第一篇:構(gòu)造函數(shù)法
函數(shù)與方程數(shù)學(xué)思想方法是新課標(biāo)要求的一種重要的數(shù)學(xué)思想方法,構(gòu)造函數(shù)法便是其中的一種。
高等數(shù)學(xué)中兩個(gè)重要極限
1.limsinx?1 x?0x
11x2.lim(1?)?e(變形lim(1?x)x?e)x?0x??x
由以上兩個(gè)極限不難得出,當(dāng)x?0時(shí)
1.sinx?x,2.ln(1?x)?x(當(dāng)n?N時(shí),(1?)n?e?(1?)n?1).
下面用構(gòu)造函數(shù)法給出兩個(gè)結(jié)論的證明.
(1)構(gòu)造函數(shù)f(x)?x?sinx,則f?(x)?1?cosx?0,所以函數(shù)f(x)在(0,??)上單調(diào)遞增,f(x)?f(0)?0.所以x?sinx?0,即sinx?x.
(2)構(gòu)造函數(shù)f(x)?x?ln(1?x),則f?(x)?1??1n1n1x??0.所以函數(shù)f(x)在1?x1?x
(0,??)上單調(diào)遞增,f(x)?f(0)?0,所以x?ln(1?x),即ln(1?x)?x. ?1?要證?1???n?事實(shí)上:設(shè)1?n?11?1??e,兩邊取對(duì)數(shù),即證ln?1???, nn?1??11?t,則n?(t?1), nt?1
1因此得不等式lnt?1?(t?1)t
1構(gòu)造函數(shù)g(t)?lnt??1(t?1),下面證明g(t)在(1,??)上恒大于0. t
11g?(t)??2?0, tt
∴g(t)在(1,??)上單調(diào)遞增,g(t)?g(1)?0, 即lnt?1?, 1
t
1?1??1?∴ ln?1???,∴?1???n??n?n?1n?1?e,以上兩個(gè)重要結(jié)論在高考中解答與導(dǎo)數(shù)有關(guān)的命題有著廣泛的應(yīng)用.
第二篇:構(gòu)造法之構(gòu)造函數(shù)
構(gòu)造法之構(gòu)造函數(shù)
?:題設(shè)條件多元-構(gòu)造一次函數(shù)
??B:題設(shè)有相似結(jié)構(gòu)-構(gòu)造同結(jié)構(gòu)函數(shù)主要介紹?
?C:題設(shè)條件滿足三角特性-構(gòu)造三角函數(shù) ?D:其它方面——參考構(gòu)造函數(shù)解不等式?
A、題設(shè)條件多元時(shí),選擇構(gòu)造一次函數(shù)
例
1、已知x.y.z?(0,1).求證:x(1?y)?y(1?z)?z(1?x)?1(第15屆俄羅斯數(shù)學(xué)競(jìng)賽
題)
分析 此題條件、結(jié)論均具有一定的對(duì)稱性,然而難以直接證明,不妨用構(gòu)造法一試??蓸?gòu)造一次函數(shù)試解本題.證法一 函數(shù)圖像性質(zhì)法、構(gòu)造函數(shù)f(x)?(y?z?1)x?(yz?y?z?1)因?yàn)閥,z?(0,1),所以
f(0)?yz?y?z?1?(y?1)(z?1)?0
f(1)?y?z?1?(yz?y?z?1)?yz?0
而f(x)是一次函數(shù),其圖象是直線,所以由x??0,1?恒有f(x)?0,即(y?z?1)x?(yz?y?z?1)?0,整理可得x(1?y)?y(1?z)?z(1?x)?
1證法二函數(shù)單調(diào)性法、構(gòu)造一次函數(shù)f(x)?x(1?y)?y(1?z)?z(1?x)整理,得:
f(x)?(1?y?z)x?(y?z?yz).(0?x?1)
因?yàn)??x?1,0?y?1,0?z?1 所以?1?1?y?z?
1(1)當(dāng)0?1?y?z?1時(shí),f(x)在?0,1?上是增函數(shù),于是f(x)?(2)當(dāng)
?1?1?y?z?0
f(x)?1?yz?1;
時(shí),f(x)
在??1,0?上是減函數(shù),于是
f(x)?f(x)=y?z?yz=1?(1?y)(1?z)?1;
(3)當(dāng)1?y?z?0時(shí),即y?z?1時(shí),f(x)?
成立。
y?z?yz?1?yz?1。綜上所知,所證不等式
小結(jié)(1)為了利用所構(gòu)造的一次函數(shù)的單調(diào)性,將?1?1?y?z?1分成“0?1?y?z?1,?1?1?y?z?0,1?y?z?0”三種情況討論,使問(wèn)題得以解決。
(2)解決本題有兩個(gè)核心的地方,一是將證式構(gòu)造成一次函數(shù),二是對(duì)一次項(xiàng)系數(shù)進(jìn)行邏輯劃分。
(3)本題也可以構(gòu)造關(guān)于y或z的一次函數(shù),這就需要真正理解函數(shù)的實(shí)質(zhì)概念。
例
2、已知?1?a,b,c?1:,求證:abc?a?b?c?
