欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      證明方法

      時間:2019-05-13 03:03:09下載本文作者:會員上傳
      簡介:寫寫幫文庫小編為你整理了多篇相關(guān)的《證明方法》,但愿對你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫還可以找到更多《證明方法》。

      第一篇:證明方法

      2.2直接證明與間接證明BCA案

      主備人:史玉亮 審核人:吳秉政使用時間:2012年2-1

      1學(xué)習(xí)目標(biāo):

      1.了解直接證明的兩種基本方法,即綜合法和分析法。了解間接證明的一種基本方法——反證法。

      2.了解綜合法和分析法的思考過程與特點(diǎn),并會用兩種方法證明。了解反證法的解題步驟,思維過程及特點(diǎn)。

      重點(diǎn):

      1.對綜合法和分析法的考查是本課的重點(diǎn)。應(yīng)用反證法解決問題是本課考查的熱點(diǎn)。

      2.命題時多以考查綜合法為主,選擇題、填空題、解答題均有可能出現(xiàn)。反證法僅作為客觀題的判斷方法不會單獨(dú)命題。

      B案

      一、直接證明

      1.定義:直接證明是從___________或___________出發(fā)的,根據(jù)已知的_________、________________,直接推證結(jié)論的真實(shí)性。

      2.直接證明的方法:______________與________________。

      二、綜合法

      1.定義:綜合法是從___________推導(dǎo)到______________的思維方法。具體地說,綜合法 從__________除法,經(jīng)過逐步的___________,最后達(dá)到_______________。

      ? ?

      ? ? ?

      三、分析法

      1.定義:分析法是從__________追溯到__________的思維方法,具體地說,分析法是從________出發(fā),一步一步尋

      求結(jié)論成立的____________,最后達(dá)到

      _________或__________。

      ?

      ? ? ? ?

      四、反證法的定義

      由證明p?q轉(zhuǎn)向證明?p?r?????t,t與_________矛盾,或與某個________矛盾,從而判定_________,推出___________的方法,叫做反證法。

      預(yù)習(xí)檢測:

      1.已知|x|<1,|y|<1,下列各式成立的是()

      A.|x?y|?|x?y|≥2B.x?yC.xy?1?x?yD.|x|?|y|

      ln2ln3ln5,b?,c?,則()23

      5A.a?b?cB.c?b?aC.c?a?bD.b?a?c 2.若a?

      3.命題“三角形中最多只有一個內(nèi)角是直角”的結(jié)論的否定是()

      A.有兩個內(nèi)角是直角

      B.有三個內(nèi)角是直角

      C.至少有兩個內(nèi)角是直角

      D.沒有一個內(nèi)角是直角

      4.a?b?c?d的必要不充分條件是()

      A.a?cB.b?dC.a?c且b?dD.a?c或b?d

      5.“自然數(shù)a,b,c中恰有一個是偶數(shù)”的反證法設(shè)為()

      A.自然數(shù)a,b,c都是奇數(shù)B.自然數(shù)a,b,c都是偶數(shù)

      C.自然數(shù)a,b,c中至少有兩個是偶數(shù)D.自然數(shù)a,b,c中都是奇數(shù)或至少有兩個偶數(shù)

      6.已知a是整數(shù),a2為偶數(shù),求證:a也是偶數(shù)。

      C案

      一、綜合法

      例1求證:12

      3log19?log19?19?

      253log2

      2.已知n是大于1的自然數(shù),求證:log(n?1)?log(n?2)

      n(n?1)

      二、分析法

      例2.求證??

      2變式突破: 已知a,b,c表示三角形的三邊,m?0,求證:

      三、反證法:

      例3.(1)證明:2不是有理數(shù)。

      變式突破:若a、b、c均為實(shí)數(shù),且a?x?2y?

      求證:a、b、c中至少有一個大于0.2abc?? a?mb?mc?m?2,b?y2?2z??3,c?z2?2x??6.當(dāng)堂檢測:

      1.“x?

