欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      數(shù)學(xué)廣角鴿巢問題教案

      時間:2019-05-13 00:26:48下載本文作者:會員上傳
      簡介:寫寫幫文庫小編為你整理了多篇相關(guān)的《數(shù)學(xué)廣角鴿巢問題教案》,但愿對你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫還可以找到更多《數(shù)學(xué)廣角鴿巢問題教案》。

      第一篇:數(shù)學(xué)廣角鴿巢問題教案

      黃嶺子鎮(zhèn)中心校趙春宇 《鴿巢問題》教學(xué)設(shè)計

      數(shù)學(xué)廣角——鴿巢問題

      黃嶺子中心校趙春宇

      教學(xué)目標(biāo)

      1.經(jīng)歷“抽屜原理”(鴿巢原理)的探究過程,初步了解“抽屜原理”,理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。

      2.通過操作發(fā)展學(xué)生的歸納推理的能力,形成比較抽象的數(shù)學(xué)思維。

      3.會用“抽屜原理”解決簡單的實際問題,感受數(shù)學(xué)的魅力。重點難點

      重點:經(jīng)歷“抽屜原理”(鴿巢原理)的探究過程,初步了解“抽屜原理”。

      難點:理解“鴿巢問題”,并對一些簡單實際問題加以“模型化”。教學(xué)過程 第一學(xué)時 教學(xué)活動

      活動1【導(dǎo)入】游戲?qū)?/p>

      上課前,我們先來熱身一下,做一個預(yù)測的游戲。

      請各位同學(xué)在本子上任意寫出三個自己喜愛的老師的名字,之后老師進行預(yù)測,如果預(yù)測準(zhǔn)的話給老師五秒鐘的掌聲。其實在這個預(yù)測的游戲中還蘊含著一個有趣的數(shù)學(xué)原理,這節(jié)課我們就一起來研究.活動2【講授】自主探究,初步感知

      1、研究4枝筆放進3個筆筒。

      (1)要把4枝筆放進3個筆筒 ,有幾種放法?請同學(xué)們小組內(nèi)擺一擺。

      (2)反饋:四種放法(課件出示)(3)判斷:4枝筆放進3個筆筒,不管怎么放,總有一個杯子里至少放進2支筆。這句話說的對嗎?為什么?(4)“總有”什么意思?(一定有)(5)“至少”有2枝什么意思?(不少于2枝)(6)師:4枝筆放進3個筆筒,不管怎么放,總有一個杯子里至少放進幾支筆?你是怎么知道的?(先找到每種擺法中筆數(shù)最多的杯子,然后再找到這些最多的杯子中最少的筆數(shù))(7)師:實際就是多中找少

      師:我們剛剛把所有擺放的方法都一一羅列出來,從而找到總有一個杯子里至少放進2支筆,這種方法叫枚舉法。這種方法好不好?(評價:隨著數(shù)據(jù)的擴大,擺放的方法一定會更多,甚至不能一一羅列)那么我們能不能找到一種更為直接的方法,也能得到這個結(jié)論呢?請同學(xué)們在小組內(nèi)討論討論,怎么擺?

      (每個杯子都先放進一枝,還剩一枝不管放進哪個杯子,總會有一個杯子至少有2枝筆)(你的方法果然簡單)(8)這種方法我們可以稱之為假設(shè)法,假設(shè)先在每個杯子里放1枝鉛筆,這種放法其實也就是怎樣分?(平均分)那剩下的1枝怎么處理?(放入任意一個杯子,那么這個杯子就有2枝鉛筆了)(9)誰能用算式來表示這位同學(xué)的想法?(4÷3=1…1)商1表示什么?余數(shù)1表示什么?怎么辦?

      2、類推:把5枝筆放進4個筆筒,會有什么結(jié)果,為什么? 把6枝筆放進5個筆筒呢?為什么? 把7枝筆放進6個筆筒呢?為什么? 把1000枝筆放進999個杯子呢? 把(n+1)枝筆放進n個杯子呢?

