欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      數(shù)列求和說課

      時間:2019-05-12 21:53:12下載本文作者:會員上傳
      簡介:寫寫幫文庫小編為你整理了多篇相關(guān)的《數(shù)列求和說課》,但愿對你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫還可以找到更多《數(shù)列求和說課》。

      第一篇:數(shù)列求和說課

      數(shù)列求和說課

      一、教學(xué)內(nèi)容:

      數(shù)列求和是高考中的必考內(nèi)容,在高考中占據(jù)著非常重要的地位,學(xué)好數(shù)列求和對于高考成功起著非常關(guān)鍵的作用。數(shù)列求和方法中涵蓋有倒序相加法、錯位相減法、裂項相消法、拆項重組法等幾種方法。

      二、教學(xué)對象:

      高三(8)班學(xué)生

      三、教學(xué)重點:

      一些特殊數(shù)列的求和。

      四、教學(xué)難點:

      準(zhǔn)確分析數(shù)列特征,選擇合適的數(shù)列求和方法。

      五、教學(xué)目標(biāo)分析:

      1、知識目標(biāo):掌握數(shù)列求和的常見方法,并能運用這些方法解決一些簡單的數(shù)列求和問題;

      2、能力目標(biāo):培養(yǎng)學(xué)生分析問題、解決問題的能力和學(xué)習(xí)數(shù)學(xué)的興趣。

      3、情感目標(biāo):培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,鍛煉學(xué)生遇到困難不氣餒的堅強意志和勇于創(chuàng)新的精神。

      六、學(xué)生情況分析:

      高三(8)班是高三藝術(shù)重點班。班上學(xué)生基礎(chǔ)知識掌握相較于其他藝術(shù)班比較踏實,但是相對于文化班的學(xué)生來說還是比較薄弱。所以在教學(xué)時應(yīng)適當(dāng)考慮學(xué)生的實際水平盡量將

      七、教學(xué)方法分析:

      教法:數(shù)學(xué)是一門培養(yǎng)和發(fā)展人的思維的重要學(xué)科,因此在教學(xué)中不僅要讓學(xué)生“知其然”,還要“知其所以然”,為了體現(xiàn)以學(xué)生發(fā)展為本,遵循學(xué)生的認(rèn)知規(guī)律,體現(xiàn)循序漸進和啟發(fā)式教學(xué)原則,我進行這樣的教學(xué)設(shè)計:在教師的引導(dǎo)下,創(chuàng)設(shè)情景,通過開放式問題的設(shè)置來啟發(fā)學(xué)生進行思考,在思考中體會特殊數(shù)列蘊涵的數(shù)學(xué)方法和思想,使之獲得內(nèi)心感受。同時依據(jù)藝術(shù)班學(xué)生的特殊性在教學(xué)上盡量將有關(guān)數(shù)列的內(nèi)容和公式詳盡的給學(xué)生說明。

      教學(xué)手段:利用多媒體和PPT軟件進行輔助教學(xué)。

      八、教學(xué)情境分析:

      1、引入:利用歷年高考中的真題引出數(shù)列求和在高三學(xué)生學(xué)習(xí)中的重要性。

      2、內(nèi)容講解:在介紹特殊數(shù)列求和的過程中通過實例進行引入。

      3、練習(xí):高考實例練習(xí)。

      4、課堂小結(jié):特殊數(shù)列求和的五種方法。

      5、作業(yè):高考實例。

      九、教學(xué)評價與反饋

      根據(jù)高三學(xué)生心理特點、教學(xué)內(nèi)容、遵循因材施教原則和啟發(fā)性教學(xué)思想,本節(jié)課的教學(xué)策略與方法我采用規(guī)則學(xué)習(xí)和問題解決策略,即“案例—公式—應(yīng)用”,案例為淺層次要求,使學(xué)生有概括印象。公式為中層次要求,由淺入深,重難點集中推導(dǎo)講解,便于突破。應(yīng)用為綜合要求,多角度、多情境中消化鞏固所學(xué),反饋驗證本堂內(nèi)容教學(xué)目標(biāo)的落實。

      南昌市實驗中學(xué)

      2012年5月10日

      第二篇:數(shù)列求和問題

      數(shù)列求和問題·教案

      教學(xué)目標(biāo)

      1.初步掌握一些特殊數(shù)列求其前n項和的常用方法.

      2.通過把某些既非等差數(shù)列,又非等比數(shù)列的數(shù)列化歸成等差數(shù)列或等比數(shù)列求和問題,培養(yǎng)學(xué)生觀察、分析問題的能力,以及轉(zhuǎn)化的數(shù)學(xué)思想.