2證明 構(gòu)造一次函數(shù)y?(bc?1)x?2?b?c,易知bc?1?0,在?1?又x
則由一次函數(shù)的性質(zhì)不難得知當(dāng)?1?
x?1時(shí),y?0;又?1?a?1所以x?a
?1時(shí),y?(bc?1)?1?2?b?c
x?1時(shí),y
為減函數(shù);
=bc?1?b?c?(1?b)(1?c)?0
時(shí),y?0,即(bc?1)a?2?b?c?0 命題得證
B、題設(shè)條件有相似結(jié)構(gòu)時(shí)-構(gòu)造同樣結(jié)構(gòu)的函數(shù)
例
1、a、b、c, ?R,求證
a?b?c1?a?b?c
?
a1?a
?
b1?b
?
c1?c
.證明:構(gòu)作函數(shù)f(x)?當(dāng)任意x1,x2滿足0?
f(x2)?f(x1)?
x21?x
2x1?x
x1?x,x?[0,??),則研究這個(gè)函數(shù)性質(zhì)如下:
時(shí),?0
x1?x2???
?
x11?x
1?
x2?x1
(1?x1)(1?x2),所以函數(shù)f(x)?在[0,??)是遞增函數(shù).f(|a|?|b|?|c|).因?yàn)閨a?b?c|?|a|?|b|?|c|,所以f(|a?b?c|)?即
|a?b?c|1?|a?b?c|
?
|a|?|b|?|c|1?(|a|?|b|?|c|)
|a|1?|a|
|b|1?|b|
?
|a|
1?|a|?|b|?|c|
?
|b|
1?|a|?|b|?|c|
?
|c|
1?|a|?|b|?|c|
???
|c|1?|c|
.不等式得證.例
2、解方程(6x+5)(1+
(6x?5)?4)?x(1?
x?4)?0.
為f(6x+5)=-f(x).只要證明f(x)是奇函數(shù)且是單調(diào)函數(shù),就能簡(jiǎn)單的解出此題.
解:構(gòu)造函數(shù)
f(x)=x(1+
原方程化為
f(6x+5)+f(x)=0.
顯然f(-x)=-f(x),f(x)是奇函數(shù).再證f(x)具有單調(diào)性.x?4)),f(x)在(-∞,+∞)上是增函數(shù).所以f(6x+5)=f(-x)?x=-
5C、題設(shè)條件滿足三角函數(shù)的特性時(shí)-構(gòu)造三角函數(shù)
例
1、已知a.b.x.y?R.且a2?b
2?1,x?y?1.求證:?1?ax?by?
1證明 已知x?
y?
由a2?b2?1,x?y?1,可設(shè)
b?sin?,a?cos?.x?cos?,y?sin?ax?by?cos?cos??sin?sin??cos(???)?1所
以?1?ax?by?1
例
2、分析 由根號(hào)里面的代數(shù)式可以看出有這樣的關(guān)系:x?1?x?1且0?故想到三角函數(shù)關(guān)系式并構(gòu)造x?sin2?
所以y?sinx?cosx?
D、其它-參考構(gòu)造函數(shù)解不等式
在解決不等式的證明題時(shí)常常通過(guò)構(gòu)造輔助函數(shù),把原來(lái)問(wèn)題轉(zhuǎn)化為研究輔助函數(shù)的性質(zhì),并利用函數(shù)的單調(diào)性、有界性、奇偶性等性質(zhì)來(lái)解決。
例
1、求證不等式:
證明:構(gòu)造函數(shù):f(x)?
x1?
2x
x?1.(0???
?)
??
?),當(dāng)??
?
即x?時(shí),ymax
?
x1?2
x
?
x2
(x?0)
?
x2
(x?0)
?x2??x?2
x
x
f(?x)?
?x1?2
x
2?
1?
x2
所以
f(x)的圖像關(guān)于y
?
xx
??1?(1?2)?x?21?2?x1?2
x
x
??x?
x2
?f(x).軸對(duì)稱。當(dāng)x?0時(shí),1?2x
?0,故f(x)?0;當(dāng)x?0時(shí),依圖象的對(duì)稱性知f(x)?0.故當(dāng)x?0時(shí),恒有f(x)?0.即
x1?2
x
?
x2
(x?0).例
2、已知x?0,求證:x?
1x
?
1x?
1x
?
52證明:構(gòu)造函數(shù)f(x)?
x?
1x
(x?0),則x?
1x
?2,設(shè)2????,由
f(?)?f(?)???
1?
?(??
?11?(???)(???1)
?)?(???)??????
???????
1顯然:因?yàn)???
??,所以?-?<0,??>1,所以f(?)?
f(?)?0,所以f(x)在?2,???上是單調(diào)遞增的,所以
x?
1x?
1x?
1x
?f(2)?