      3、從剛才我們的探究活動中,你有什么發(fā)現(xiàn)?(只要放的鉛筆比杯子的數(shù)量多1,總有一個杯子里至少放進2枝鉛筆。)

      4、小結(jié):從以上的學(xué)習(xí)中,你有什么發(fā)現(xiàn)? 師:這樣的數(shù)學(xué)問題就叫做“鴿巢問題”或“抽屜原理”(板書課題)。一起看大屏幕(介紹鴿巢問題的相關(guān)知識)指名讀。師:像剛才的問題中,并沒有鴿巢、抽屜,其實鴿巢或抽屜就是一個模型。把誰看作“抽屜”?把誰看作“物體”? 生:筆筒相當(dāng)于抽屜,鉛筆相當(dāng)于物體。(板書)師:用公式怎樣表示這個原理(物體數(shù)÷抽屜數(shù)=商…..余數(shù)

      至少數(shù)=商+1)活動4【練習(xí)】運用模型,解決問題

      1、預(yù)測游戲是抽屜原理嗎?解釋為什么總有至少兩個人的性別一樣。

      師:抽屜原理的應(yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問題

      2:從大街上隨意找13個人,至少有兩人屬相相同。3:從全校老師中任意找13人,至少有兩人在同一個月過生日。

      活動5【活動】課堂小結(jié) 總結(jié)這節(jié)課,你有什么收獲?

      第二篇:《數(shù)學(xué)廣角——鴿巢問題》教學(xué)設(shè)計

      《數(shù)學(xué)廣角—鴿巢問題》第1課時教學(xué)設(shè)計

      【教學(xué)目標(biāo)】

      1、知識與技能:了解“鴿巢問題”的特點,理解“鴿巢原理”的含義。使學(xué)生學(xué)會用此原理解決簡單的實際問題。

      2、過程與方法:經(jīng)歷探究“鴿巢原理”的學(xué)習(xí)過程,體驗觀察、猜測、實驗、推理等活動的學(xué)習(xí)方法,滲透數(shù)形結(jié)合的思想。

      3、情感、態(tài)度和價值觀:通過用“鴿巢問題”解決簡單的實際問題,激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生感受數(shù)學(xué)的魅力。【教學(xué)重難點】

      重點:引導(dǎo)學(xué)生把具體問題轉(zhuǎn)化成“鴿巢問題”。難點:找出“鴿巢問題”解決的竅門進行反復(fù)推理。【教學(xué)過程】

      一、情境導(dǎo)入

      教師:同學(xué)們,你們在一些公共場所或旅游景點見過電腦算命嗎?“電腦算命”看起來很深奧,只要你報出自己的出生年月日和性別,一按鍵,屏幕上就會出現(xiàn)所謂性格、命運的句子。通過今天的學(xué)習(xí),我們掌握了“鴿巢問題”之后,你就不難證明這種“電腦算命”是非??尚突奶频模遣豢上嘈诺墓戆褢蛄?。(板書課題:鴿巢問題)教師:通過學(xué)習(xí),你想解決哪些問題?

      根據(jù)學(xué)生回答,教師把學(xué)生提出的問題歸結(jié)為:“鴿巢問題”是怎樣的?這里的“鴿巢”是指什么?運用“鴿巢問題”能解決哪些問題?怎樣運用“鴿巢問題”解決問題?

      二、探究新知:

      1.教學(xué)例1.(課件出示例題1情境圖)

      思考問題:把4支鉛筆放進3個筆筒中,不管怎么放,總有1個筆筒里至少有2支鉛筆。為什么呢?“總有”和“至少”是什么意思? 學(xué)生通過操作發(fā)現(xiàn)規(guī)律→理解關(guān)鍵詞的含義→探究證明→認識“鴿巢問題”的學(xué)習(xí)過程來解決問題。

