)角和

      三角形內(nèi)角和定理三角形三個(gè)內(nèi)角的和等于180°

      推論1直角三角形的兩個(gè)銳角互余

      推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角和

      推論3三角形的一個(gè)外角大雨任何一個(gè)和它不相鄰的內(nèi)角

      角的平分線

      性質(zhì)定理在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等

      幾何語言:

      ∵OC是∠AOB的角平分線(或者∠AOC=∠BOC)

      pE⊥OA,pF⊥OB

      點(diǎn)p在OC上

      ∴pE=pF(角平分線性質(zhì)定理)

      判定定理到一個(gè)角的兩邊的距離相等的點(diǎn),在這個(gè)角的平分線上

      幾何語言:

      ∵pE⊥OA,pF⊥OB

      pE=pF

      ∴點(diǎn)p在∠AOB的角平分線上(角平分線判定定理)

      等腰三角形的性質(zhì)

      等腰三角形的性質(zhì)定理等腰三角形的兩底角相等

      幾何語言:

      ∵AB=AC

      ∴∠B=∠C(等邊對(duì)等角)

      推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊

      幾何語言:

      (1)∵AB=AC,BD=DC

      ∴∠1=∠2,AD⊥BC(等腰三角形頂角的平分線垂直平分底邊)

      (2)∵AB=AC,∠1=∠

      2∴AD⊥BC,BD=DC(等腰三角形頂角的平分線垂直平分底邊)

      (3)∵AB=AC,AD⊥BC

      ∴∠1=∠2,BD=DC(等腰三角形頂角的平分線垂直平分底邊)

      推論2等邊三角形的各角都相等,并且每一個(gè)角等于60°

      幾何語言:

      ∵AB=AC=BC

      ∴∠A=∠B=∠C=60°(等邊三角形的各角都相等,并且每一個(gè)角都等于60°)

      等腰三角形的判定

      判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等

      幾何語言:

      ∵∠B=∠C

      ∴AB=AC(等角對(duì)等邊)

      推論1三個(gè)角都相等的三角形是等邊三角形

      幾何語言:

      ∵∠A=∠B=∠C

      ∴AB=AC=BC(三個(gè)角都相等的三角形是等邊三角形)

      推論2有一個(gè)角等于60°的等腰三角形是等邊三角形

      幾何語言:

      ∵AB=AC,∠A=60°(∠B=60°或者∠C=60°)

      ∴AB=AC=BC(有一個(gè)角等于60°的等腰三角形是等邊三角形)

      推論3在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半

      幾何語言:

      ∵∠C=90°,∠B=30°

      ∴BC=AB或者AB=2BC(在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半)

      線段的垂直平分線

      定理線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等

      幾何語言:

      ∵M(jìn)N⊥AB于C,AB=BC,(MN垂直平分AB)

      點(diǎn)p為MN上任一點(diǎn)

      ∴pA=pB(線段垂直平分線性質(zhì))

      逆定理和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上

      幾何語言:

      ∵pA=pB

      ∴點(diǎn)p在線段AB的垂直平分線上(線段垂直平分線判定)

      軸對(duì)稱和軸對(duì)稱圖形

      定理1關(guān)于某條之間對(duì)稱的兩個(gè)圖形是全等形

      定理2如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線

      定理3兩個(gè)圖形關(guān)于某直線對(duì)稱,若它們的對(duì)應(yīng)線段或延長線相交,那么交點(diǎn)在對(duì)稱軸上

      逆定理若兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那這兩個(gè)圖形關(guān)于這條直線對(duì)稱

      勾股定理

      勾股定理直角三角形兩直角邊a、b的平方和,等于斜邊c的平方,即

      a2+b2=c

      2勾股定理的逆定理

      勾股定理的逆定理如果三角形的三邊長a、b、c有關(guān)系,那么這個(gè)三角形是直角三角形

      四邊形

      定理任意四邊形的內(nèi)角和等于360°

      多邊形內(nèi)角和

      定理多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)·180°

      推論任意多邊形的外角和等于360°

      平行四邊形及其性質(zhì)