以上兩題的實(shí)質(zhì)上是用的函數(shù)的單調(diào)性、奇偶性來(lái)證明的,其中如何來(lái)構(gòu)造恰當(dāng)?shù)暮瘮?shù)是進(jìn)一步證明的關(guān)鍵。
第三篇:構(gòu)造函數(shù)法與放縮法
構(gòu)造函數(shù)法證明不等式
不等式證明是中學(xué)數(shù)學(xué)的重要內(nèi)容之一.由于證明不等式?jīng)]有固定的模式,證法靈活多樣,技巧性強(qiáng),使其成為各種考試命題的熱點(diǎn)問(wèn)題,函數(shù)法證明不等式就是其常見(jiàn)題型.即有些不等式可以和函數(shù)建立直接聯(lián)系,通過(guò)構(gòu)造函數(shù)式,利用函數(shù)的有關(guān)特性,完成不等式的證明.
一、構(gòu)造一元一次函數(shù)證明不等式
例1設(shè)0<x<1,0<y<1,0<z<1,求證:x(1-y)+y(1-z)+z(1-x)<1.
證明:構(gòu)造一次函數(shù)f(x)= x(1-y)+y(1-z)+z(1-x),整理,得
f(x)=(1-y-z)x+(y+z-yz)其中0<x<1,∵0<x<1,0<y<1,0<z<1,∴-1<1-y-z<1.
⑴當(dāng)0<1-y-z<1時(shí),f(x)在(0,1)上是增函數(shù),于是
f(x)<f(1)=1-yz<1;
⑵當(dāng)-1<1-y-z<0時(shí),f(x)在(0,1)上是減函數(shù),于是
f(x)<f(0)= y+z-yz = 1-(1-y)(1-z)<1;
⑶當(dāng)1-y-z = 0,即y+z = 1時(shí),f(x)= y+z-yz = 1-yz<1.
綜上,原不等式成立.
二、構(gòu)造一元二次函數(shù)證明不等式
例3若 a、b、c∈R+,求證:a2+b2+c2≥ab+bc+ca .
證明構(gòu)造函數(shù)f(x)= x2-(b+c)x+b2+c2-bc .
因?yàn)?△=(b+c)2-4(b2+c2-bc)=-3(b-c)2≤0,又因?yàn)槎雾?xiàng)的系數(shù)為正數(shù),所以x2-(b+c)x+b2+c2-bc≥0對(duì)任意實(shí)數(shù)恒成立.
三、構(gòu)造單調(diào)函數(shù)證明不等式
例5已知 a>0,b>0,求證 :
證明: 構(gòu)造函數(shù)f(x)=x
1?xa1?ab1?bxa?b1?a?b1+> . 當(dāng)x>0 時(shí)單調(diào)遞增.,易證f(x)=1?x= 1-1?x
∵ a+b+ab>a+b>0,∴ f(a+b+ab)>f(a+b).
故 a
1?a+b
1?b=a?b?2ab
(1?a)(1?b)>a?b?ab
1?a?b?ab)=f(a+b+ab)>f(a+b)=a?b
1?a?b.
例談“放縮法”證明不等式的基本策略
近年來(lái)在高考解答題中,常滲透不等式證明的內(nèi)容,而不等式的證明是高中數(shù)學(xué)中的一個(gè)難點(diǎn),它
1可以考察學(xué)生邏輯思維能力以及分析問(wèn)題和解決問(wèn)題的能力。特別值得一提的是,高考中可以用“放縮法”證明不等式的頻率很高,它是思考不等關(guān)系的樸素思想和基本出發(fā)點(diǎn), 有極大的遷移性, 對(duì)它的運(yùn)用往往能體現(xiàn)出創(chuàng)造性。“放縮法”它可以和很多知識(shí)內(nèi)容結(jié)合,對(duì)應(yīng)變能力有較高的要求。因?yàn)榉趴s必須有目標(biāo),而且要恰到好處,目標(biāo)往往要從證明的結(jié)論考察,放縮時(shí)要注意適度,否則就不能同向傳遞。下面結(jié)合一些高考試題,例談“放縮”的基本策略,期望對(duì)讀者能有所幫助。
1、添加或舍棄一些正項(xiàng)(或負(fù)項(xiàng))
例
1、已知an?2?1(n?N).求證:
n
*
n
2?
3?
a1a2
?
a2a3
?...?
anan?
1(n?N*).證明: ?
akak?1
?
2k?12k?1?1
?
?
12(2k?1?1)
?
?
13.2k?2k?2
?
?.k,k?1,2,...,n, 232
?
a1a2
?
a2a3
?...?
anan?1
?
n
1111n11n1?(?2?...?n)??(1?n)??, 23222232232、先放縮再求和(或先求和再放縮)例
2、函數(shù)f(x)=
4x1?4x,求證:f(1)+f(2)+…+f(n)>n+
12n?
1?
2(n?N*).證明:由f(n)=
4n1?
4n
=1-
11?4
n
?1?