      (1)操作發(fā)現(xiàn)規(guī)律:通過把4支鉛筆放進3個筆筒中,可以發(fā)現(xiàn):不管怎么放,總有1個筆筒里至少有2支鉛筆。

      (2)理解關(guān)鍵詞的含義:“總有”和“至少”是指把4支鉛筆放進3個筆筒中,不管怎么放,一定有1個筆筒里的鉛筆數(shù)大于或等于2支。

      (3)探究證明。

      方法一:用“枚舉法”證明。方法二:用“分解法”證明。把4分解成3個數(shù)。

      由圖可知,把4分解成3個數(shù),與枚舉法相似,也有4中情況,每一種情況分得的3個數(shù)中,至少有1個數(shù)是不小于2的數(shù)。

      方法三:用“假設(shè)法”證明。

      通過以上幾種方法證明都可以發(fā)現(xiàn):把4只鉛筆放進3個筆筒中,無論怎么放,總有1個筆筒里至少放進2只鉛筆。

      (4)認識“鴿巢問題”

      ?像上面的問題就是“鴿巢問題”,也叫“抽屜問題”。在這里,4支鉛筆是要分放的物體,就相當(dāng)于4只“鴿子”,“3個筆筒”就相當(dāng)于3個“鴿巢”或“抽屜”,把此問題用“鴿巢問題”的語言描述就是把4只鴿子放進3個籠子,總有1個籠子里至少有2只鴿子。

      這里的“總有”指的是“一定有”或“肯定有”的意思;而“至少”指的是最少,即在所有方法中,放的鴿子最多的那個“籠子”里鴿子“最少”的個數(shù)。

      小結(jié):只要放的鉛筆數(shù)比筆筒的數(shù)量多,就總有1個筆筒里至少放進2支鉛筆。

      ?如果放的鉛筆數(shù)比筆筒的數(shù)量多2,那么總有1個筆筒至少放2支鉛筆;如果放的鉛筆比筆筒的數(shù)量多3,那么總有1個筆筒里至少放2只鉛筆??

      小結(jié):只要放的鉛筆數(shù)比筆筒的數(shù)量多,就總有1個筆筒里至少放2支鉛筆。(5)歸納總結(jié):

      鴿巢原理

      (一):如果把m個物體任意放進n個抽屜里(m>n,且n是非零自然數(shù)),那么一定有一個抽屜里至少放進了放進了2個物體。

      2、教學(xué)例2(課件出示例題2情境圖)

      思考問題:

      (一)把7本書放進3個抽屜,不管怎么放,總有1個抽屜里至少有3本書。為什么呢?

      (二)如果有8本書會怎樣呢?10本書呢?

      學(xué)生通過“探究證明→得出結(jié)論”的學(xué)習(xí)過程來解決問題

      (一)。(1)探究證明。

      方法一:用數(shù)的分解法證明。

      把7分解成3個數(shù)的和。把7本書放進3個抽屜里,共有如下8種情況:

      由圖可知,每種情況分得的3個數(shù)中,至少有1個數(shù)不小于3,也就是每種分法中最多那個數(shù)最小是3,即總有1個抽屜至少放進3本書。

      方法二:用假設(shè)法證明。

      把7本書平均分成3份,7÷3=2(本)......1(本),若每個抽屜放2本,則還剩1本。如果把剩下的這1本書放進任意1個抽屜中,那么這個抽屜里就有3本書。

      (2)得出結(jié)論。

      通過以上兩種方法都可以發(fā)現(xiàn):7本書放進3個抽屜中,不管怎么放,總有1個抽屜里至少放進3本書。

      學(xué)生通過“假設(shè)分析法→歸納總結(jié)”的學(xué)習(xí)過程來解決問題

      (二)。(1)用假設(shè)法分析。

      ?8÷3=2(本)......2(本),剩下2本,分別放進其中2個抽屜中,使其中2個抽屜都變成3本,因此把8本書放進3個抽屜中,不管怎么放,總有1個抽屜里至少放進3本書。

      ?10÷3=3(本)......1(本),把10本書放進3個抽屜中,不管怎么放,總有1個抽屜里至少放進4本書。

      (2)歸納總結(jié): 綜合上面兩種情況,要把a本書放進3個抽屜里,如果a÷3=b(本)......1(本)或a÷3=b(本)......2(本),那么一定有1個抽屜里至少放進(b+1)本書。

      鴿巢原理

      (二):我們把多余kn個的物體任意分別放進n個空抽屜(k是正整數(shù),n是非0的自然數(shù)),那么一定有一個抽屜中至少放進了(k+1)個物體。

      三、鞏固練習(xí)

      1、完成教材第70頁的“做一做”第1題。學(xué)生獨立思考解答問題,集體交流、糾正。

      2、完成教材第71頁練習(xí)十三的1-2題。學(xué)生獨立思考解答問題,集體交流、糾正。

      四、課堂總結(jié)

      今天這節(jié)課你有什么收獲?能說給大家聽聽嗎?