      0”是“?0”成立的()

      A.充分非必要條件 B.必要非充分條件 C.非充分非必要條件 D.充要條件

      2.設(shè)a?log54,b?(log53)2,c?log45,則()

      A.a?c?bB.b?c?aC.a?b?cD.b?a?c

      3.設(shè)x,y,z?R?,a?x?111,b?y?,c?z?,則a,b,c三數(shù)()yzx

      A.至少有一個不大于2B.都小于2C.至少有一個不小于2D.都大于

      22224.若下列方程:x?4ax?4a?3?0,x?(a?1)x?a?0,x?2ax?2a?0至少有2

      一個方程有實(shí)根,試求實(shí)數(shù)a的取值范圍。

      A案

      1.A、B為△ABC的內(nèi)角,∠A>∠B是sinA?sinB的()

      A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件

      2.若向量a?(x,3)(x?R),則“x?4”是“|a|?5”的()

      A.充分不必要條件 B.必要而不充分條件 C.充要條件D.既不充分又不必要條件

      3.已知數(shù)列{an}為等比數(shù)列,Sn是它的前n項(xiàng)的和,若a2?a3?2a1且a4與2a7的等差中項(xiàng)為5,則S5=()A.35B.33C.31D.29

      44.定義在R上的函數(shù)f(x)滿足f(x?y)?f(x)?f(y)?2xy(x,y?R),f(1)?2,則f(?2)等于()A.2B.3C.6D.9

      5.分析法證明問題是從所證命題的結(jié)論出發(fā),尋求使這個結(jié)論成立的()

      A.充分條件B.必要條件C.重要條件D.既非充分條件又非必要條件

      6.下面四個不等式:①a?b?c≥ab?bc?ca;②a(1?a)≤2221ba;③?≥2; 4ab

      ④(a2?b2)?(c2?d2)≥(ac?bd)2,其中恒成立有()A.1個 B.2個 C.3個 D.4個

      7.若x,y?0且x?y?2,則1?y1?x1?y1?x和的值滿足()A.和的中至少xxyy

      有一個小于2B.1?y1?x1?y1?x和都小于2C.和都大于2D.不確定 xxyy

      8.已知?、?為實(shí)數(shù),給出下列三個論斷:

      ①???0;②|???|?

      5;③|?|??|?個論斷為結(jié)論,寫出你認(rèn)為正確的命題是______________。

      9.設(shè)a?0,b?0,c?0,若a?b?c?1,則

      111??≥______________。abc

      第二篇:證明不等式方法

      不等式的證明是高中數(shù)學(xué)的一個難點(diǎn),題型廣泛,涉及面廣,證法靈活,錯法多種多樣,本節(jié)通這一些實(shí)例,歸納整理證明不等式時常用的方法和技巧。1比較法

      比較法是證明不等式的最基本方法,具體有“作差”比較和“作商”比較兩種?;舅枷胧前央y于比較的式子變成其差與0比較大小或其商與1比較大小。當(dāng)求證的不等式兩端是分項(xiàng)式(或分式)時,常用作差比較,當(dāng)求證的不等式兩端是乘積形式(或冪指數(shù)式時常用作商比較)

      例1已知a+b≥0,求證:a3+b3≥a2b+ab

      2分析:由題目觀察知用“作差”比較,然后提取公因式,結(jié)合a+b≥0來說明作差后的正或負(fù),從而達(dá)到證明不等式的目的,步驟是10作差20變形整理30判斷差式的正負(fù)。

      ∵(a3+b3)(a2b+ab2)

      =a2(a-b)-b2(a-b)

      =(a-b)(a2-b2)

      證明: =(a-b)2(a+b)

      又∵(a-b)2≥0a+b≥0

      ∴(a-b)2(a+b)≥0

      即a3+b3≥a2b+ab2

      例2 設(shè)a、b∈R+,且a≠b,求證:aabb>abba

      分析:由求證的不等式可知,a、b具有輪換對稱性,因此可在設(shè)a>b>0的前提下用作商比較法,作商后同“1”比較大小,從而達(dá)到證明目的,步驟是:10作商20商形整理30判斷為與1的大小

      證明:由a、b的對稱性,不妨解a>b>0則

      aabbabba=aa-bbb-a=(ab)a-b

      ∵ab0,∴ab1,a-b0

      ∴(ab)a-b(ab)0=1即aabbabba>1,又abba>0∴aabb>abba

      練習(xí)1 已知a、b∈R+,n∈N,求證(a+b)(an+bn)≤2(an+1+bn+1)2基本不等式法

      利用基本不等式及其變式證明不等式是常用的方法,常用的基本不等式及變形有:

      (1)若a、b∈R,則a2+b2≥2ab(當(dāng)且僅當(dāng)a=b時,取等號)

      (2)若a、b∈R+,則a+b≥ 2ab(當(dāng)且僅當(dāng)a=b時,取等號)

      (3)若a、b同號,則 ba+ab≥2(當(dāng)且僅當(dāng)a=b時,取等號)

      例3 若a、b∈R,|a|≤1,|b|≤1則a1-b2+b1-a2≤

      1分析:通過觀察可直接套用: xy≤x2+y2

      2證明: ∵a1-b2b1-a2≤a2+(1-b2)2+b2-(1-a2)2=1

      ∴b1-a2+a1-b2≤1,當(dāng)且僅當(dāng)a1+b2=1時,等號成立

      練習(xí)2:若 ab0,證明a+1(a-b)b≥

      33綜合法

      綜合法就是從已知或已證明過的不等式出發(fā),根據(jù)不等式性質(zhì)推算出要證明不等式。

      例4,設(shè)a0,b0,a+b=1,證明:(a+1a)2+(B+1b)2≥252

      證明:∵ a0,b0,a+b=1

      ∴ab≤14或1ab≥

      4左邊=4+(a2+b2)=1a2+1b2=4+[(a+b)2-2ab]+(a+b)2-2aba2b2

      =4+(1-2ab)+1-2aba2b2≥4+(1-12)+8=252

      練習(xí)3:已知a、b、c為正數(shù),n是正整數(shù),且f(n)=1gan+bn+cn

      3求證:2f(n)≤f(2n)

      4分析法

      從理論入手,尋找命題成立的充分條件,一直到這個條件是可以證明或已經(jīng)證明的不等式時,便可推出原不等式成立,這種方法稱為分析法。

      例5:已知a0,b0,2ca+b,求證:c-c2-ab<a<c+c2-ab

      分析:觀察求證式為一個連鎖不等式,不易用比較法,又據(jù)觀察求證式等價于 |a-c|<c2-ab也不適用基本不等式法,用分析法較合適。

      要證c-c2-ab<a<c+c2-ab

      只需證-c2-ab<a-c<c2-ab

      證明:即證 |a-c|<c2-ab

      即證(a-c)2<c2-ab

      即證 a2-2ac<-ab

      ∵a>0,∴即要證 a-2c<-b 即需證2+b<2c,即為已知

      ∴ 不等式成立

      練習(xí)4:已知a∈R且a≠1,求證:3(1+a2+a4)>(1+a+a2)

      25放縮法

      放縮法是在證明不等式時,把不等式的一邊適當(dāng)放大或縮小,利用不等式的傳遞性來證明不等式,是證明不等式的重要方法,技巧性較強(qiáng)常用技巧有:(1)舍去一些正項(xiàng)(或負(fù)項(xiàng)),(2)在和或積中換大(或換?。┠承╉?xiàng),(3)擴(kuò)大(或縮小)分式的分子(或分母)等。

      例6:已知a、b、c、d都是正數(shù)

      求證: 1<ba+b+c+cb+c+d+dc+d+a+ad+a+b<

      2分析:觀察式子特點(diǎn),若將4個分式商為同分母,問題可解決,要商同分母除通分外,還可用放縮法,但通分太麻煩,故用放編法。

      證明:∵ba+b+c+cb+c+d+dc+d+a+ad+a+b>

      ba+b+c+d+ca+b+c+d+da+b+c+d+aa+b+c+d=a+b+c+da+b+c+d=

      1又由ab<a+mb+m(0<a<b,m>0)可得:ba+b+c<b+da+b+c+dcb+c+d<c+aa+b+c+ddc+d+a<d+bc+d+a+dad+a+b<a+ca+b+c+d