12?2112
n?1
12?2
?1?12
n
12?2n
得f(1)+f(2)+…+f(n)>1?
?n?
14(1?
12?14???
n?1
2?22
???1?)?n??
(n?N*).3、先放縮,后裂項(xiàng)(或先裂項(xiàng)再放縮)例
3、已知an=n,求證:∑ 證明:∑
k=
1nn
k=1ak
n
n
k
<3.
ak∑
k=1
n
<1+∑
k=
2(k-1)k(k+1)
<1+∑
k=2
n
2=1??(k-1)(k+
1)(k+k-)k?2
=1+ ∑(k=2
n
-)
(k-1)(k+1)
=1+1+
-
1<2+<3.
(n+1)24、放大或縮小“因式”;
例
4、已知數(shù)列{an}滿足an?1?a,0?a1?
n
2,求證:?(ak?ak?1)ak?2?
k?
1n
132
.證明 ?0?a1?
n
12,an?1?an,?a2?a12?
n
141,a3?
116
?.?當(dāng)k?1時(shí),0?ak?2?a3?
132.116,??(ak?ak?1)ak?2?
k?1
116
?(ak?ak?1)?
k?1
(a1?an?1)?
5、逐項(xiàng)放大或縮小 例
5、設(shè)an??2?
2?3?3?4???n(n?1)求證:
n(n?1)
2?an?
(n?1)2
證明:∵∴ n?
n(n?1)?
n2?n
n(n?1)?
12n?
1(n?)2?
n(n?1)?
2n?12
∴ 1?2?3???n?an?
1?3???(2n?1)
1n21n,∴
n(n?1)2
?an?
(n?1)26、固定一部分項(xiàng),放縮另外的項(xiàng); 例
6、求證:
2?
122
1?
132?
???1?
?
4證明:?
1n2
?
n(n?1)n?1
?
112
?
122
?
132
???
1n2
?1?
11115117
?(?????)??(?)?.2223n?1n42n47、利用基本不等式放縮
例
7、已知an?5n?
41對(duì)任何正整數(shù)m,n都成立.?1,只要證
5amn?1?aman?因?yàn)?amn?5mn?4,aman?(5m?4)(5n?4)?25mn?20(m?n)?16,故只要證
5(5mn?4)?1?25mn?20(m?n)?16? 即只要證
20m?20n?37?
因?yàn)?am?an?5m?5n?8?5m?5n?8?(15m?15n?29)?20m?20n?37,以上介紹了用“放縮法”證明不等式的幾種常用策略,解題的關(guān)鍵在于根據(jù)問(wèn)題的特征選擇恰當(dāng)?shù)姆?/p>
法,有時(shí)還需要幾種方法融為一體。在證明過(guò)程中,適當(dāng)?shù)剡M(jìn)行放縮,可以化繁為簡(jiǎn)、化難為易,達(dá)到事半功倍的效果。但放縮的范圍較難把握,常常出現(xiàn)放縮后得不出結(jié)論或得到相反的現(xiàn)象。因此,使用放縮法時(shí),如何確定放縮目標(biāo)尤為重要。要想正確確定放縮目標(biāo),就必須根據(jù)欲證結(jié)論,抓住題目的特點(diǎn)。掌握放縮技巧,真正做到弄懂弄通,并且還要根據(jù)不同題目的類型,采用恰到好處的放縮方法,才能把題解活,從而培養(yǎng)和提高自己的思維和邏輯推理能力,分析問(wèn)題和解決問(wèn)題的能力。希望大家能夠進(jìn)一步的了解放縮法的作用,掌握基本的放縮方法和放縮調(diào)整手段.
第四篇:構(gòu)造法證明函數(shù)不等式
構(gòu)造法證明函數(shù)不等式
1、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值和最值,再由單調(diào)性來(lái)證明不等式是函數(shù)、導(dǎo)數(shù)、不等式綜合中的一個(gè)難點(diǎn),也是近幾年高考的熱點(diǎn).
2、解題技巧是構(gòu)造輔助函數(shù),把不等式的證明轉(zhuǎn)化為利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性或求最值,從而證得不等式,而如何根據(jù)不等式的結(jié)構(gòu)特征構(gòu)造一個(gè)可導(dǎo)函數(shù)是用導(dǎo)數(shù)證明不等式的關(guān)鍵.
一、移項(xiàng)法構(gòu)造函數(shù)
【例1】已知函數(shù)f(x)?ln(x?1)?x,求證:當(dāng)x??1時(shí),恒有1?1?ln(x?1)?x. x?
1二、作差法構(gòu)造函數(shù)證明
【例2】已知函數(shù)f(x)?的圖象的下方.