      第三篇:鴿巢問題(教案)

      鴿巢問題

      教學(xué)內(nèi)容:P68-70例

      1、例2,“做一做”第1題及P71第1-2題。教學(xué)目標(biāo):

      1、知識與技能:了解“鴿巢問題”的特點,理解“鴿巢原理”的含義。使學(xué)生用此原理解決簡單的實際問題。

      2、過程與方法:經(jīng)歷探究“鴿巢原理”的學(xué)習(xí)過程,體驗觀察、猜測、實驗、推理等活動的學(xué)習(xí)方法,滲透數(shù)形結(jié)合的思想。

      3、情感態(tài)度與價值觀:通過用“鴿巢問題” 解決簡單的實際問題,激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生感受數(shù)學(xué)的魅力。

      教學(xué)重點:引導(dǎo)學(xué)生把具體問題轉(zhuǎn)化成“鴿巢問題”。教學(xué)難點:找出“鴿巢問題”的解決竅門進行反復(fù)推理。教學(xué)準(zhǔn)備:課件、鉛筆、筆筒。教學(xué)過程:

      一、問題引入

      師:任意13人中,至少有幾個人的出生月份相同?任意的367人中,至少有幾人在同一天過生日?

      學(xué)生先獨立思考,再分組討論。

      師:解決這一類問題的理論依據(jù)就是“鴿巢問題”。今天我們就一起來研究這一類問題。(板書課題:鴿巢問題)

      二、探索新知

      1、教學(xué)例1 思考:把4支鉛筆放進3個筆筒中,不管怎么放,總有一個筆筒里至少有2支鉛筆。為什么呢?“總有”和“至少”是什么意思?

      (1)操作發(fā)現(xiàn)規(guī)律:通過把4支鉛筆放進3個筆筒中,可以發(fā)現(xiàn):不管怎么放,總有1個筆筒里至少有2支鉛筆。

      (2)理解關(guān)鍵詞的含義:“總有”和“至少”是指把4支鉛筆放進3個筆筒中,不管怎么放,一定有1個筆筒里的鉛筆數(shù)大于或等于2支。

      (3)探究證明

      方法一:用“枚舉法”證明。

      方法二:用“分解法”證明把4分解成3個數(shù)。方法三:用“假設(shè)法”證明。

      小結(jié):把4只鉛筆放進3個筆筒中,無論怎么放,總有1個筆筒至少放進2只鉛筆。

      (4)認識“鴿巢問題”

      像上面的問題就是“鴿巢問題”,也叫“抽屜問題”。在這里,4支鉛筆是要分放的物體,就相當(dāng)于4只“鴿子”,“3個筆筒”就相當(dāng)于3個“鴿巢”或“抽屜”,把此問題用“鴿巢問題”的言語描述就是把4只鴿子放進3個籠子,總有1個籠子里至少有2只鴿子。

      這里“總有”指的是“一定有”或“肯定有”的意思;而“至少”指的是最少,即在所有的方法中,放的鴿子最多的那個“籠子”里鴿子“最少”的個數(shù)。

      小結(jié):只要放的鉛筆數(shù)比筆筒的數(shù)量多,就總有1個筆筒里至少放進2支鉛筆。如果放的鉛筆數(shù)比筆筒的數(shù)量多2,那么總有1個筆筒至少放2支鉛筆;如果放的鉛筆數(shù)比筆筒的數(shù)量多3,那么總有1個筆筒至少放2支……只要放的鉛筆數(shù)比筆筒數(shù)量多,就總有1個筆筒里至少放2支鉛筆。

      (5)歸納總結(jié)。

      2、教學(xué)例2.思考:(1)把7本書放進3個抽屜,不管怎么放,總有1個抽屜里至少有3本書。為什么呢?(2)如果有8本書會怎樣呢?10本書呢?