      教學(xué)重點與難點

      重點:把某些既非等差數(shù)列,又非等比數(shù)列的數(shù)列化歸成等差數(shù)列或等比數(shù)列求和. 難點:尋找適當(dāng)?shù)淖儞Q方法,達(dá)到化歸的目的. 教學(xué)過程設(shè)計

      (一)復(fù)習(xí)引入

      在這之前我們知道一般等差數(shù)列和等比數(shù)列的求和,但是有時候題目中給我們的數(shù)列并不是一定就是等比數(shù)列和等差數(shù)列,有可能就是等差數(shù)列和等比數(shù)列相結(jié)合的形式出現(xiàn)在我們面前,對于這樣形式的數(shù)列我們該怎么解決,又該用什么方法?

      二、復(fù)習(xí)預(yù)習(xí)

      通過學(xué)習(xí)我們掌握了是不是等差等比數(shù)列的判斷,同時我們也掌握也一般等差或者等比數(shù)列的一些性質(zhì)和定義,那么對于題中給我們的數(shù)列既不是等差也不是等比的數(shù)列怎么求和呢,帶著這樣的問題來學(xué)習(xí)今天的內(nèi)容

      三、知識講解 考點

      1、公式法

      如果一個數(shù)列是等差、等比數(shù)列或者是可以轉(zhuǎn)化為等差、等比數(shù)列的數(shù)列,我們可以運用等差、等比數(shù)列的前n項和的公式來求.1、等差數(shù)列求和公式:Sn?n(a1?an)n(n?1)?na1?d 22(q?1)?na1?

      2、等比數(shù)列求和公式:Sn??a1(1?qn)a1?anq

      ?(q?1)?1?q?1?qn113、Sn??k?n(n?1)

      4、Sn??k2?n(n?1)(2n?1)

      26k?1k?1n15、Sn??k3?[n(n?1)]2

      2k?1n

      考點

      2、分組求和法

      有一類數(shù)列,它既不是等差數(shù)列,也不是等比數(shù)列.若將這類數(shù)列適當(dāng)拆開,可分為幾個等差、等比數(shù)列或常見的數(shù)列,然后分別求和,再將其合并即可.例求和:Sn??2?3?5?1???4?3?5?2???6?3?5?3?????2n?3?5?n? 解:Sn??2?3?5?1???4?3?5?2???6?3?5?3?????2n?3?5?n?

      ??2?4?6???2n??3?5?1?5?2?5?3???5?n?

      4,6,?,2n?練習(xí):求數(shù)列2,14181161,?的前n項和Sn. 2n?11?1?{2n},而數(shù)列是一個等差數(shù)列,數(shù)列?n?1?是一個等比

      2n?1?2?分析:此數(shù)列的通項公式是an?2n?數(shù)列,故采用分組求和法求解.

      1?11?111解:Sn?(2?4?6???2n)??2?3?4???n?1??n(n?1)??n?1.

      2?22?222小結(jié):在求和時,一定要認(rèn)真觀察數(shù)列的通項公式,如果它能拆分成幾項的和,而這些項分別構(gòu)成等差數(shù)列或等比數(shù)列,那么我們就用此方法求和.考點

      3、、倒序相加

      類似于等差數(shù)列的前n項和的公式的推導(dǎo)方法。如果一個數(shù)列{an},與首末兩項等距的兩項之和等于首末兩項之和,可采用正序?qū)懞团c倒序?qū)懞偷膬蓚€和式相加,就得到一個常數(shù)列的和。

      這一種求和的方法稱為倒序相加法.這是推導(dǎo)等差數(shù)列的前n項和公式時所用的方法,就是將一個數(shù)列倒過來排列(反序),再把它與原數(shù)列相加,就可以得到n個(a1?an).例求sin21??sin22??sin23??????sin288??sin289?的值

      解:設(shè)S?sin21??sin22??sin23??????sin288??sin289?????.①

      將①式右邊反序得

      S?sin289??sin288??????sin23??sin22??sin21?????..②(反序)

      又因為 sinx?cos(90??x),sin2x?cos2x?1

      ①+②得(反序相加)

      2S?(sin21??cos21?)?(sin22??cos22?)?????(sin289??cos289?)=89 ∴ S=44.5

      2x練習(xí):已知函數(shù)f?x??x 2?2(1)證明:f?x??f?1?x??1;

      ?1?(2)求f????10??2?f??????10??8?f????10??9?f??的值.?10?解:(1)先利用指數(shù)的相關(guān)性質(zhì)對函數(shù)化簡,后證明左邊=右邊(2)利用第(1)小題已經(jīng)證明的結(jié)論可知,?1?f????10??9??2?f???f????10??10??8?f??????10??8?f????10??2?f????10??5?f????10??5?f???1 ?10??1?令S?f????10??9?則S?f????10??2?f??????10??8?f??????10??9?f?? ?10??1?f?? ?10?兩式相加得:

      ?2S?9???