2312x?lnx,求證:在區(qū)間(1 ,??)上,函數(shù)f(x)的圖象在函數(shù)g(x)?x
32三、換元法構(gòu)造函數(shù)證明
【例3】(2007年山東卷)證明:對(duì)任意的正整數(shù)n,不等式ln(111?1)?2?3都成立. nnn
四、從條件特征入手構(gòu)造函數(shù)證明
【例4】若函數(shù)y?f(x)在R上可導(dǎo),且滿足不等式xf'(x)??f(x)恒成立,常數(shù)a、b滿足a?b,求證:af(a)?bf(b).
五、主元法構(gòu)造函數(shù)
1?x)?x,g(x)?xlnx. 【例5】已知函數(shù)f(x)?ln((1)求函數(shù)f(x)的最大值;
(2)設(shè)0?a?b,證明:0?g(a)?g(b)?2g(a?b)?(b?a)ln2.
2六、構(gòu)造二階導(dǎo)函數(shù)證明函數(shù)的單調(diào)性(二次求導(dǎo))
【例6】已知函數(shù)f(x)?ae?x12x. 2(1)若f(x)在R上為增函數(shù),求a的取值范圍;(2)若a?1,求證:當(dāng)x?0時(shí),f(x)?1?x.
七、對(duì)數(shù)法構(gòu)造函數(shù)(選用于冪指數(shù)函數(shù)不等式)
【例7】證明:當(dāng)x?0時(shí),(1?x)1?x?e1?2.
1、(2007年,安徽卷)設(shè)a?0,f(x)?x?1?ln2x?2alnx.
求證:當(dāng)x?1時(shí),恒有x?ln2x?2alnx?1.
2、(2007年,安徽卷)已知定義在正實(shí)數(shù)集上的函數(shù)f(x)?1x12x?2ax,g(x)?3a2lnx?b,其中2a?0,且b? 52a?3a2lna,求證:f(x)?g(x).
23、已知函數(shù)f(x)?ln(1?x)? xb,求證:對(duì)任意的正數(shù)a、b,恒有l(wèi)na?lnb?1?. 1?xa4、(2007年,陜西卷)f(x)是定義在(0 , ??)上的非負(fù)可導(dǎo)函數(shù),且滿足xf'(x)?f(x)?0,對(duì)任意正數(shù)a、b,若a?b,則必有()
A.a(chǎn)f(b)?bf(a)
B.bf(a)?af(b)
C.a(chǎn)f(a)?f(b)
D.bf(b)?f(a)例1【分析】 本題是雙邊不等式,其右邊直接從已知函數(shù)證明,左邊構(gòu)造函數(shù)1?1,從其導(dǎo)數(shù)入手即可證明. x?11x?1??【解析】由題意得:f?(x)?,∴當(dāng)?1?x?0時(shí),f?(x)?0,即f(x)在x?1x?1g(x)?ln(x?1)?x?(?1 , 0)上為增函數(shù);當(dāng)x?0時(shí),f?(x)?0,即f(x)在x?(0 , ??)上為減函數(shù);故函數(shù)f(x)的單調(diào)遞增區(qū)間為(?1 , 0),單調(diào)遞減區(qū)間(0 , ??);于是函數(shù)f(x)在(?1 , ??)上的最大值為f(x)max?f(0)?0,因此,當(dāng)x??1時(shí),f(x)?f(0)?0,即ln(x?1)?x?0,∴l(xiāng)n(x?1)?x(右面得證).現(xiàn)證左面,令g(x)?ln(x?1)?11x1???1,則g?(x)?22,x?1(x?1)(x?1)x?1當(dāng)x?(?1 , 0)時(shí),g'(x)?0;當(dāng)x?(0 , ??)時(shí),g'(x)?0,即g(x)在x?(?1 , 0)上為減函數(shù),在x?(0 , ??)上為增函數(shù),故函數(shù)g(x)在(?1 , ??)上的最小值為g(x)min?g(0)?0,1?1?0,x?111?1?ln(x?1)?x. ∴l(xiāng)n(x?1)?1?.綜上可知:當(dāng)x??1時(shí),有x?1x?1∴當(dāng)x??1時(shí),g(x)?g(0)?0,即ln(x?1)?【點(diǎn)評(píng)】如果f(a)是函數(shù)f(x)在區(qū)間上的最大(小)值,則有f(x)?f(a)(或f(x)?f(a)),那么要證不等式,只要求函數(shù)的最大值不超過(guò)0就可得證.
例2.【分析】函數(shù)f(x)的圖象在函數(shù)g(x)的圖象的下方?不等式f(x)?g(x)在(1 ,??)上恒成12212x?lnx?x3,只需證明在區(qū)間(1,??)上,恒有x2?lnx?x3成立,23231設(shè)F(x)?g(x)?f(x),x?(1 , ??),考慮到F(1)??0,要證不等式轉(zhuǎn)化變?yōu)椋?/p>
6立問(wèn)題,即當(dāng)x?1時(shí),F(xiàn)(x)?F(1),這只要證明:g(x)在區(qū)間(1 ,??)是增函數(shù)即可. 【解析】設(shè)F(x)?g(x)?f(x),即F(x)?22312x?x?lnx,321(x?1)(2x2?x?1)(x?1)(2x2?x?1)則F'(x)?2x?x??;當(dāng)x?1時(shí),F(xiàn)'(x)??0,從xxx而F(x)在(1,??)上為增函數(shù),∴F(x)?F(1)?
