第一篇:線面關(guān)系證明方法整理
證明線面平行的方法:
(1)線面平行的判定定理——
(2)面面平行的性質(zhì)定理——
若兩平面平行,則一平面內(nèi)的任一直線與另一面平行
(3)定義法——
線面無公共點(diǎn)
a?α??b?α
?a//b??∥α
證明面面平行的方法
(1)面面平行的判定定理1——
若一平面內(nèi)的兩相交直線都平行于另一平面,則兩平面平行
(2)面面平行的判定定理2——
垂直于同一直線的兩平面平行
(3)面面平行的判定定理3——
同時(shí)與第三個(gè)平面平行的兩平面平行
證明線線平行的方法
(1)線面平行的性質(zhì)定理——
??l?β?
α∩β=m??l//α?m∥α
(2)面面平行的性質(zhì)定理——
若一平面與兩平行平面同時(shí)相交,則兩交線平行
3、線面垂直的性質(zhì)定理——
同時(shí)與一平面垂直的兩直線平行
4、公理4——
平行于同一直線的兩直線平行
5、定義——
兩線共面且無公共點(diǎn)
證明線面垂直的方法
(1)線面垂直的判定定理——
直線與平面內(nèi)的兩相交直線垂直
(2)面面垂直的性質(zhì)——
若兩平面垂直,則在一面內(nèi)垂直于交線的直線必垂直于另一平面
3、線面垂直的性質(zhì)——
兩平行線中有一條與平面垂直,則另一條也與平面垂直
4、面面平行的性質(zhì)——
一線垂直于二平行平面之一,則必垂直于另一平面
5、定義法——
直線與平面內(nèi)任一直線垂直
第二篇:證明線面平行的方法
證明線面平行的方法
線面平行重點(diǎn)難點(diǎn)剖析
線面平行關(guān)系的判斷和證明是空間線面位置關(guān)系的研究重點(diǎn)之一,它包括直線與直線的平行,直線與平面的平行以及平面與平面的平行.本節(jié)復(fù)習(xí)包括首先要系統(tǒng)梳理有關(guān)判斷、證明線面平行關(guān)系的各種依據(jù),其中既包括有關(guān)定義、公理,還包括相應(yīng)的判定定理或性質(zhì)定理.梳理中不僅要明確有關(guān)判斷、證明各有哪些依據(jù),還要體會(huì)不同的依據(jù)在思維策略上給我們的指導(dǎo).例如判斷線面平行可有三種思維策略:
(1)從概念考慮,即依據(jù)線面平行的定義作思考,這就需要證明直線和平面沒有公共點(diǎn).證明方法通常選擇反證法.(2)從降級(jí)角度考慮,即通過證明線線平行來證明線面平行.其依據(jù)為:如果平面外一條直線和這個(gè)平面內(nèi)的一條直線平行,那么這條直線和這個(gè)平面平行.證明方法通常是把平面外的這條直線經(jīng)過平移,移到這個(gè)平面中去.(3)從升級(jí)角度考慮,即通過證明面面平行來證明線面平行.其依據(jù)為:兩個(gè)平面平行,其中一個(gè)平面內(nèi)的直線必平行于另一個(gè)平面.證明方法是找出一個(gè)與這個(gè)平面平行的平面,并且使這條直線正好在所找的平面內(nèi).其中思維策略的選擇不僅要注意建立這種意識(shí),還要根據(jù)不同問題的不同條件,才能作出恰當(dāng)?shù)倪x擇.在復(fù)習(xí)中應(yīng)注意積累這種思考、選擇的經(jīng)驗(yàn).2題目如圖1,已知四邊形ABCD,ABEF為兩個(gè)正方形,MN分別在其對(duì)角線BF和AC上,且FM=AN,求證:MN∥平面EBC.一、找“線線平行”思考1如圖2,過M作MH∥EF交BE于H,則MHEF=BBMF.過N作NG∥AB交BC于G,則NGAB=CANC.由于四邊形ABCD,ABEF為兩個(gè)全等正方形,則BF=AC,EF=AB,又因?yàn)镕M=AN,所以MH∥NG且MH=NG,故四邊形MHGN為平行四邊形,所以MN∥平面EBC.思考2如圖3,連結(jié)AM并延長交BE于K,則CK在平面EBC內(nèi).由題意,知△AFM∽△BKM,則AMMK=BFMM,因?yàn)镕M=AN,BF=AC,則FMBM=ANNC,所以在△ACK中,有AMMK=ANNC,則MN∥CK,所以MN∥平面EBC.注在平面內(nèi)找一條直線與平面外直線平行,通常有兩種方法可找:①構(gòu)造平行四邊形;②構(gòu)造三角形,利用對(duì)應(yīng)邊成比例.二、找“面面平行”思考3如圖4,過M作MH∥BE,交AB于H,連結(jié)NH,則BMBF=BBHA.由于四邊形ABCD,ABEF為全等的的正方形,又因?yàn)镕M=AN,則有BMBF=CCNA,所以在3