      解決問題A:(1)探究證明:

      方法一:用數(shù)的分解法證明。把7分解成3個數(shù)的和。把7本書放進3個抽屜里,共有如下8種情況:由圖可知,每種情況分得的3個數(shù)中,至少有1個數(shù)不小于3,也就是每種分法中最多的那個數(shù)是3,即有1個抽屜至少放進3本書。

      方法二:用假設(shè)法證明。把7本書平均分成3份,7÷3=2(本)…1本,若每個抽屜放2本,則還剩1本。如果把剩下的這1本放進任意1個抽屜中,那么這個抽屜里就有3本書。

      (2)得出結(jié)論:7本書放進3個抽屜中,不管怎么放,總有1個抽屜里至少放進3本書。

      解決問題B:(1)用假設(shè)法分析。8÷3=2(本)…2本,剩下2本,分別放進其中2個抽屜中,使其中2個抽屜都變成3本,因此把8本書放進3個抽屜中,不管怎么放,總有1個抽屜里至少放進3本書。10÷3=3(本)…1本,把10本書放進3個抽屜中,不管怎么放,總有1個抽屜里至少放進4本書。

      (3)歸納總結(jié):要把a本書放進3個抽屜里,如果a÷3=b(本)…1本或a÷3=b(本)…2本,那么一定有1個抽屜里至少放進(b+1)本書。

      鴿巢原理

      (二):古國把多于kn個的物體任意分放進n個空抽屜(k是正整數(shù),n是非0自然數(shù)),那么一定有一個抽屜中至少放進了(k+1)個物體。

      三、鞏固練習(xí)

      P70“做一做”第1題、P71頁第1-2題。

      四、課堂總結(jié)

      通過這節(jié)課的學(xué)習(xí),你有什么收獲?

      五、作業(yè)

      1、把8本書分給7位同學(xué),至少有一位同學(xué)分得2本書,為什么?

      2、某學(xué)校有30名學(xué)生是2月份出生的,那么其中至少有兩名學(xué)生的生日是在同一天。為什么?

      3、把17支鉛筆放進4個文具盒里,至少有一個文具盒里放幾支?

      4、幼兒園里有80個小朋友,各種玩具共有330件。把這些玩具分給小朋友,是否有人會得到5件或5件以上的玩具?

      第四篇:2015新版人教版六年級數(shù)學(xué)下冊第五單元_數(shù)學(xué)廣角_鴿巢問題__教案

      第五單元數(shù)學(xué)廣角 鴿巢問題單元備課

      一、教材分析:

      本教材專門安排“數(shù)學(xué)廣角”這一單元,向?qū)W生滲透一些重要的數(shù)學(xué)思想方法。和以往的義務(wù)教育教材相比,這部分內(nèi)容是新增的內(nèi)容。本單元教材通過幾個直觀例子,借助實際操作,向?qū)W生介紹“鴿巢問題”,使學(xué)生在理解“鴿巢問題”這一數(shù)學(xué)方法的基礎(chǔ)上,對一些簡單的實際問題加以“模型化”,會用“鴿巢問題”加以解決。在數(shù)學(xué)問題中,有一類與“存在性”有關(guān)的問題。在這類問題中,只需要確定某個物體(或某個人)的存在就是可以了,并不需要指出是哪個物體(或人)。這類問題依據(jù)的理論我們稱之為“抽屜原理”?!俺閷显怼弊钕仁?9世紀(jì)的德國數(shù)學(xué)家狄利克雷運用于解決數(shù)學(xué)問題的,所以又稱“狄利克雷原理”,也稱之為“鴿巢問題”?!傍澇矄栴}”的理論本身并不復(fù)雜,甚至可以說是顯而易見的。但“鴿巢問題”的應(yīng)用卻是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)論。因此,“鴿巢問題”在數(shù)論、集合論、組合論中都得到了廣泛的應(yīng)用。