      ∴ ba+b+c+cb+c+d+dc+d+a+ad+a+b<

      b+da+b+c+d+c+aa+b+c+d+d+bc+d+a+d+a+ca+b+c+d=2(a+b+c+c)a+b+c+d=2

      綜上知:1<ba+b+c+cb+c+d+dc+d+a+ad+a+b<2

      練習(xí)5:已知:a<2,求證:loga(a+1)<1

      6換元法

      換元法是許多實(shí)際問題解決中可以起到化難為易,化繁為簡的作用,有些問題直接證明較為困難,若通過換元的思想與方法去解就很方便,常用于條件不等式的證明,常見的是三角換元。

      (1)三角換元:

      是一種常用的換元方法,在解代數(shù)問題時,使用適當(dāng)?shù)娜呛瘮?shù)進(jìn)行換元,把代數(shù)問題轉(zhuǎn)化成三角問題,充分利用三角函數(shù)的性質(zhì)去解決問題。

      7、若x、y∈R+,且 x-y=1 A=(x-1y)(y+1y)。1x,求證0<A<

      1證明: ∵x,y∈R+,且x-y=1,x=secθ,y=tanθ,(0<θ<xy)

      ∴ A=(secθ-1secθ(tanθ+1tanθ·1sec2θ

      =1-cos2θcosθ·s2m2θ+cos2θcosθ·s2mθ·cos2θ

      =sinθ

      ∵0<θ<x2,∴ 0<s2mθ <1因此0<A<1

      復(fù)習(xí)6:已知1≤x2+y2≤2,求證:12 ≤x2-xy+y2≤

      3(2)比值換元:

      對于在已知條件中含有若干個等比式的問題,往往可先設(shè)一個輔助未知數(shù)表示這個比值,然后代入求證式,即可。

      例8:已知 x-1=y+12=z-23,求證:x2+y2+z2≥431

      4證明:設(shè)x-1=y+12=z-23=k

      于是x=k+1,y=zk-1,z=3k+

      2把上式代入x2+y2+z2=(k+1)2(2k-1)2+(3k+2)2

      =14(k+514)2+4314≥4314

      7反證法

      有些不等式從正面證如果不好說清楚,可以考慮反證法,即先否定結(jié)論不成立,然后依據(jù)已知條件以及有關(guān)的定義、定理、公理,逐步推導(dǎo)出與定義、定理、公理或已知條件等相矛盾或自相矛盾的結(jié)論,從而肯定原有結(jié)論是正確的,凡是“至少”、“唯一”或含有否定詞的命題,適宜用反證法。

      例9:已知p3+q3=2,求證:p+q≤

      2分析:本題已知為p、q的三次,而結(jié)論中只有一次,應(yīng)考慮到用術(shù)立方根,同時用放縮法,很難得證,故考慮用反證法。

      證明:解設(shè)p+q>2,那么p>2-q

      ∴p3>(2-q)3=8-12q+6q2-q

      3將p3+q3 =2,代入得 6q2-12q+6<0

      即6(q-1)2<0 由此得出矛盾∴p+q≤

      2練習(xí)7:已知a+b+c>0,ab+bc+ac>0,abc>0.求證:a>0,b>0,c>0

      8數(shù)學(xué)歸納法

      與自然數(shù)n有關(guān)的不等式,通常考慮用數(shù)學(xué)歸納法來證明。用數(shù)學(xué)歸納法證題時的兩個步驟缺一不可。

      例10:設(shè)n∈N,且n>1,求證:(1+13)(1+15)…(1+12n-1)>2n+12

      分析:觀察求證式與n有關(guān),可采用數(shù)學(xué)歸納法

      證明:(1)當(dāng)n=2時,左= 43,右=52

      ∵43>52∴不等式成立

      (2)假設(shè)n=k(k≥2,k∈n)時不等式成立,即(1+13)(1+15)…(1+12k-1)>2k+12 那么當(dāng)n=k+1時,(1+13)(1+15)…(1+12k-1)(1+12k+1)>2k+12·(1+12k+1)①

      要證①式左邊>2k+32,只要證2k+12·

      2k+22k+1>2k+32②

      對于②〈二〉2k+2>2k+1·2k+3

      〈二〉(2k+2)2>(2k+1)(2k+3)