線面的我已經(jīng)給你了
我來補(bǔ)充線線的1.垂直于同一平面的兩條直線平行
2.平行于同一直線的兩條直線平行
3.一個(gè)平面與另外兩個(gè)平行平面相交,那么2條交線也平行
4.兩條直線的方向向量共線,則兩條直線平行
第三篇:線面平行證明的常用方法
湖北民族學(xué)院學(xué)報(bào)(自然科學(xué)版)20081
2線面平行證明的常用方法
摘要:立體幾何在高考解答題中每年是必考內(nèi)容,線面平行的證明經(jīng)常出現(xiàn),很多同學(xué)總覺得證明方法很多很繁,在這里給大家用作輔助線的常用方法及空間坐標(biāo)系的方法進(jìn)行闡述。
關(guān)鍵詞:找平行線;找第三個(gè)點(diǎn);作平行平面;建立空間坐標(biāo)系
立體幾何在高考解答題中每年是必考內(nèi)容,必有一個(gè)證明題;證明的內(nèi)容包括以下內(nèi)容:平行與垂直(線線平行、線面平行、面面平行、線線垂直、線面垂直、面面垂直等),我們現(xiàn)在對(duì)線面平行這一方面作如下探討:
在線面平行這節(jié)里有三個(gè)重要的定理:
直線與平面平行的判定性定理:如果不在一個(gè)平面內(nèi)的一條直線和平面內(nèi)的一條
直線平行,那么這條直線和這個(gè)平面平行。
直線與平面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平
面和這個(gè)平面相交,那么這條直線和這個(gè)交線平行。
平面與平面平行的性質(zhì)定理:如果兩個(gè)平面是平行,那么在其中一個(gè)平面內(nèi)的直
線和另一個(gè)平面平行。
從前面兩個(gè)定理不難發(fā)現(xiàn):要證線面平行(那么這條直線一定是平行于這個(gè)平面的),由性質(zhì)定理可以得到這樣一個(gè)結(jié)論:只要過這條直線作一個(gè)與平面相交的平面,那這個(gè)直線一定是與交線平行得。這樣我們就可以找到與平面內(nèi)的直線平行的直線。那么關(guān)鍵是怎樣作一個(gè)平面與已知平面相交且過直線的平面。下面給大家介紹
方法一:兩平行線能確定一個(gè)平面,過已知直線的兩個(gè)端點(diǎn)作兩條平行線使它們
與已知平面相交,關(guān)鍵:找平行線,使得所作平面與已知平面的交線。
(08浙江卷)如圖,矩形ABCD和梯形BEFC所在平面互相垂直,BE//CF,?BCF=?CEF=90?,AD=3,EF=2。求證:AE//平面DCF.分析:過點(diǎn)E作EG//AD交FC于G,DG就是平面
與平面DCF的交線,那么只要證明AE//DG即可。
證明:過點(diǎn)E作EG?CF交CF于G,連結(jié)DG,可得四邊形BCGE為矩形,又ABCD為矩形,∥EG,從而四邊形ADGE為平行四邊形,所以AD 故AE∥DG.
因?yàn)锳E?平面DCF,DG?平面DCF,所以AE∥平面DCF.
方法二:直線與直線外一點(diǎn)有且僅有一個(gè)平面,關(guān)鍵:找第三個(gè)點(diǎn),使得所作平
面與已知平面的交線。
(06北京卷)如圖,在底面為平行四邊形的四棱錐P?ABCD中,AB?AC,PA?平面ABCD,且PA?AB,點(diǎn)E是PD的中點(diǎn).求證:PB//平面AEC.分析:由D、P、B三點(diǎn)的平面與已知平面AEC的交線最易找,第三個(gè)點(diǎn)選其它的點(diǎn)均不好找交線.證明:連接BD,與 AC 相交于 O,連接
∵ABCD 是平行四邊形,∴O 是 BD 的中點(diǎn)又 E 是 PD 的中點(diǎn)∴EO∥PB.又 PB?平面 AEC,EO?平面 AEC,∴PB∥平面 AEC.方法三:兩個(gè)平面是平行, 其中一個(gè)平面內(nèi)的直線和另一個(gè)平面平行,關(guān)鍵:作
平行平面,使得過所證直線作與已知平面平行的平面
(08安徽卷)如圖,在四棱錐O?ABCD中,底面ABCD四邊長為1的菱形,?