      ?1?f????10?9?9??f????9 所以S?.2?10??小結(jié):解題時,認(rèn)真分析對某些前后具有對稱性的數(shù)列,可以運用倒序相加法求和.考點

      4、裂相相消法

      把數(shù)列的通項拆成兩項之差,即數(shù)列的每一項都可按此法拆成兩項之差,在求和時一些正負(fù)項相互抵消,于是前n項的和變成首尾若干少數(shù)項之和,這一求和方法稱為裂項相消法。適用于類似?

      ?(其中{an}是各項不為零的等差數(shù)列,c為常數(shù))的數(shù)列、部分無理數(shù)列等。用裂項相消法求和,需要掌握一些常見的裂項方法:

      1,求它的前n項和Sn

      n(n?1)例、數(shù)列?an?的通項公式為an?解:Sn?a1?a2?a3???an?1?an

      ?11111 ??????1?22?33?4n?1nnn?1????1??11??1??11??11??1 =?1????????????????????

      22334n?1nnn?1??????????1n? n?1n?1小結(jié):裂項相消法求和的關(guān)鍵是數(shù)列的通項可以分解成兩項的差,且這兩項是同一數(shù)列的相鄰兩項,即這兩項的結(jié)構(gòu)應(yīng)一致,并且消項時前后所剩的項數(shù)相同.?1?針對訓(xùn)練

      5、求數(shù)列 1111,,?,?的前n項和Sn.1?22?33?2n?n?1練習(xí):求數(shù)列11?2,12?31,???,1n?n?1,???的前n項和.解:設(shè)an?n?n?11??n?1?n(裂項)

      1n?n?1則 Sn?12?31?2?????(裂項求和)

      =(2?1)?(3?2)?????(n?1?n)

      =n?1?1

      作業(yè):基本練習(xí)

      2221、等比數(shù)列{an}的前n項和Sn=2n-1,則a12?a2=________________.?a3???an2、設(shè)Sn??1?3?5?7???(?1)n(2n?1),則Sn=_______________________.3、111?????.1?44?7(3n?2)?(3n?1)

      4、1111=__________ ???...?2?43?54?6(n?1)(n?3)

      5、數(shù)列1,(1?2),(1?2?22),?,(1?2?22???2n?1),?的通項公式an?,前n項和Sn? 綜合練習(xí)1、12?22?32?42?52?62???992?1002=____________;

      2、在數(shù)列{an}中,an?1,.則前n項和Sn;

      n(n?1)(n?2)n?2an?(n?1)(n?2),n3、已知數(shù)列{an}滿足:a1?6,an?1?(1)求a2,a3;(2)若dn? an,求數(shù)列{dn}的通項公式;

      n(n?1)

      考點5錯位相減

      類似于等比數(shù)列的前n項和的公式的推導(dǎo)方法。若數(shù)列各項是由一個等差數(shù)列和一個等比數(shù)列對應(yīng)項相乘得到,即數(shù)列是一個“差·比”數(shù)列,則采用錯位相減法.若an?bn?cn,其中?bn?是等差數(shù)列,?cn?是公比為q等比數(shù)列,令

      Sn?b1c1?b2c2???bn?1cn?1?bncn

      則qSn?b1c2?b2c3???bn?1cn?bncn?1 兩式相減并整理即得

      例4 求和:Sn?1?3x?5x2?7x3?????(2n?1)xn?1?????????①

      解:由題可知,{(2n?1)xn?1}的通項是等差數(shù)列{2n-1}的通項與等比數(shù)列{xn?1}的通項之積

      設(shè)xSn?1x?3x2?5x3?7x4?????(2n?1)xn?????????.②(設(shè)制錯位)

      ①-②得(1?x)Sn?1?2x?2x2?2x3?2x4?????2xn?1?(2n?1)xn(錯位相減)

      1?xn?1?(2n?1)xn 再利用等比數(shù)列的求和公式得:(1?x)Sn?1?2x?1?x(2n?1)xn?1?(2n?1)xn?(1?x)∴ Sn? 2(1?x)小結(jié):錯位相減法的步驟是:①在等式兩邊同時乘以等比數(shù)列{bn}的公比;②將兩個等式相減;③利用等比數(shù)列的前n項和公式求和.2462n練習(xí):

      1、求數(shù)列,2,3,???,n,???前n項的和.22222n1解:由題可知,{n}的通項是等差數(shù)列{2n}的通項與等比數(shù)列{n}的通項之積