      性質(zhì)定理1平行四邊形的對(duì)角相等

      性質(zhì)定理2平行四邊形的對(duì)邊相等

      推論夾在兩條平行線間的平行線段相等

      性質(zhì)定理3平行四邊形的對(duì)角線互相平分

      幾何語言:

      ∵四邊形ABCD是平行四邊形

      ∴AD‖BC,AB‖CD(平行四邊形的對(duì)角相等)

      ∠A=∠C,∠B=∠D(平行四邊形的對(duì)邊相等)

      AO=CO,BO=DO(平行四邊形的對(duì)角線互相平分)

      平行四邊形的判定

      判定定理1兩組對(duì)邊分別平行的四邊形是平行四邊形

      幾何語言:

      ∵AD‖BC,AB‖CD

      ∴四邊形ABCD是平行四邊形

      (兩組對(duì)邊分別平行的四邊形是平行四邊形)

      判定定理2兩組對(duì)角分別相等的四邊形是平行四邊形

      幾何語言:

      ∵∠A=∠C,∠B=∠D

      ∴四邊形ABCD是平行四邊形

      (兩組對(duì)角分別相等的四邊形是平行四邊形)

      判定定理3兩組對(duì)邊分別相等的四邊形是平行四邊形

      幾何語言:

      ∵AD=BC,AB=CD

      ∴四邊形ABCD是平行四邊形

      (兩組對(duì)邊分別相等的四邊形是平行四邊形)

      判定定理4對(duì)角線互相平分的四邊形是平行四邊形

      幾何語言:

      ∵AO=CO,BO=DO

      ∴四邊形ABCD是平行四邊形

      (對(duì)角線互相平分的四邊形是平行四邊形)

      判定定理5一組對(duì)邊平行且相等的四邊形是平行四邊形

      幾何語言:

      ∵AD‖BC,AD=BC

      ∴四邊形ABCD是平行四邊形

      (一組對(duì)邊平行且相等的四邊形是平行四邊形)

      矩形

      性質(zhì)定理1矩形的四個(gè)角都是直角

      性質(zhì)定理2矩形的對(duì)角線相等

      幾何語言:

      ∵四邊形ABCD是矩形

      ∴AC=BD(矩形的對(duì)角線相等)

      ∠A=∠B=∠C=∠D=90°(矩形的四個(gè)角都是直角)

      推論直角三角形斜邊上的中線等于斜邊的一半

      幾何語言:

      ∵△ABC為直角三角形,AO=OC

      ∴BO=AC(直角三角形斜邊上的中線等于斜邊的一半)

      判定定理1有三個(gè)角是直角的四邊形是矩形

      幾何語言:

      ∵∠A=∠B=∠C=90°

      ∴四邊形ABCD是矩形(有三個(gè)角是直角的四邊形是矩形)

      判定定理2對(duì)角線相等的平行四邊形是矩形

      幾何語言:

      ∵AC=BD

      ∴四邊形ABCD是矩形(對(duì)角線相等的平行四邊形是矩形)

      菱形

      性質(zhì)定理1菱形的四條邊都相等

      性質(zhì)定理2菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角

      幾何語言:

      ∵四邊形ABCD是菱形

      ∴AB=BC=CD=AD(菱形的四條邊都相等)

      AC⊥BD,AC平分∠DAB和∠DCB,BD平分∠ABC和∠ADC

      (菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角)

      判定定理1四邊都相等的四邊形是菱形

      幾何語言:

      ∵AB=BC=CD=AD

      ∴四邊形ABCD是菱形(四邊都相等的四邊形是菱形)

      判定定理2對(duì)角線互相垂直的平行四邊形是菱形

      幾何語言:

      ∵AC⊥BD,AO=CO,BO=DO

      ∴四邊形ABCD是菱形(對(duì)角線互相垂直的平行四邊形是菱形)