      “鴿巢原理”的變式很多,在生活中運用廣泛,學(xué)生在生活中常常遇到此類問題。教學(xué)時,要引導(dǎo)學(xué)生先判斷某個問題是否屬于“鴿巢原理”可以解決的范疇。能不能將這個問題同“鴿巢原理”結(jié)合起來,是本次教學(xué)能否成功的關(guān)鍵。所以,在教學(xué)中,應(yīng)有意識地讓學(xué)生理解“鴿巢原理”的“一般化模型”。六年級的學(xué)生理解能力、學(xué)習(xí)能力和生活經(jīng)驗已達到能夠掌握本章內(nèi)容的程度。教材選取的是學(xué)生熟悉的,易于理解的生活實例,將具體實際與數(shù)學(xué)原理結(jié)合起來,有助于提高學(xué)生的邏輯思維能力和解決實際問題的能力。二、三維目標(biāo): 知識與技能:

      引導(dǎo)學(xué)生通過觀察、猜測、實驗、推理等活動,經(jīng)歷探究“鴿巢原理”的過程,初步了解“鴿巢原理”的含義,會用“鴿巢原理”解決簡單的實際問題。

      2、過程與方法:

      經(jīng)歷探究“鴿巢原理”的學(xué)習(xí)過程,體驗觀察、猜測、實驗、推理等 活動的學(xué)習(xí)方法,滲透數(shù)形結(jié)合的思想。

      (2)學(xué)會與人合作,并能與人交流思維過程和結(jié)果。

      3、情感態(tài)度與價值觀:

      (1)積極參與探索活動,體驗數(shù)學(xué)活動充滿著探索與創(chuàng)造。

      (2)體會數(shù)學(xué)與生活的緊密聯(lián)系,感受數(shù)學(xué)在實際生活中的作用,體 驗學(xué)數(shù)學(xué)、用數(shù)學(xué)的樂趣。

      (3)通過“鴿巢原理”的靈活應(yīng)用,感受數(shù)學(xué)的魅力。(4)理解知識的產(chǎn)生過程,受到歷史唯物注意的教育。

      三、教學(xué)重點: 應(yīng)用“鴿巢原理”解決實際問題,引導(dǎo)學(xué)會把具體問題轉(zhuǎn)化成“鴿巢問題。

      四、教學(xué)難點: 理解“鴿巢原理”,找出”鴿巢問題“解決的竅門進行反復(fù)推理。

      五、教學(xué)措施:

      1、讓學(xué)生經(jīng)歷“數(shù)學(xué)證明”的過程??梢怨膭?、引導(dǎo)學(xué)生借助學(xué)具、實物操作或畫草圖的方式進行“說理”。通過“說理”的方式理解“鴿巢原理”的過程是一種數(shù)學(xué)證明的雛形。通過這樣的方式,有助于提高學(xué)生的邏輯思維能力,為以后學(xué)習(xí)較嚴(yán)密的數(shù)學(xué)證明做準(zhǔn)備。

      2、有意識地培養(yǎng)學(xué)生的“模型”思想。當(dāng)我們面對一個具體的問題時,能否將這個具體問題和“鴿巢原理”聯(lián)系起來,能否找到該問題中的具體情境與“鴿巢原理”的“一般化模型”之間的內(nèi)在關(guān)系,找出該問題中什么是“待分的東西”,什么是“鴿巢”,是解決問題的關(guān)鍵。教學(xué)時,要引導(dǎo)學(xué)生先判斷某個問題是否屬于用“鴿巢原理”可以解決的范疇;再思考如何尋找隱藏在其背后的“鴿巢問題”的一般模型。這個過程是學(xué)生經(jīng)歷將具體問題“數(shù)學(xué)化”的過程,從紛繁復(fù)雜的現(xiàn)實素材中找出最本質(zhì)的數(shù)學(xué)模型,是學(xué)生數(shù)學(xué)思維和能力的重要體現(xiàn)。

      3、要適當(dāng)把握教學(xué)要求?!傍澇苍怼北旧砘蛟S并不復(fù)雜,但它的應(yīng)用廣泛且靈活多變。因此,用“鴿巢原理”解決實際問題時,經(jīng)常會遇到一些困難。例如,有時要找到實際問題與“鴿巢原理”之間的聯(lián)系并不容易,即使找到了,也很難確定用什么作為“鴿巢”,要用幾個“鴿巢”。因此,教學(xué)時,不必過于要求學(xué)生“說理”的嚴(yán)密性,只要能結(jié)合具體問題,把大致意思說出來就可以了,鼓勵學(xué)生借助實物操作等直觀方式進行猜測、驗證。