      222462n設(shè)Sn??2?3?????n?????????????①

      222212462nSn?2?3?4?????n?1????????????②(設(shè)制錯22222位)

      1222222n①-②得(1?)Sn??2?3?4?????n?n?1(錯位相減)

      222222212n?2?n?1?n?1

      22n?2 ∴ Sn?4?n?1

      2、已知 an?n?2n?1,求數(shù)列{an}的前n項和Sn.解:Sn?1?20?2?21???(n?1)?2n?2?n?2n?1 ①

      2Sn?1?21?2?22???(n?1)?2n?1?n?2n ②

      ②—①得

      Sn?n?2n?1?20?21??2n?1?n?2n?2n?1

      1352n?13、6、,2,3,?,n,?;的前n項和為_________ 222264、數(shù)列{an}中, a1?1,an?an?1?n?1,n?N*,則前n項和S2n=;

      55、已知數(shù)列an?n?n!,則前n項和Sn=;

      小結(jié):錯位相減法的求解步驟:①在等式兩邊同時乘以等比數(shù)列?cn?的公比q;②將兩個等式相減;③利用等比數(shù)列的前n項和的公式求和.

      第三篇:數(shù)列求和教案

      數(shù)列求和

      數(shù)列求和常見的幾種方法:(1)公式法:①等差(比)數(shù)列的前n項和公式;

      1n(n?1)21222?n2?nn(?

      1?2?3?......6② 自然數(shù)的乘方和公式:1?2?3?......?n?(2)拆項重組:適用于數(shù)列

      1n)(?2 1)?an?的通項公式an?bn?cn,其中?bn?、?cn?為等差數(shù)列或者等比數(shù)列或者自然數(shù)的乘方;

      (3)錯位相減:適用于數(shù)列?an?的通項公式an?bn?cn,其中?bn?為等差數(shù)列,?cn?為等比數(shù)列;

      (4)裂項相消:適用于數(shù)列?a的通項公式:akn?n?n(n?1),a1n?n(n?k)(其中k為常數(shù))型;

      (5)倒序相加:根據(jù)有些數(shù)列的特點,將其倒寫后與原數(shù)列相加,以達(dá)到求和的目的.(6)

      分段求和:數(shù)列?an?的通項公式為分段形式

      二、例題講解

      1、(拆項重組)求和:3112?54?718?......?[(2n?1)?12n]

      練習(xí)1:求和Sn?1?2?2?3?3?4?......?n(n?1)

      2、(裂項相消)求數(shù)列1111?3,3?5,5?7,17?9,...,1(2n?1)(2n?1)的前n項和

      練習(xí)2:求S11n?1?1?2?1?2?3?11?2?3?4?...?11?2?3?...?n

      3、(錯位相減)求和:1473n?22?22?23?...?2n

      練習(xí)3:求Sn?1?2x?3x2?4x3?...?nxn?1(x?0)

      4、(倒序相加)設(shè)f(x)?4x4x?2,利用課本中推導(dǎo)等差數(shù)列前n項和的方法,求:f(11001)?f(21001)?f(31001)?...?f(10001001)的值

      a?3n?2(n?4)例

      5、已知數(shù)列?n?的通項公式為an???2n?3(n?5)(n?N*)求數(shù)列?an?的前n項和Sn

      檢測題

      1.設(shè)f(n)?2?24?27?210?...?23n?10(n?N),則f(n)等于()

      2n222n?4(8?1)

      B.(8n?1?1)

      C.(8n?3?1)

      D.(8?1)777712.數(shù)列{an}的前n項和為Sn,若an?,則S5等于()

      n(n?1)511A.1

      B.

      C.

      D.

      66303.設(shè){an}是公比大于1的等比數(shù)列,Sn為數(shù)列{an}的前n項和.已知S3?7,且a1?3,3a2,a3?4構(gòu)成等差數(shù)列. A.(1)求數(shù)列{an}的通項公式.(2)令ban?ln3n?1,n?1,2...,求數(shù)列{bn}的前n項和Tn。

      4.設(shè)數(shù)列?a2nn?滿足a1?3a2?3a3?…?3n?1a

      3,a?N*n?.(Ⅰ)求數(shù)列?an?的通項;

      (Ⅱ)設(shè)bnn?a,求數(shù)列?bn?的前n項和Sn n

      5.求數(shù)列22,462n22,23,???,2n,???前n項的和.6:求數(shù)列11?2,12?3,???,1n?n?1,???的前n項和.7:數(shù)列{an}的前n項和Sn?2an?1,數(shù)列{bn}滿b1?3,bn?1?an?bn(n?N?).(Ⅰ)證明數(shù)列{an}為等比數(shù)列;(Ⅱ)求數(shù)列{bn}的前n項和Tn。

      8:

      求數(shù)列21,41,6114816,2n?2n?1,...的前n項和Sn.