      正方形

      性質(zhì)定理1正方形的四個(gè)角都是直角,四條邊都相等

      性質(zhì)定理2正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角

      中心對(duì)稱和中心對(duì)稱圖形

      定理1關(guān)于中心對(duì)稱的兩個(gè)圖形是全等形

      定理2關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過對(duì)稱中心,并且被對(duì)稱中心平分

      逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱

      梯形

      等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個(gè)角相等

      幾何語言:

      ∵四邊形ABCD是等腰梯形

      ∴∠A=∠B,∠C=∠D(等腰梯形在同一底上的兩個(gè)角相等)

      等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形

      幾何語言:

      ∵∠A=∠B,∠C=∠D

      ∴四邊形ABCD是等腰梯形(在同一底上的兩個(gè)角相等的梯形是等腰梯形)

      三角形、梯形中位線

      三角形中位線定理三角形的中位線平行與第三邊,并且等于它的一半

      幾何語言:

      ∵EF是三角形的中位線

      ∴EF=AB(三角形中位線定理)

      梯形中位線定理梯形的中位線平行與兩底,并且等于兩底和的一半

      幾何語言:

      ∵EF是梯形的中位線

      ∴EF=(AB+CD)(梯形中位線定理)

      比例線段

      1、比例的基本性質(zhì)

      如果a∶b=c∶d,那么ad=bc2、合比性質(zhì)

      3、等比性質(zhì)

      平行線分線段成比例定理

      平行線分線段成比例定理三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例

      幾何語言:

      ∵l‖p‖a

      (三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例)

      推論平行與三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對(duì)應(yīng)線段成比例

      定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行與三角形的第三邊

      垂直于弦的直徑

      垂徑定理垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條弧

      幾何語言:

      ∵OC⊥AB,OC過圓心

      (垂徑定理)

      推論

      1(1)平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧

      幾何語言:

      ∵OC⊥AB,AC=BC,AB不是直徑

      (平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧)

      (2)弦的垂直平分線過圓心,并且平分弦所對(duì)的兩條弧

      幾何語言:

      ∵AC=BC,OC過圓心

      (弦的垂直平分線過圓心,并且平分弦所對(duì)的兩條弧)

      (3)平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧

      幾何語言:

      (平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧)

      推論2圓的兩條平分弦所夾的弧相等

      幾何語言:∵AB‖CD

      圓心角、虎弦、弦心距之間的關(guān)系

      定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距也相等

      推論在同圓或等圓中,如果兩個(gè)圓心角、兩條虎兩條弦或兩條弦的弦心距中有一組量相等,那么它們所對(duì)應(yīng)的其余各組量都分別相等

      圓周角

      定理一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半

      推論1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等

      推論2半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直角

      推論3如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形

      圓的內(nèi)接四邊形

      定理圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角

      幾何語言:

      ∵四邊形ABCD是⊙O的內(nèi)接四邊形

      ∴∠A+∠C=180°,∠B+∠ADB=180°,∠B=∠ADE

      切線的判定和性質(zhì)

      切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

      幾何語言:∵l⊥OA,點(diǎn)A在⊙O上

      ∴直線l是⊙O的切線(切線判定定理)

      切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點(diǎn)半徑

      幾何語言:∵OA是⊙O的半徑,直線l切⊙O于點(diǎn)A

      ∴l(xiāng)⊥OA(切線性質(zhì)定理)

      推論1經(jīng)過圓心且垂直于切線的直徑必經(jīng)過切點(diǎn)

      推論2經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心

      切線長定理

      定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角

      幾何語言:∵弦pB、pD切⊙O于A、C兩點(diǎn)

      ∴pA=pC,∠ApO=∠CpO(切線長定理)

      弦切角

      弦切角定理弦切角等于它所夾的弧對(duì)的圓周角

      幾何語言:∵∠BCN所夾的是,∠A所對(duì)的是

      ∴∠BCN=∠A

      推論如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等

      幾何語言:∵∠BCN所夾的是,∠ACM所對(duì)的是,=

      ∴∠BCN=∠ACM

      和圓有關(guān)的比例線段

      相交弦定理:圓內(nèi)的兩條相交弦,被焦點(diǎn)分成的兩條線段長的積相等

      幾何語言:∵弦AB、CD交于點(diǎn)p

      ∴pA·pB=pC·pD(相交弦定理)