1?0,∴當(dāng)x?1時(shí),g(x)?f(x)?0,即6f(x)?g(x),故在區(qū)間(1,??)上,函數(shù)f(x)的圖象在函數(shù)g(x)?23x的圖象的下方. 3【點(diǎn)評(píng)】本題首先根據(jù)題意構(gòu)造出一個(gè)函數(shù)(可以移項(xiàng),使右邊為零,將移項(xiàng)后的左式設(shè)為函數(shù)),并利用導(dǎo)數(shù)判斷所設(shè)函數(shù)的單調(diào)性,再根據(jù)函數(shù)單調(diào)性的定義,證明要證的不等式.讀者也可以設(shè)F(x)?f(x)?g(x)做一做,深刻體會(huì)其中的思想方法. 例3.【分析】本題是山東卷的第(2)問(wèn),從所證結(jié)構(gòu)出發(fā),只需令
1?x,則問(wèn)題轉(zhuǎn)化為:當(dāng)x?0n時(shí),恒有l(wèi)n(x?1)?x2?x3成立,現(xiàn)構(gòu)造函數(shù)h(x)?x3?x2?ln(x?1),求導(dǎo)即可達(dá)到證明.
13x3?(x?1)2 【解析】 令h(x)?x?x?ln(x?1),則h?(x)?3x?2x??x?1x?1322在x?(0 , ??)上恒正,∴函數(shù)h(x)在(0 , ??)上單調(diào)遞增,∴x?(0 , ??)時(shí),恒有h(x)?h(0)?0,即x3?x2?ln(x?1)?0,∴l(xiāng)n(x?1)?x2?x3,對(duì)任意正整數(shù)n,取x?1111?(0 , ??),則有l(wèi)n(?1)?2?3. nnnn【點(diǎn)評(píng)】我們知道,當(dāng)F(x)在[a , b]上單調(diào)遞增,則x?a時(shí),有F(x)?F(a).如果f(a)=?(a),要證明當(dāng)x?a時(shí),f(x)??(x),那么,只要令F(x)=f(x)-?(x),就可以利用F(x)的單調(diào)增性來(lái)推導(dǎo).也就是說(shuō),在F(x)可導(dǎo)的前提下,只要證明F'(x)?0即可.
例4.【解析】由已知:xf'(x)?f(x)?0,∴構(gòu)造函數(shù)F(x)?xf(x),則F'(x)?xf'(x)?f(x)?0,從而F(x)在R上為增函數(shù),∵a?b,∴F(a)?F(b),即af(a)?bf(b).
【點(diǎn)評(píng)】由條件移項(xiàng)后xf?(x)?f(x),容易想到是一個(gè)積的導(dǎo)數(shù),從而可以構(gòu)造函數(shù)F(x)?xf(x),求導(dǎo)即可完成證明.若題目中的條件改為xf?(x)?f(x),則移項(xiàng)后xf?(x)?f(x),要想到是一個(gè)商的導(dǎo)數(shù)的分子,平時(shí)解題多注意總結(jié).
例5.【分析】 對(duì)于第(2)小問(wèn),絕大部分的學(xué)生都會(huì)望而生畏.學(xué)生的盲點(diǎn)也主要就在對(duì)所給函數(shù)用不上.如果能挖掘一下所給函數(shù)與所證不等式間的聯(lián)系,想一想大小關(guān)系又與函數(shù)的單調(diào)性密切相關(guān),由此就可過(guò)渡到根據(jù)所要證的不等式構(gòu)造恰當(dāng)?shù)暮瘮?shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,借助單調(diào)性比較函數(shù)值的大小,以期達(dá)到證明不等式的目的.(2)對(duì)g(x)?xlnx求導(dǎo),則g'(x)?lnx?1.在g(a)?g(b)?2g(數(shù),設(shè)F(x)?g(a)?g(x)?2g(a?b)中以b為主變?cè)獦?gòu)造函2a?xa?xa?x),則F'(x)?g'(x)?2[g()]'?lnx?ln. 222當(dāng)0?x?a時(shí),F(xiàn)'(x)?0,因此F(x)在(0 , a)內(nèi)為減函數(shù);當(dāng)x?a時(shí),F(xiàn)'(x)?0,因此F(x)在(a , ??)上為增函數(shù).從而當(dāng)x?a時(shí),F(xiàn)(x)有極小值F(a),∵F(a)?0,b?a,∴F(b)?0,即g(a)?g(b)?2g(a?b)?0.又設(shè)G(x)?F(x)?(x?a)ln2,則2G'(x)?lnx?lna?xG'(x)?0.?ln2?lnx?ln(a?x);當(dāng)x?0時(shí),因此G(x)在(0 , ??)2a?b)?(b?a)ln2. 2上為減函數(shù),∵G(a)?0,b?a,∴G(b)?0,即g(a)?g(b)?2g(例6.【解析】(1)f'(x)?aex?x,∵f(x)在R上為增函數(shù),∴f'(x)?0對(duì)x?R恒成立,即a?xe?x對(duì)x?R恒成立;記g(x)?xe?x,則g'(x)?e?x?xe?x?(1?x)e?x;
當(dāng)x?1時(shí),g'(x)?0;當(dāng)x?1時(shí),g'(x)?0.知g(x)在(?? , 1)上為增函數(shù),在(1 , ??)上為減函數(shù),∴g(x)在x?1時(shí),取得最大值,即g(x)max?g(1)?(2)記F(x)?f(x)?(1?x)?e?x111,∴a?,即a的取值范圍是[ , ??).