?ABC?, OA?底面ABCD, OA?2,M為OA的中點(diǎn),N為BC的中
點(diǎn),證明:直線MN‖平面OCD 分析:M為OA的中點(diǎn),找OA(或AD)中點(diǎn),再連線。
證明:取OB中點(diǎn)E,連接ME,NE
?ME‖AB,AB‖CD,?ME‖CD
又?NE‖OC,?平面MNE‖平面OCD ?MN‖平面OCD
方法四:(向量法)所證直線與已知平面的法向量垂直,關(guān)鍵:建立空間坐標(biāo)系
(或找空間一組基底)及平面的法向量。
(07全國Ⅱ?理)如圖,在四棱錐S?ABCD中,底面ABCD為正方形,側(cè)棱SD⊥底面ABCD,E,F(xiàn)分別為AB,SC的中點(diǎn).證明EF∥平面SAD;
分析:因?yàn)閭?cè)棱SD⊥底面ABCD,底面ABCD是正方形,所以很容易建立空間直角坐標(biāo)系及相應(yīng)的點(diǎn)的坐標(biāo)。
證明:如圖,建立空間直角坐標(biāo)系D?xyz.
0,0),S(0,0,b),則B(a,a,0),C(0,a,0),設(shè)A(a,E?a?a,0?
?,F(xiàn)?0ab??2??2?2?,?
????EF??b??a,0??
2?.
?因?yàn)閥軸垂直與平面SAD,故可設(shè)平面的法向量為n?
=(0,1,0)
????則:EF?n???b??a,0?
2?
(?0,1,0)?
?
=0 因此????EF?n?
所以EF∥平面SAD.
第四篇:證明線面平行
證明線面平行
一,面外一條線與面內(nèi)一條線平行,或兩面有交線強(qiáng)調(diào)面外與面內(nèi)
二,面外一直線上不同兩點(diǎn)到面的距離相等,強(qiáng)調(diào)面外
三,證明線面無交點(diǎn)
四,反證法(線與面相交,再推翻)
五,空間向量法,證明線一平行向量與面內(nèi)一向量(x1x2-y1y2=0)
【直線與平面平行的判定】
定理:平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行。
【判斷直線與平面平行的方法】
(1)利用定義:證明直線與平面無公共點(diǎn);
(2)利用判定定理:從直線與直線平行得到直線與平面平行;
(3)利用面面平行的性質(zhì):兩個(gè)平面平行,則一個(gè)平面內(nèi)的直線必平行于另一個(gè)平面
線面平行
【直線與平面平行的判定】
定理:平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行。
【判斷直線與平面平行的方法】
(1)利用定義:證明直線與平面無公共點(diǎn);
(2)利用判定定理:從直線與直線平行得到直線與平面平行;
(3)利用面面平行的性質(zhì):兩個(gè)平面平行,則一個(gè)平面內(nèi)的直線必平行于另一個(gè)平面。
【平面與直線平行的性質(zhì)】
定理:一條直線和一個(gè)平面平行,則過這條直線的任一平面與此平面的交線與該直線平行。
此定理揭示了直線與平面平行中蘊(yùn)含著直線與直線平行。通過直線與平面平行可得到直線與直線平行。這給出了一種作平行線的重要方法。
注意:直線與平面平行,不代表與這個(gè)平面所有的直線都平行,但直線與平面垂直,那么這條直線與這個(gè)平面內(nèi)的所有直線都垂直。
本題就用到一個(gè)關(guān)鍵概念:重心三分中線
設(shè)E為BD的中點(diǎn),連接AE,CE
則M在AE上,且有AM=2ME
N在CE上,且有CN=2NE
在三角形ACE中,因?yàn)椋珽M:EA=1:3
EN:EC=1:3
所以,MN//AC
AC屬于平面ACD,MN不在平面ACD內(nèi),即無公共點(diǎn)
所以,MN//平面ACD
本題就用到一個(gè)關(guān)鍵概念:重心三分中線
設(shè)E為BD的中點(diǎn),連接AE,CE
則M在AE上,且有AM=2ME
N在CE上,且有CN=2NE
在三角形ACE中,因?yàn)?,EM:EA=1:3
EN:EC=1:3