      六、課時安排:3課時

      鴿巢問題-------------------1課時

      “鴿巢問題”的具體應(yīng)用------1課時 練習(xí)課---------------------1課時

      魚岳鎮(zhèn)第三小學(xué)電子教案 執(zhí)教:第1課時時間: 教學(xué)課題:鴿巢問題

      教學(xué)內(nèi)容:教材第68-70頁例

      1、例2,及“做一做”,及第71頁練習(xí)十三的1-2題。

      三維目標(biāo):

      1、知識與技能:了解“鴿巢問題”的特點,理解“鴿巢原理”的含義。使學(xué)生學(xué)會用此原理解決簡單的實際問題。

      2、過程與方法:經(jīng)歷探究“鴿巢原理”的學(xué)習(xí)過程,體驗觀察、猜測、實驗、推理等活動的學(xué)習(xí)方法,滲透數(shù)形結(jié)合的思想。

      3、情感、態(tài)度和價值觀:通過用“鴿巢問題”解決簡單的實際問題,激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生感受數(shù)學(xué)的魅力。

      教學(xué)重點:引導(dǎo)學(xué)生把具體問題轉(zhuǎn)化成“鴿巢問題”。教學(xué)難點:找出“鴿巢問題”解決的竅門進行反復(fù)推理。教具準(zhǔn)備:多媒體課件。

      教學(xué)過程:

      創(chuàng)設(shè)情境,導(dǎo)入新知

      老師組織學(xué)生做“搶椅子”游戲(請3位同學(xué)上來,擺開2條椅子),并宣布游戲規(guī)則。師:象這樣的現(xiàn)象中隱藏著什么數(shù)學(xué)奧秘呢?這節(jié)課我們就一起來研究這個原理。-------出示課題

      二、合作交流,探究新知

      1、教學(xué)例1(課件出示例題1情境圖)

      思考問題:把4支鉛筆放進3個筆筒中,不管怎么放,總有1個筆筒里至少有2支鉛筆。為什么呢?“總有”和“至少”是什么意思? 學(xué)生通過操作發(fā)現(xiàn)規(guī)律→理解關(guān)鍵詞的含義→探究證明→認識“鴿巢問題”的學(xué)習(xí)過程來解決問題。

      (1)操作發(fā)現(xiàn)規(guī)律:通過吧4支鉛筆放進3個筆筒中,可以發(fā)現(xiàn):不管怎么放,總有1鴿筆筒里至少有2支鉛筆。(2)理解關(guān)鍵詞的含義:“總有”和“至少”是指把4支鉛筆放進3個筆筒中,不管怎么放,一定有1個筆筒里的鉛筆數(shù)大于或等于2支。

      (3)探究證明。

      方法一:用“枚舉法”證明。方法二:用“分解法”證明。把4分解成3個數(shù)。由圖可知,把4分解成3個數(shù),與枚舉法相似,也有4中情況,每一種情況分得的3個數(shù)中,至少有1個數(shù)是不小于2的數(shù)。方法三:用“假設(shè)法”證明。

      通過以上幾種方法證明都可以發(fā)現(xiàn):把4只鉛筆放進3個筆筒中,無論怎么放,總有1個筆筒里至少放進2只鉛筆。(4)認識“鴿巢問題”

      像上面的問題就是“鴿巢問題”,也叫“抽屜問題”。在這里,4支鉛筆是要分放的物體,就相當(dāng)于4只“鴿子”,“3個筆筒”就相當(dāng)于3個“鴿巢”或“抽屜”,把此問題用“鴿巢問題”的語言描述就是把4只鴿子放進3個籠子,總有1個籠子里至少有2只鴿子。

      這里的“總有”指的是“一定有”或“肯定有”的意思;而“至少”指的是最少,即在所有方法中,放的鴿子最多的那個“籠子”里鴿子“最少”的個數(shù)。

      小結(jié):只要放的鉛筆數(shù)比筆筒的數(shù)量多,就總有1個筆筒里至少放進2支鉛筆。

      如果放的鉛筆數(shù)比筆筒的數(shù)量多2,那么總有1個筆筒至少放2支鉛筆;如果放的鉛筆比筆筒的數(shù)量多3,那么總有1個筆筒里至少放2只鉛筆??