      9、已知數(shù)列?an?的前n項和Sn?1?2?3?4?5?6?...???1?n?1?n,求S100.10:在各項均為正數(shù)的等比數(shù)列中,若a5a6?9,求log3a1?log3a2?????log3a10的值.11:求數(shù)列的前n項和:1?1,1a?4,11a2?7,???,an?1?3n?2,…

      12:求S?12?22?32?42?...?(?1)n?1n2(n?N?)

      13:已知函數(shù)f?x??2x2x?2(1)證明:f?x??f?1?x??1;

      (2)求f??1???f??10??2??10???f??8???10???f??9??10??的值。.

      第四篇:數(shù)列求和教案

      課題:數(shù)列求和

      教學(xué)目標(biāo)

      (一)知識與技能目標(biāo)

      數(shù)列求和方法.

      (二)過程與能力目標(biāo)

      數(shù)列求和方法及其獲取思路.

      教學(xué)重點:數(shù)列求和方法及其獲取思路. 教學(xué)難點:數(shù)列求和方法及其獲取思路.

      教學(xué)過程

      1.倒序相加法:等差數(shù)列前n項和公式的推導(dǎo)方法:(1)??Sn?a1?a2???an?2Sn?n(a1?an)

      ?Sn?an?an?1???a1122232102?????22 例1.求和:21?10222?9232?8210?1分析:數(shù)列的第k項與倒數(shù)第k項和為1,故宜采用倒序相加法.

      小結(jié): 對某些前后具有對稱性的數(shù)列,可運用倒序相加法求其前n項和.2.錯位相減法:等比數(shù)列前n項和公式的推導(dǎo)方法:

      (2)??Sn?a1?a2?a3???an?(1?q)Sn?a1?an?1 qS?a?a???a?a23nn?1?n23n例2.求和:x?3x?5x???(2n?1)x(x?0)

      3.分組法求和

      1?的前n項和; 161例4.設(shè)正項等比數(shù)列?an?的首項a1?,前n項和為Sn,且210S30?(210?1)S20?S10?0

      2例3求數(shù)列1,2,3,4(Ⅰ)求?an?的通項;(Ⅱ)求?nSn?的前n項和Tn。例5.求數(shù)列 1, 1?a, 1?a?a,?,1?a?a???a121418,?的前n項和Sn.n(n?1)解:若a?1,則an?1?1???1?n, 于是Sn?1?2???n?;2 n1?a1 若a?1,則an?1?a??an?1? ?(1?an)1?a1?a1?a1?a21?an11a(1?an)2n于是Sn????? ?[n?(a?a???a)]?[n?]

      1?a1?a1?a1?a1?a1?a111???? 1?21?2?31?2???n22n?14.裂項法求和 例6.求和:1?211?2(?),n(n?1)nn?11111112n ?Sn?a1?a2???an?2[(1?)?(?)????(?)]?2(1?)?223nn?1n?1n?1解:設(shè)數(shù)列的通項為an,則an?例7.求數(shù)列11?2,12?31,???,1n?n?1,???的前n項和.解:設(shè)an?n?n?11??n?1?n

      (裂項)

      1n?n?1則 Sn?12?31?2?????

      (裂項求和)

      =(2?1)?(3?2)?????(n?1?n)

      =n?1?1

      三、課堂小結(jié):

      1.常用數(shù)列求和方法有:

      (1)公式法: 直接運用等差數(shù)列、等比數(shù)列求和公式;(2)化歸法: 將已知數(shù)列的求和問題化為等差數(shù)列、等比數(shù)列求和問題;(3)倒序相加法: 對前后項有對稱性的數(shù)列求和;

      (4)錯位相減法: 對等比數(shù)列與等差數(shù)列組合數(shù)列求和;(5)并項求和法: 將相鄰n項合并為一項求和;(6)分部求和法:將一個數(shù)列分成n部分求和;

      (7)裂項相消法:將數(shù)列的通項分解成兩項之差,從而在求和時產(chǎn)生相消為零的項的求和方法.四、課外作業(yè): 1.《學(xué)案》P62面《單元檢測題》 2.思考題

      111?4?6??前n項的和.481612n2??????(2).在數(shù)列{an}中,an?,又bn?,求數(shù)列{bn}的前n項的和.n?1n?1n?1an?an?12(1).求數(shù)列:(3).在各項均為正數(shù)的等比數(shù)列中,若a5a6?9,求log3a1?log3a2?????log3a10的值.解:設(shè)Sn?log3a1?log3a2?????log3a10