      〈二〉4k2+8k+4>4k2+8k+3

      〈二〉4>3③

      ∵③成立 ∴②成立,即當(dāng)n=k+1時,原不等式成立

      由(1)(2)證明可知,對一切n≥2(n∈N),原不等式成立

      練習(xí)8:已知n∈N,且n>1,求證: 1n+1+1n+2+…+12n>132

      49構(gòu)造法

      根據(jù)求證不等式的具體結(jié)構(gòu)所證,通過構(gòu)造函數(shù)、數(shù)列、合數(shù)和圖形等,達(dá)到證明的目的,這種方法則叫構(gòu)造法。

      1構(gòu)造函數(shù)法

      例11:證明不等式:x1-2x <x2(x≠0)

      證明:設(shè)f(x)=x1-2x-x2(x≠0)

      ∵f(-x)

      =-x1-2-x+x2x-2x2x-1+x

      2=x1-2x-[1-(1-2x)]+x2=x1-2x-x+x2

      =f(x)

      ∴f(x)的圖像表示y軸對稱

      ∵當(dāng)x>0時,1-2x<0,故f(x)<0

      ∴當(dāng)x<0時,據(jù)圖像的對稱性知f(x)<0

      ∴當(dāng)x≠0時,恒有f(x)<0 即x1-2x<x2(x≠0)

      練習(xí)9:已知a>b,2b>a+c,求證:b-b2-ab<a<b+b2-ab

      2構(gòu)造圖形法

      例12:若f(x)=1+x2,a≠b,則|f(x)-f(b)|< |a-b|

      分析:由1+x2 的結(jié)構(gòu)可知這是直角坐標(biāo)平面上兩點(diǎn)A(1,x),0(0,0)的距離即 1+x2 =(1-0)2+(x-0)2

      于是如下圖,設(shè)A(1,a),B(1,b)則0A= 1+a2 0B=1+b2

      |AB|=|a-b|又0A|-|0B<|AB|∴|f(a)-f(b)|<|a-b|

      練習(xí)10:設(shè)a≥c,b≥c,c≥0,求證 c(a-c)+c(b-c)≤ab

      10添項(xiàng)法

      某些不等式的證明若能優(yōu)先考慮“添項(xiàng)”技巧,能得到快速求解的效果。

      1倍數(shù)添項(xiàng)

      若不等式中含有奇數(shù)項(xiàng)的和,可通過對不等式乘以2變成偶數(shù)項(xiàng)的和,然后分組利用已知不等式進(jìn)行放縮。

      例13:已知a、b、c∈R+,那么a3+b3+c3≥3abc(當(dāng)且僅當(dāng)a=b=c時等號成立)證明:∵a、b、c∈R+

      ∴a3+b3+c3=12 [(a3+b3)+(b3+c3)+(c3+a3)]≥12 [(a2b+ab2)+(b2c+bc2)+(c2a+ca2)]=12[a(b2+c2)+b(c2+a2)+c(a2+b2)]≥12(a·2bc+b·2ca+c·2ac)=3abc

      當(dāng)且僅當(dāng)a=b,b=c,c=a即a=b=c時,等號成立。

      2平方添項(xiàng)

      運(yùn)用此法必須注意原不等號的方向

      例14 :對于一切大于1的自然數(shù)n,求證:

      (1+13)(1+15)…(1+12n-1> 2n+1 2)

      證明:∵b > a> 0,m> 0時ba> b+ma+m

      ∵ [(1+13)(1+15)…(1+12n-1)]2=(43、65…2n2n-1)(43、65…2n2n-1)>(54、76…2n+12n)(43、65…2n2n-1)=2n+13> 2n+14>

      ∴(1+13)(1+15)…(1+12n-1)>2n+1 2)

      3平均值添項(xiàng)

      例15:在△ABC中,求證sinA+sinB+sinC≤3

      32分析:∵A+B+C=π,可按A、B、C的算術(shù)平均值添項(xiàng)sin π

      3證明:先證命題:若x>0,y<π,則sinx+siny≤2sin x+y2(當(dāng)且僅當(dāng)x=y時等號成立)∵0<x+y2< π,-π2< x-y2< π2sinx+siny=2sin x+y2cosx-y

      2∴上式成立

      反復(fù)運(yùn)用這個命題,得sinA+sinB+sinC+sin π3≤2sinA+B2+2sinc+π32≤2·2sinA+B2+c+π322 =4sinπ3=332