eee12x?x?1(x?0),則F'(x)?ex?x?1,2令h(x)?F'(x)?ex?x?1,則h'(x)?ex?1;當(dāng)x?0時(shí),h'(x)?0,∴h(x)在(0 , ??)上為增函數(shù),又h(x)在x?0處連續(xù),∴h(x)?h(0)?0,即F'(x)?0,∴F(x)在(0 , ??)上為增函數(shù),又F(x)在x?0處連續(xù),∴F(x)?F(0)?0,即f(x)?1?x.【點(diǎn)評(píng)】當(dāng)函數(shù)取最大(或最?。┲禃r(shí)不等式都成立,可得該不等式恒成立,從而把不等式的恒成立問(wèn)題可轉(zhuǎn)化為求函數(shù)最值問(wèn)題.不等式恒成立問(wèn)題,一般都會(huì)涉及到求參數(shù)范圍,往往把變量分離后可以轉(zhuǎn)化為m?f(x)(或m?f(x))恒成立,于是m大于f(x)的最大值(或m小于f(x)的最小值),從而把不等式恒成立問(wèn)題轉(zhuǎn)化為求函數(shù)的最值問(wèn)題.因此,利用導(dǎo)數(shù)求函數(shù)最 值是解決不等式恒成立問(wèn)題的一種重要方法.
例7.【解析】 對(duì)不等式兩邊取對(duì)數(shù)得(1?)ln(1?x)?1?1xx,化簡(jiǎn)為2(1?x)ln(1?x)?2x?x2,2(l1?x),設(shè)輔助函數(shù)f(x)?2x?x2?2(1?x)ln(,f'(x)?2x?2n1?x)(x?0)又f''(x)?2x?0(x?0),易知f'(x)在(0 , ??)上嚴(yán)格單調(diào)增加,從而f'(x)?f'(0)?01?x(x?0),又由f(x)在[0 , ??)上連續(xù),且f'(x)?0,得f(x)在[0 , ??)上嚴(yán)格單調(diào)增加,∴f(x)?f(0)?0(x?0),即2x?x2?2(1?x)ln(1?x)?0,2x?x2?2(1?x)ln(1?x),故(1?x)1?1x?e1?x2(x?0).
1、【解析】f?(x)?1?2lnx2a2lnx??1,∴f?(x)?0,即f(x),當(dāng)x?1,a?0時(shí),不難證明xxx 在(0,??)內(nèi)單調(diào)遞增,故當(dāng)x?1時(shí),f(x)?f(1)?0,∴當(dāng)x?1時(shí),恒有x?ln2x?2alnx?1.
2、【解析】設(shè)F(x)?g(x)?f(x)?12x?2ax?3a2lnx?b,則23a2(x?a)(x?3a)(x?0),∵a?0,∴當(dāng)x?a時(shí),F(xiàn)'(x)?0,F(xiàn)'(x)?x?2a??xx故F(x)在(0 , a)上為減函數(shù),在(a , ??)上為增函數(shù),于是函數(shù)F(x)在(0 , ??)上的最小值是F(a)?f(a)?g(a)?0,故當(dāng)x?0時(shí),有f(x)?g(x)?0,即f(x)?g(x).
3、【解析】函數(shù)f(x)的定義域?yàn)??1 , ??),f'(x)?11x??,∴當(dāng)?1?x?01?x(1?x)2(1?x)2時(shí),f'(x)?0,即f(x)在x?(?1 , 0)上為減函數(shù);當(dāng)x?0時(shí),f'(x)?0,即f(x)在x?(0 , ??)上為增函數(shù);因此在x?0時(shí),f(x)取得極小值f(0)?0,而且是最小值,于是f(x)?f(0)?0,從而ln(1?x)?1xa1b?1?,于是,即ln(1?x)?1?,令1?x??0,則1?1?x1?xbx?1aabbf(x)xf'(x)?f(x)ln?1?,因此lna?lnb?1?.