      由等比數(shù)列的性質(zhì) m?n?p?q?aman?apaq

      (找特殊性質(zhì)項)和對數(shù)的運算性質(zhì) logaM?logaN?logaM?N

      Sn?(log3a1?log3a10)?(log3a2?log3a9)?????(log3a5?log3a6)

      (合并求和)

      =(log3a1?a10)?(log3a2?a9)?????(log3a5?a6)

      =log39?log39?????log39

      =10

      第五篇:數(shù)列求和方法總結(jié)

      數(shù)列的求和

      一、教學(xué)目標(biāo):1.熟練掌握等差數(shù)列與等比數(shù)列的求和公式;

      2.能運用倒序相加、錯位相減、拆項相消等重要的數(shù)學(xué)方法進行求和運算; 3.熟記一些常用的數(shù)列的和的公式.

      二、教學(xué)重點:特殊數(shù)列求和的方法.

      三、教學(xué)過程:

      (一)主要知識:

      1.直接法:即直接用等差、等比數(shù)列的求和公式求和。(1)等差數(shù)列的求和公式:Sn?n(a1?an)n(n?1)?na1?d 22?na1(q?1)?n(2)等比數(shù)列的求和公式Sn??a1(1?q)(切記:公比含字母時一定要討論)

      (q?1)??1?q2.公式法: ?k2?12?22?32?k?1n?n2?n(n?1)(2n?1)

      62?kk?1n3?1?2?3?333?n(n?1)? ?n????2?33.錯位相減法:比如?an?等差,?bn?等比,求a1b1?a2b2???anbn的和.4.裂項相消法:把數(shù)列的通項拆成兩項之差、正負(fù)相消剩下首尾若干項。常見拆項公式:1111111???(?);

      n(n?1)nn?1n(n?2)2nn?21111?(?)n?n!?(n?1)!?n!

      (2n?1)(2n?1)22n?12n?15.分組求和法:把數(shù)列的每一項分成若干項,使其轉(zhuǎn)化為等差或等比數(shù)列,再求和。6.合并求和法:如求1002?992?982?972???22?12的和。7.倒序相加法:

      8.其它求和法:如歸納猜想法,奇偶法等

      (二)主要方法:

      1.求數(shù)列的和注意方法的選?。宏P(guān)鍵是看數(shù)列的通項公式; 2.求和過程中注意分類討論思想的運用; 3.轉(zhuǎn)化思想的運用;

      (三)例題分析:

      例1.求和:①Sn?1?11?111???11?1 ???n個 ②Sn?(x?)2?(x2?1x1212n)???(x?)x2xn ③求數(shù)列1,3+4,5+6+7,7+8+9+10,…前n項和Sn 思路分析:通過分組,直接用公式求和。

      ?1?1?10?102???10k?解:①ak?11???k個1k(10?1)911Sn?[(10?1)?(102?1)???(10n?1)]?[(10?102???10n)?n]99110(10n?1)10n?1?9n?10?[?n]? 9981②Sn?(x2?11142n?2)?(x??2)???(x??2)242nxxx111????)?2n x2x4x2n?(x2?x4???x2n)?(x2(x2n?1)x?2(x?2n?1)(x2n?1)(x2n?2?1)(1)當(dāng)x??1時,Sn???2n??2n 2?22n2x?1x?1x(x?1)(2)當(dāng)x??1時,Sn?4n ③ak?(2k?1)?2k?(2k?1)???[(2k?1)?(k?1)]?

      k[(2k?1)?(3k?2)]523?k?k222Sn?a1?a2???an?

      5235n(n?1)(2n?1)3n(n?1)(1?22???n2)?(1?2???n)???222622?1n(n?1)(5n?2)6總結(jié):運用等比數(shù)列前n項和公式時,要注意公比q?1或q?1討論。2.錯位相減法求和

      例2.已知數(shù)列1,3a,5a2,?,(2n?1)an?1(a?0),求前n項和。

      思路分析:已知數(shù)列各項是等差數(shù)列1,3,5,…2n-1與等比數(shù)列a0,a,a2,?,an?1對應(yīng)項積,可用錯位相減法求和。解:Sn?1?3a?5a2???(2n?1)an?1aSn?a?3a2?5a3???(2n?1)an?1? ?2?

      ?1???2?:(1?a)Sn?1?2a?2a2?2a3???2an?1?(2n?1)an

      2a(1?an?1)n當(dāng)a?1時,(1?a)Sn?1? ?(2n?1)2(1?a)1?a?(2n?1)an?(2n?1)an?1 Sn?(1?a)2當(dāng)a?1時,Sn?n2 3.裂項相消法求和

      2242(2n)2例3.求和Sn? ????1?33?5(2n?1)(2n?1)思路分析:分式求和可用裂項相消法求和.解:(2k)2(2k)2?1?11111ak???1??1?(?)