      ∴sinA+sinB≠sinC≤332

      練習(xí)11 在△ABC中,sin A2sinB2sinC2≤18

      4利用均值不等式等號成立的條件添項(xiàng)

      例16 :已知a、b∈R+,a≠b且a+b=1,求證a4+b4> 18

      分析:若取消a≠b的限制則a=b= 12時,等號成立

      證明:∵a、b∈R+∴a4+3(12)4 ≥ 44a4 [(12)4]3=12a①

      同理b4+3(12)4 ≥b②

      ∴a4+b4≥12(a+b)-6(12)4=12-6(12)4=18③

      ∵a≠b ∴①②中等號不成立∴③中等號不成立∴ 原不等式成立

      1.是否存在常數(shù)c,使得不等式 x2x+y+yx+2y≤c≤xx+2y+y2x+y對任意正數(shù)x,y恒成立? 錯解:證明不等式x2x+y+ yx+2y≤xx+2y+y2x+y恒成立,故說明c存在。

      正解:x=y得23 ≤c≤23,故猜想c= 23,下證不等式 x2x+y+ yx+2y≤23≤xx+2y+y2x+y恒成立。要證不等式xx+2y+xx+2y≤23,因?yàn)閤,y是正數(shù),即證3x(x+2y)+3y(2x+y)≤2(2 x+y)(x+2y),也即證3x2+12xy+3y2 ≤2(2x2+2y2+5xy),即2xy≤x2+y2,而此不等式恒成立,同理不等式 23≤xx+2y+y2x+y也成立,故存在c=23 使原不等式恒成立。

      6.2已知x,y,z∈R+,求證:x2y2+y2z2+z2x2x+y+z ≥ xyz

      錯解:∵ x2y2+y2z2+z2x2≥ 3 3x2y2y2z2z2x2=3xyz3xyz 又x+y+z ≥ 3xyz ∴x2y2+y2z2+z2x2x+y+z≥ 3xyz33xyz33xyz=xyz

      錯因:根據(jù)不等式的性質(zhì):若a >b> 0,c >d >0,則ac bd,但 ac>bd卻不一定成立 正解:x2y2+y2z2≥ 2x y2z,y2z2+z2x2≥ 2x yz2,x2y2+z2x2≥ 2x 2yz,以上三式相加,化簡得:x2y2+y2z2+z2x2≥xyz(x+y+z),兩邊同除以x+y+z:

      x2y2+y2z2+z2x2x+y+z ≥ xyz

      6.3 設(shè)x+y>0,n為偶數(shù),求證yn-1xn+xn-1yn≥

      1x 1y

      錯證:∵yn-1xn+xn-1yn-1x-1y

      =(xn-yn)(xn-1-yn-1)xnyn

      n為偶數(shù),∴ xnyn >0,又xn-yn和xn-1-yn-

      1同號,∴yn-1xn+xn-1yn≥ 1x-1y

      錯因:在x+y>0的條件下,n為偶數(shù)時,xn-yn和xn-1-yn-1不一定同號,應(yīng)分x、y同號和異號兩種情況討論。

      正解:應(yīng)用比較法:

      yn-1xn+xn-1yn-1x-1y=(xn-yn)(xn-1-yn-1)xnyn

      ① 當(dāng)x>0,y>0時,(xn-yn)(xn-1-yn-1)≥ 0,(xy)n >0

      所以(xn-yn)(xn-1-yn-1)xnyn

      ≥0故:yn-1xn+xn-1yn≥ 1x-1y

      ② 當(dāng)x,y有一個是負(fù)值時,不妨設(shè)x>0,y<0,且x+y>0,所以x>|y|

      又n為偶數(shù)時,所以(xn-yn)(xn-1-yn-1)>0 又(xy)n >0,所以(xn-yn)(xn-1-yn-1)xnyn ≥0即 yn-1xn+xn-1yn≥ 1x-1y

      綜合①②知原不等式成立

      第三篇:韓信點(diǎn)兵方法證明

      關(guān)于韓信點(diǎn)兵問題

      公式的證明

      設(shè):第一次每排A人,最后剩余a人,第二次每排B人,最后剩余b人,第三次每排C人,最后剩余c人。按照求解方法的步驟是:

      第一步

      1找到滿足下列條件的k1、k2: ○

      (B×C)·k1=A·k2+

      12將上面的等式兩邊擴(kuò)大a(第一次最后剩余人數(shù))倍 ○

      1式或:(B×C)·a ·k1=A·a·k2+a,……○

      [(B×C)·a ·k1]÷A=a·k2……a第二步同法:

      1找到滿足下列條件的k3、k4: ○

      (A×C)·k3=B·k4+1

      2將上面的等式兩邊擴(kuò)大b(第二次最后剩余人數(shù))倍 ○

      2式或(A×C)·b·k3=B·b·k4+b……○

      [(A×C)·b·k3]÷B=b·k4……b第三步同法:

      3式或(A×B)·c ·k5 =C·c·k6+c……○

      [(A×B)·c ·k5]÷C=c·k6……c

      1○2○3式相加,并驗(yàn)證 第四步把○

      1式(B×C)·a·k1= A·a·k2+a……○

      2式(A×C)·b·k3 = B·b·k4+b……○

      3式(A×B)·c·k5= C·c·k6+c……○

      1○2○3式左邊相加 驗(yàn)證:○

      1式說明左邊除以A,余a ○

      2式說明左邊除以A,無余數(shù); ○

      3式說明左邊除以A,也無余數(shù); ○

      1○2○3式相加,和除以A,余數(shù)必然是a;把○

      同理:

      1○2○3式相加,和除以B,余數(shù)必然是b;把○

      1○2○3式相加,和除以C,余數(shù)必然是c;把○

      最后總結(jié)一下:

      該數(shù)=(B×C)·a·ka+(A×C)·b·kb+(A×B)·c·kc其中:

      ka 滿足:(B×C)·ka= An+1取最小 kb 滿足:(A×C)·kb = Bn+1取最小 kc 滿足:(A×B)·kc= Cn+1取最小

      第四篇:立體幾何證明方法

      立體幾何證明方法

      一、線線平行的證明方法:

      1、利用平行四邊形。

      2、利用三角形或梯形的中位線

      3、如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線就和交線平行。(線面平行的性質(zhì)定理)

      4、如果兩個平行平面同時和第三個平面相交,那么它們的交線平行。(面面平行的性質(zhì)定理)

      5、如果兩條直線垂直于同一個平面,那么這兩條直線平行。(線面垂直的性質(zhì)定理)

      6、平行于同一條直線的兩條直線平行。

      二、線面平行的證明方法:

      1、定義法:直線與平面沒有公共點(diǎn)。

      2、如果平面外一條直線和這個平面內(nèi)的一條直線平行,那么這條直線和這個平面平行。(線面平行的判定定理)

      3、兩個平面平行,其中一個平面內(nèi)的任何一條直線必平行于另一個平面。

      三、面面平行的證明方法:

      1、定義法:兩平面沒有公共點(diǎn)。

      2、如果一個平面內(nèi)有兩條相交直線都平行于另一個平面,那么這兩個平面平行。(面面平行的判定定理)

      3、平行于同一平面的兩個平面平行

      4、經(jīng)過平面外一點(diǎn),有且只有一個平面和已知平面平行。

      5、垂直于同一直線的兩個平面平行。

      四、線線垂直的證明方法

      1、勾股定理。

      2、等腰三角形。

      3、菱形對角線。

      4、圓所對的圓周角是直角。

      5、點(diǎn)在線上的射影。6利用向量來證明。

      7、如果一條直線和一個平面垂直,那么這條直線就和這個平面內(nèi)任意的直線都垂直。

      8、如果兩條平行線中的一條垂直于一條直線,則另一條也垂直于這條直線。

      五、線面垂直的證明方法:

      1、定義法:直線與平面內(nèi)任意直線都垂直。

      2、點(diǎn)在面內(nèi)的射影。

      3、如果一條直線和一個平面內(nèi)的兩條相交直線垂直,那么這條直線垂直于這個平面。(線面垂直的判定定理)

      4、如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于它們交線的直線垂直于另一個平面。(面面垂直的性質(zhì)定理)