4、?0,故【解析】F(x)?,F(xiàn)'(x)?baaxx2f(x)f(a)f(b)?af(b)?bf(a),故選A. F(x)??在(0 , ??)上是減函數(shù),由a?b有xab8
第五篇:構(gòu)造函數(shù)法證明不等式
構(gòu)造函數(shù)法證明不等式
河北省 趙春祥
不等式證明是中學(xué)數(shù)學(xué)的重要內(nèi)容之一.由于證明不等式?jīng)]有固定的模式,證法靈活多樣,技巧性強(qiáng),使其成為各種考試命題的熱點(diǎn)問(wèn)題,函數(shù)法證明不等式就是其常見(jiàn)題型.即有些不等式可以和函數(shù)建立直接聯(lián)系,通過(guò)構(gòu)造函數(shù)式,利用函數(shù)的有關(guān)特性,完成不等式的證明.
一、構(gòu)造一元一次函數(shù)證明不等式
例1設(shè)0<x<1,0<y<1,0<z<1,求證:x(1-y)+y(1-z)+z(1-x)<1.
證明:構(gòu)造一次函數(shù)f(x)= x(1-y)+y(1-z)+z(1-x),整理,得
f(x)=(1-y-z)x+(y+z-yz)其中0<x<1,∵0<x<1,0<y<1,0<z<1,∴-1<1-y-z<1.
⑴當(dāng)0<1-y-z<1時(shí),f(x)在(0,1)上是增函數(shù),于是
f(x)<f(1)=1-yz<1;
⑵當(dāng)-1<1-y-z<0時(shí),f(x)在(0,1)上是減函數(shù),于是
f(x)<f(0)= y+z-yz = 1-(1-y)(1-z)<1;
⑶當(dāng)1-y-z = 0,即y+z = 1時(shí),f(x)= y+z-yz = 1-yz<1.
綜上,原不等式成立.
例2已知 | a |<1,| b |<1,| c |<1,求證:abc+2>a+b+c.
證明:構(gòu)造一次函數(shù)f(x)=(bc-1)x+2-b-c,這里,| b |<1,| c |<1,| x |<1,則bc <1. ∵f(?1)= 1-bc+2-b-c =(1-bc)+(1-b)+(1-c)>0,f(1)= bc-1+2-b-c =(1-b)(1-c)>0,∵-1<x<1,∴一次函數(shù)f(x)=(bc-1)x+2-b-c的圖象在x軸上方,這就是說(shuō),當(dāng)| a |<1,| b |<1,| c |<1時(shí),有(bc-1)a+2-b-c>0,即abc+2>a+b+c.
二、構(gòu)造一元二次函數(shù)證明不等式
例3若 a、b、c∈R+,求證:a2+b2+c2≥ab+bc+ca .
證明構(gòu)造函數(shù)f(x)= x2-(b+c)x+b2+c2-bc .
因?yàn)?△=(b+c)2-4(b2+c2-bc)=-3(b-c)2≤0,又因?yàn)槎雾?xiàng)的系數(shù)為正數(shù),所以x2-(b+c)x+b2+c2-bc≥0對(duì)任意實(shí)數(shù)恒成立. 以a 替換 x 得:a2-(b+c)a+b2+c2-bc≥0,即 a2+b2+c2≥ab+bc+ ca.
例4已知a、b、c、d、e是滿足a+b+c+d+e= 8,a2+b2+c2+d2+e2= 16的實(shí)數(shù),求證:0≤e≤
5.證明:構(gòu)造一元二次函數(shù)
f(x)= 4x
+2(a+b+c+d)+a2+b2+c2+d2=(x+a)2+(x+b)2+(x+c)2+(x+d)2≥0,又∵二次項(xiàng)系數(shù)為正數(shù),∴△= 4(a+b+c+d)2-16(a2+b2+c2+d2)= 4(8-e)2-16(16-e2)≤0,解之得0≤e≤
165
.
故不等式成立.
三、構(gòu)造單調(diào)函數(shù)證明不等式 例5已知 a>0,b>0,求證 :證明: 構(gòu)造函數(shù)f(x)=
x1?x
a1?a
+
b1?b
>
x
a?b1?a?b
.,易證f(x)=
1?x
= 1-
1?x
當(dāng)x>0 時(shí)單調(diào)遞增.
∵ a+b+ab>a+b>0,∴ f(a+b+ab)>f(a+b). 故
a1?a
+
b1?b
=
a?b?2ab(1?a)(1?b)
>
a?b?ab1?a?b?ab)
=f(a+b+ab)>f(a+b)=
13n?2
13n?1
a?b1?a?b
.
例6對(duì)任意自然數(shù)n 求證:(1+1)(1+
14)·…·(1+
13n?2)>3n?1.
證明:構(gòu)造函數(shù)f(n)=(1+1)(1+
13n?1)·…·(1+3,由
f(n?1)f(n)
(1?)33n?1
=
3n?4
=(3n?2)
(3n?1)(3n?4)
>1,∵f(n)>0,∴f(n?1)>f(n),即f(n)是自然數(shù)集N上的單調(diào)遞增函數(shù),∴(1+1)(1+
14)·…·(1+
13n?2)>33n?1.