      推論:如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)

      幾何語言:∵AB是直徑,CD⊥AB于點(diǎn)p

      ∴pC2=pA·pB(相交弦定理推論)

      切割線定理從圓外一點(diǎn)引圓的切線和割線,切線長是這點(diǎn)到割線與圓焦點(diǎn)的兩條線段長的比例中項(xiàng)

      幾何語言:∵pT切⊙O于點(diǎn)T,pBA是⊙O的割線

      ∴pT2=pA·pB(切割線定理)

      推論從圓外一點(diǎn)因圓的兩條割線,這一點(diǎn)到每條割線與圓的焦點(diǎn)的兩條線段長的積相等

      幾何語言:∵pBA、pDC是⊙O的割線

      ∴pT2=pA·pB(切割線定理推論)。

      第五篇:初中定理

      初中幾何證明的依據(jù)

      1.兩點(diǎn)連線中線段最短.2.同角(或等角)的余角相等.同角(或等角)的補(bǔ)角相等.對(duì)頂角相等.3.平面內(nèi)經(jīng)過一點(diǎn)有且只有一條直線與已知直線垂直.直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短.4.線段垂直平分線上的點(diǎn)到線段兩端的距離相等,到線段兩端點(diǎn)距離相等的點(diǎn)在線段的垂直平分線上.

      5.兩直線平行,同位角相等.同位角相等,兩直線平行.

      6.兩直線平行,內(nèi)錯(cuò)角相等(同旁內(nèi)角互補(bǔ)).內(nèi)錯(cuò)角相等(同旁內(nèi)角互補(bǔ)),兩直線平行.

      7.經(jīng)過直線外一點(diǎn)有且只有一條直線與這條直線平行.

      8.三角形的任意兩邊之和大于第三邊.三角形任意兩邊之差小于第三邊.

      9.三角形的內(nèi)角之和等于180°.三角形的外角等于不相鄰的兩個(gè)內(nèi)角的和.三角形的外角大于任何一個(gè)和它不相鄰的內(nèi)角.10.三角形的中位線平行于第三邊,并且等于它的一半.11.全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角分別相等.12.兩邊夾角對(duì)應(yīng)相等的兩個(gè)三角形全等.兩角夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等.三邊對(duì)應(yīng)相等的兩個(gè)三角形全等.有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等.斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等.13.角的平分線上的點(diǎn)到角的兩邊的距離相等.到角的兩邊距離相等的點(diǎn)在這個(gè)角的平分線上.14.等腰三角形的兩底角相等(等邊對(duì)等角).底邊上的高、中線及頂角的平分線三線合一.15.有兩個(gè)角相等的三角形是等腰三角形(等角對(duì)等邊).等邊三角形的每個(gè)角都等于60°.三個(gè)角都相等的三角形是等邊三角形.有一個(gè)角是60°的等腰三角形是等邊三角形.16.有兩個(gè)角互余的三角形是直角三角形.如果三角形的一邊的平方等于另外兩邊的平方和,那么這個(gè)三角形是直角三角形.17.直角三角形的兩銳角互余,斜邊上的中線等于斜邊的一半.直角三角形中兩直角邊的平方和等于斜邊的平方.18.n邊形的內(nèi)角和等于(n-2)·180°;任意多邊形的外角和等于360°.19.平行四邊形的對(duì)邊相等、對(duì)角相等、兩對(duì)角線互相平分.20.一組對(duì)邊平行且相等,或兩條對(duì)角線互相平分,或兩組對(duì)邊分別相等的四邊形是平行四邊形.21.矩形的四個(gè)角都是直角,對(duì)角線相等.22.三個(gè)角是直角的四邊形,或?qū)蔷€相等的平行四邊形是矩形.23.菱形的四邊相等,對(duì)角線互相垂直平分.24.四邊相等的四邊形,或?qū)蔷€互相垂直的平行四邊形是菱形.25.正方形具有菱形和矩形的性質(zhì).26.有一個(gè)角是直角的菱形是正方形.有一組鄰邊相等的矩形是正方形.27.等腰梯形同一底邊上的兩底角相等,兩條對(duì)角線相等.28.在同一底上的兩底角相等的梯形是等腰梯形.梯形的中位線平行于兩底,并且等于兩底和的一半.