      5、兩條平行直線中的一條垂直于平面,則另一條也垂直于這個平面

      6、一條直線垂直于兩平行平面中的一個平面,則必垂直于另一個平面。

      7、兩相交平面同時垂直于第三個平面,那么兩平面交線垂直于第三個平面。

      8、過一點(diǎn),有且只有一條直線與已知平面垂直。

      9、過一點(diǎn),有且只有一個平面與已知直線垂直。

      六、面面垂直的證明方法:

      1、定義法:兩個平面的二面角是直二面角。

      2、如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直。(面面垂直的判定定理)

      3、如果一個平面與另一個平面的垂線平行,那么這兩個平面互相垂直。

      4、如果一個平面與另一個平面的垂面平行,那么這兩個平面互相垂直。

      第五篇:不等式證明若干方法

      安康學(xué)院 數(shù)統(tǒng)系數(shù)學(xué)與應(yīng)用數(shù)學(xué) 專業(yè) 11 級本科生

      論文(設(shè)計(jì))選題實(shí)習(xí)報告

      11級數(shù)學(xué)與應(yīng)用數(shù)學(xué)專業(yè)《科研訓(xùn)練2》評分表

      注:綜合評分?60的為“及格”; <60分的為“不及格”。

      下載證明方法word格式文檔
      下載證明方法.doc
      將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
      點(diǎn)此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報,并提供相關(guān)證據(jù),工作人員會在5個工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        數(shù)學(xué)證明方法

        數(shù)學(xué)證明方法摘要:數(shù)學(xué)證明是數(shù)學(xué)學(xué)習(xí)中非常重要的一部分,數(shù)學(xué)證明有核實(shí)作用,理解作用,發(fā)現(xiàn)作用和思維訓(xùn)練作用,數(shù)學(xué)證明常用的方法有綜合法、分析法、反證法、數(shù)學(xué)歸納法等等。......

        數(shù)學(xué)證明方法

        數(shù)學(xué)證明方法 1 直接證明法 從正面證明命題真實(shí)性的證明方法叫做直接證法.凡是用演繹法證明命題真實(shí)性的都是直接證法.它是中學(xué)數(shù)學(xué)中常用的證明方法.綜合法、分析法、分析綜......

        勾股定理證明方法

        勾股定理證明方法勾股定理的種證明方法(部分)【證法1】(梅文鼎證明)做四個全等的直角三角形,設(shè)它們的兩條直角邊長分別為a、b,斜邊長為c.把它們拼成如圖那樣的一個多邊形,使D、......

        勾股定理證明方法(精選)

        勾股定理證明方法勾股定理是初等幾何中的一個基本定理。所謂勾股定理,就是指在直角三角形中,兩條直角邊的平方和等于斜邊的平方。這個定理有十分悠久的歷史,幾乎所有文明古國(希......

        函數(shù)的證明方法

        一般地,對于函數(shù)f(x) ⑴如果對于函數(shù)f(x)定義域內(nèi)的任意一個x,都有f(x)=f(-x)或f(x)/f(-x)=1那么函數(shù)f(x)就叫做偶函數(shù)。關(guān)于y軸對稱,f(-x)=f(x)。 ⑵如果對于函數(shù)f(x)定義域內(nèi)的任意......

        不等式的一些證明方法

        數(shù)學(xué)系數(shù)學(xué)與應(yīng)用數(shù)學(xué)專業(yè)2009級年論文(設(shè)計(jì)) 不等式的一些證明方法 [摘要]:不等式是數(shù)學(xué)中非常重要的內(nèi)容,不等式的證明是學(xué)習(xí)中的重點(diǎn)和難點(diǎn),本文除總結(jié)不等式的常規(guī)證明......

        不等式的證明方法

        幾個簡單的證明方法一、比較法:a?b等價于a?b?0;而a?b?0等價于ab?1.即a與b的比較轉(zhuǎn)化為與0或1的比較.使用比較發(fā)時,關(guān)鍵是要作適當(dāng)?shù)淖冃?,如因式分解、拆?xiàng)、加減項(xiàng)、通分等,這是第一章......

        證明不等式方法探析

        §1 不等式的定義用不等號將兩個解析式連結(jié)起來所成的式子。在一個式子中的數(shù)的關(guān)系,不全是等號,含sinx?1,ex>0 ,2x<3,5x?5不等符號的式子,那它就是一個不等式.例如2x+2y?2xy,等。根據(jù)......