      (2k?1)(2k?1)(2k?1)(2k?1)(2k?1)(2k?1)22k?12k?1111111112n(n?1)Sn?a1?a2???an?n?[(1?)?(?)???(?)]?n?(1?)?23352n?12n?122n?12n?1?n(n?1)(a?1)?123n?2練習(xí):求Sn??2?3???n 答案: Sn??

      a(an?1)?n(a?1)aaaa?(a?1)n2?a(a?1)?4.倒序相加法求和

      012n例4求證:Cn?3Cn?5Cn???(2n?1)Cn?(n?1)2n mn?m思路分析:由Cn可用倒序相加法求和。?Cn012n證:令Sn?Cn?3Cn?5Cn???(2n?1)Cn(1)

      mn?m(2)?Cn?Cnnn?1210則Sn?(2n?1)Cn?(2n?1)Cn???5Cn?3Cn?Cn012n ?(1)?(2)有:2Sn?(2n?2)Cn?(2n?2)Cn?(2n?2)Cn???(2n?2)Cn012n?Sn?(n?1)[Cn?Cn?Cn???Cn]?(n?1)?2n 等式成立

      5.其它求和方法

      還可用歸納猜想法,奇偶法等方法求和。例5.已知數(shù)列?an?,an??2[n?(?1)n],求Sn。

      思路分析:an??2n?2(?1)n,通過分組,對n分奇偶討論求和。解:an??2n?2(?1),若n?2m,則Sn?S2m??2(1?2?3???2m)?2n?(?1)k?12mk

      Sn??2(1?2?3???2m)??(2m?1)2m??n(n?1)

      若n?2m?1,則Sn?S2m?1?S2m?a2m??(2m?1)2m?2[2m?(?1)2m]??(2m?1)2m?2(2m?1)

      ??4m2?2m?2??(n?1)2?(n?1)?2??n2?n?2

      (n為正偶數(shù))??n(n?1)?Sn??2?n?n?2(n為正奇數(shù))?預(yù)備:已知f(x)?a1x?a2x2???anxn,且a1,a2,a3,?an成等差數(shù)列,n為正偶數(shù),又f(1)?n2,f(?1)?n,試比較f()與3的大小。

      12?(a1?an)n?n2?a?a?2n?f(1)?a1?a2?a3???an?n?n2解:? ????1nd?2??f(?1)??a1?a2?a3???an?1?an?n?d?n2?2?a?a1?(n?1)d?2n??1?a1?1?an?2n?1

      d?2?f(x)?x?3x2?5x3???(2n?1)xn

      11111f()??3()2?5()3???(2n?1)()n2222212可求得f()?3?()n?2?(2n?1)()n,∵n為正偶數(shù),?f()?3

      (四)鞏固練習(xí):

      1.求下列數(shù)列的前n項和Sn:

      (1)5,55,555,5555,…,(10n?1),…;(2)12121259111,,1?32?43?5(3)an?,1,n(n?2);

      1n?n?1;(4)a,2a2,3a3,nan,;

      (5)1?3,2?4,3?5,n(n?2),;(6)sin21?sin22?sin23?解:(1)Sn?5?55?555??sin289.

      n個?5555?(9?99?999?9?(10n?1)]

      n個?999)

      5?[(10?1)?(102?1)?(103?1)?95?[10?102?103?9(2)∵

      ?10n?n]?50n5(10?1)?n. 8191111?(?),n(n?2)2nn?2111111[(1?)?(?)?(?)?232435111111?(?)]?(1???). nn?222n?1n?2∴Sn?(3)∵an?∴Sn?1n?n?1?n?1?n?n?1?n(n?n?1)(n?1?n)?1

      n?1?n11??2?13?2?(2?1)?(3?2)?(4)Sn?a?2a2?3a3??(n?1?n)?n?1?1.

      ?nan,當(dāng)a?1時,Sn?1?2?3?…?n?n(n?1),2 當(dāng)a?1時,Sn?a?2a2?3a3?…?nan,aSn?a2?2a3?3a4?…?nan?1,兩式相減得(1?a)Sn?a?a?a?…?a?na23nn?1a(1?an)??nan?1,1?anan?2?(n?1)an?1?a∴Sn?. 2(1?a)(5)∵n(n?2)?n2?2n,∴ 原式?(12?22?32?…?n2)?2?(1?2?3?…?n)?(6)設(shè)S?sin21?sin22?sin23? 又∵S?sin289?sin288?sin287? ∴ 2S?89,S?n(n?1)(2n?7).