      下載初中數(shù)學(xué)常用定理(精選5篇)word格式文檔
      下載初中數(shù)學(xué)常用定理(精選5篇).doc
      將本文檔下載到自己電腦,方便修改和收藏,請(qǐng)勿使用迅雷等下載。
      點(diǎn)此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會(huì)在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        2021年初中數(shù)學(xué)幾何定理總結(jié)

        2021年初中數(shù)學(xué)幾何定理總結(jié)撰寫人:___________日期:___________2021年初中數(shù)學(xué)幾何定理總結(jié)、過兩點(diǎn)有且只有一條直線、兩點(diǎn)之間線段最短3、同角或等角的補(bǔ)角相等4、同角或等......

        初中數(shù)學(xué)幾何公式、定理(二)

        初中數(shù)學(xué)幾何公式、定理匯編(二) 21 全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等 22邊角邊公理(SAS) 有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等 23 角邊角公理( ASA)有兩角和它們的......

        初中數(shù)學(xué)之韋達(dá)定理

        初中數(shù)學(xué)之韋達(dá)定理 韋達(dá)定理:對(duì)于一元二次方程ax2?bx?c?0(a?0),如果方程有兩個(gè)實(shí)數(shù)根 bcx1,x2,那么x1?x2??,x1x2? aa 說明:定理成立的條件??01.不解方程寫出下列方程的兩根和與兩根差 (1)x2......

        北師大版初中數(shù)學(xué)證明定理

        公理 兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行(同位角相等,兩直線平行)定理 兩條直線被第三條直線所截,如果同旁內(nèi)角互補(bǔ),那么這兩條直線平行(同旁內(nèi)角互補(bǔ),兩直......

        初中數(shù)學(xué)幾何定理的教學(xué)策略的探討

        初中數(shù)學(xué)幾何定理的教學(xué)策略的探討 【內(nèi)容摘要】初中階段的數(shù)學(xué)課程中,幾何部分是一個(gè)絕對(duì)的教學(xué)重點(diǎn),不少知識(shí)也是教學(xué)中的一個(gè)難點(diǎn)。在幾何內(nèi)容的教學(xué)中,如何能夠讓學(xué)生更好......

        2021年初中數(shù)學(xué)幾何證明定理總結(jié)

        2021年初中數(shù)學(xué)幾何證明定理總結(jié)撰寫人:___________日期:___________2021年初中數(shù)學(xué)幾何證明定理總結(jié)幾何證明題的思路很多幾何證明題的思路往往是填加輔助線,分析已知、求證與......

        初中數(shù)學(xué)定理匯總(北師2011版)(共五則范文)

        初中數(shù)學(xué)公理和定理(北師版)Ⅰ:公理(不需證明)1、兩直線被第三條直線所截,如果同位角相等,那么這兩條直線平行;2、兩條平行線被第三條直線所截,同位角相等;3、兩邊夾角對(duì)應(yīng)相等......

        初中數(shù)學(xué)幾何定理的教學(xué)策略論文:淺談初中數(shù)學(xué)幾何定理的教學(xué)策略

        淺談初中數(shù)學(xué)幾何定理的教學(xué)策略 數(shù)學(xué)教師在教學(xué)上經(jīng)常會(huì)遇到很多困難,特別在農(nóng)村初中。其中比較突出的是有較多學(xué)生對(duì)幾何定理的理解運(yùn)用感到困難,思考時(shí)目的性不明確。本文......