所以,MN//AC
AC屬于平面ACD,MN不在平面ACD內(nèi),即無公共點(diǎn)
所以,MN//平面ACD
第五篇:線面平行證明
線面平行證明“三板斧”
第一斧:從結(jié)論出發(fā),假定線面平行成立,利用線面平行的性質(zhì),在平面
內(nèi)找到與已知直線的平行線。
例1:如圖正方體ABCD?A1B1C1D1中,E為DD1的中點(diǎn),試判斷BD1與平面AEC的位置關(guān)系,并說明理由。
練習(xí):
如圖,已知四棱錐P?ABCD的底面ABCD的底面ABCD是菱形,點(diǎn)F為PC中點(diǎn),求證:PA//平面BFD
第二斧:以平面外的直線作平行四邊形
D
例2:如圖,正方體ABCD?A1B1C1D1,E為A1B1上任意一點(diǎn),求證:AE//平面DC
1練習(xí):
如圖,已知三棱柱ABC?A1B1C1中,E為B1C1的中點(diǎn),F(xiàn)為AA1的中點(diǎn),求證:
A1E//平面B1CF
第三斧:選證明面面平行,再由線平行的定義過度到線面平行。
例3:如圖,四棱錐P?ABCD,底面ABCD為正方形,E,F(xiàn),G分別為PC,PD,BC的中點(diǎn),求證:PA//平面EFG
練習(xí):如圖,在直三棱柱(側(cè)棱與底面垂直的三棱柱)D為BC的中點(diǎn),求證:
AC1//平面AB1D
B
C
總結(jié):線面平行證明的三種方法中,多數(shù)題目其實(shí)都可以用第一、二種方法得到解決,因此前二種方法是首先。第三種方法雖然證明過程長,但其思路是很固定的,實(shí)踐過程中更容易為同學(xué)們所掌握。一個(gè)題目可能有幾種證法,同學(xué)們練習(xí)時(shí)可以三種方法都去試一試,看看有幾種辦法可以解決。在熟悉以后,解題過程中可按照招式一、二、三的順序依次去思考。
1.如圖,在四棱錐P?ABCD中,ABCD是平行四邊形,M,N分別是AB,PC的中點(diǎn).
求證:MN//平面PAD.
2.如圖,在正四棱錐P?ABCD中,PA?AB?a,點(diǎn)E在棱PC上. 問點(diǎn)E在何處時(shí),PA//平面EBD,并加以證明.P
E
C
A
B
3.如圖,在直三棱柱ABC-A1B1C1中, D為AC的中點(diǎn),求證:AB1//平面BC1D;
AA
D
C
B1
C1
4.在四面體ABCD中,M,N分別是面△ACD,△BCD的重心,則四面體的四個(gè)面中與MN平行的是________.5.如下圖所示,四個(gè)正方體中,A,B為正方體的兩個(gè)頂點(diǎn),M,N,P分別為其所在棱的中點(diǎn),能得到AB//面MNP的圖形的序號(hào)的是
①②③④
6.如圖,正三棱柱ABC?A1B1C1的底面邊長是2,3,D是AC的中點(diǎn).求證:B1C//平面A1BD.A
7.a(chǎn),b是兩條異面直線,A是不在a,b上的點(diǎn),則下列結(jié)論成立的是
A.過A有且只有一個(gè)平面平行于a,bB.過A至少有一個(gè)平面平行于a,b
C.過A有無數(shù)個(gè)平面平行于a,bD.過A且平行a,b的平面可能不存在8.設(shè)平面?∥β,A,C∈?,B,D∈β,直線AB與CD交于S,若AS=18,BS=9,CD=34,則CS=_____________.9.如下圖,正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為棱AB,CC1的中點(diǎn),在平面ADD1A1內(nèi)且與平面D1EF平行的直線()
A.不存在B.有1條C.有2條D.有無數(shù)條
10.如圖所示:設(shè)P
上的點(diǎn),AMDN且?MBNP
11.求證:MN//平面PBC如圖所示,在棱長為a的正方體ABCD?A1B1C1D1中,E,F(xiàn),P,Q分別是BC,C1D1,AD1,BD的中點(diǎn).
(1)求證:PQ//平面DCC1D1(2)求PQ的長.
(3)求證:EF//平面BB1D1D.