      6?sin289,?sin21,89. 2?6n?5(n為奇數(shù))2.已知數(shù)列{an}的通項an??n,求其前n項和Sn.

      2(n為偶數(shù))?解:奇數(shù)項組成以a1?1為首項,公差為12的等差數(shù)列,偶數(shù)項組成以a2?4為首項,公比為4的等比數(shù)列; 當(dāng)n為奇數(shù)時,奇數(shù)項有

      n?1n?1項,偶數(shù)項有項,22n?1n?1(1?6n?5)4(1?42)(n?1)(3n?2)4(2n?1?1)2∴Sn?,???21?423當(dāng)n為偶數(shù)時,奇數(shù)項和偶數(shù)項分別有

      n項,2nn(1?6n?5)4(1?42)n(3n?2)4(2n?1)2∴Sn?,???21?423?(n?1)(3n?2)4(2n?1?1)???23所以,Sn??nn(3n?2)4(2?1)???23?

      (n為奇數(shù)).

      (n為偶數(shù))

      四、小結(jié):1.掌握各種求和基本方法;2.利用等比數(shù)列求和公式時注意分q?1或q?1討論。

      下載數(shù)列求和說課word格式文檔
      下載數(shù)列求和說課.doc
      將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
      點此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進行舉報,并提供相關(guān)證據(jù),工作人員會在5個工作日內(nèi)聯(lián)系你,一經(jīng)查實,本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        第65節(jié)數(shù)列求和

        北師大(珠海)附中2010年高考(文)第一輪復(fù)習(xí)教學(xué)案 總節(jié)數(shù)第 65 節(jié) 5.4數(shù)列求和(2) 【課前預(yù)習(xí)】 1、(09全國文(14))設(shè)等差數(shù)列{an}的前n項和為Sn。若S9?72,則a2?aa?___________ 4?92n?12......

        《數(shù)列求和》教學(xué)設(shè)計

        《數(shù)列求和》教學(xué)設(shè)計 一、教學(xué)目標(biāo): 1、知識與技能 讓學(xué)生掌握數(shù)列求和的幾種常用方法,能熟練運用這些方法解決問題。 2、 過程與方法 培養(yǎng)學(xué)生分析解決問題的能力,歸納總結(jié)能......

        數(shù)列求和教學(xué)反思

        數(shù)列求和教學(xué)反思 數(shù)列求和教學(xué)反思1 這節(jié)課是高中數(shù)學(xué)必修5第二章數(shù)列的重要的內(nèi)容之一,是在學(xué)習(xí)了等差、等比數(shù)列的前n項和的基礎(chǔ)上,對一些非等差、等比數(shù)列的求和進行探討......

        高考數(shù)學(xué)專題-數(shù)列求和

        復(fù)習(xí)課:數(shù)列求和一、【知識梳理】1.等差、等比數(shù)列的求和公式,公比含字母時一定要討論.2.錯位相減法求和:如:已知成等差,成等比,求.3.分組求和:把數(shù)列的每一項分成若干項,使其轉(zhuǎn)化為等差......

        數(shù)列求和公式證明

        1)1^2+2^2+3^2+......+n^2=n(n+1)(2n+1)/6從左邊推到右邊數(shù)學(xué)歸納法可以證也可以如下做 比較有技巧性n^2=n(n+1)-n1^2+2^2+3^2+......+n^2=1*2-1+2*3-2+....+n(n+1)-n=1*2+2*......

        數(shù)列求和經(jīng)典題型分析

        數(shù)列求和的常用方法數(shù)列求和是數(shù)列的重要內(nèi)容之一,也是高考數(shù)學(xué)的重點考查對象。數(shù)列求和的基本思路是,抓通項,找規(guī)律,套方法。下面介紹數(shù)列求和的幾種常用方法:一、直接(或轉(zhuǎn)化)由......

        數(shù)列求和方法總結(jié)

        數(shù)列求和的基本方法和技巧數(shù)列是高中代數(shù)的重要內(nèi)容,又是學(xué)習(xí)高等數(shù)學(xué)的基礎(chǔ)。 在高考和各種數(shù)學(xué)競賽中都占有重要的地位。 數(shù)列求和是數(shù)列的重要內(nèi)容之一,除了等差數(shù)列和等比......

        數(shù)列求和教學(xué)反思

        《數(shù)列求和》教學(xué)反思 針對數(shù)列問題的考試重點及學(xué)生的薄弱環(huán)節(jié),《數(shù)列求和》的系列專題復(fù)習(xí)課《數(shù)列求和1》的教學(xué)重點放在了數(shù)列求和的前兩種重要方法: 1、公式法求和(即直接......