      小結(jié):只要放的鉛筆數(shù)比筆筒的數(shù)量多,就總有1個筆筒里至少放2支鉛筆。(5)歸納總結(jié): 鴿巢原理

      (一):如果把m個物體任意放進n個抽屜里(m>n,且n是非零自然數(shù)),那么一定有一個抽屜里至少放進了放進了2個物體。

      2、教學(xué)例2(課件出示例題2情境圖)思考問題:

      (一)把7本書放進3個抽屜,不管怎么放,總有1個抽屜里至少有3本書。為什么呢?

      (二)如果有8本書會怎樣呢?10本書呢?

      學(xué)生通過“探究證明→得出結(jié)論”的學(xué)習(xí)過程來解決問題

      (一)。(1)探究證明。

      方法一:用數(shù)的分解法證明。

      把7分解成3個數(shù)的和。把7本書放進3個抽屜里,共有如下8種情況:由圖可知,每種情況分得的3個數(shù)中,至少有1個數(shù)不小于3,也就是每種分法中最多那個數(shù)最小是3,即總有1個抽屜至少放進3本書。方法二:用假設(shè)法證明。

      把7本書平均分成3份,7÷3=2(本)......1(本),若每個抽屜放2本,則還剩1本。如果把剩下的這1本書放進任意1個抽屜中,那么這個抽屜里就有3本書。(2)得出結(jié)論。

      通過以上兩種方法都可以發(fā)現(xiàn):7本書放進3個抽屜中,不管怎么放,總有1個抽屜里至少放進3本書。

      學(xué)生通過“假設(shè)分析法→歸納總結(jié)”的學(xué)習(xí)過程來解決問題

      (二)。(1)用假設(shè)法分析。?8÷3=2(本)......2(本),剩下2本,分別放進其中2個抽屜中,使其中2個抽屜都變成3本,因此把8本書放進3個抽屜中,不管怎么放,總有1個抽屜里至少放進3本書。?10÷3=3(本)......1(本),把10本書放進3個抽屜中,不管怎么放,總有1個抽屜里至少放進4本書。(2)歸納總結(jié):

      綜合上面兩種情況,要把a本書放進3個抽屜里,如果a÷3=b(本)......1(本)或a÷3=b(本)......2(本),那么一定有1個抽屜里至少放進(b+1)本書。鴿巢原理

      (二):古國把多與kn個的物體任意分別放進n個空抽屜(k是正整數(shù),n是非0的自然數(shù)),那么一定有一個抽屜中至少放進了(k+1)個物體。

      三、鞏固新知,拓展應(yīng)用

      1、完成教材第70頁的“做一做”。學(xué)生獨立思考解答問題,集體交流、糾正。

      2、完成教材第71頁練習(xí)十三的1-2題。學(xué)生獨立思考解答問題,集體交流、糾正。

      四、課堂總結(jié)

      1、通過今天的學(xué)習(xí)你有什么收獲?

      2、回歸生活:你還能舉出一些能用“鴿巢問題”解釋的生活中的例子嗎?

      五、作業(yè)

      個人調(diào)整意見

      教學(xué)反思:

      魚岳鎮(zhèn)第三小學(xué)電子教案 執(zhí)教:第2課時時間: 教學(xué)課題:“鴿巢問題”的具體應(yīng)用

      教學(xué)內(nèi)容:教材第70頁例3,及“做一做”,及第71頁練習(xí)十三的3-4題。

      三維目標(biāo):

      1、知識與技能:在了解簡單的“鴿巢原理”的基礎(chǔ)上,使學(xué)生學(xué)會用此原理解決簡單的實際問題。

      2、過程與方法:經(jīng)歷探究“鴿巢原理”的學(xué)習(xí)過程,體驗觀察、猜測、實驗、推理等活動的學(xué)習(xí)方法,滲透數(shù)形結(jié)合的思想。

      3、情感態(tài)度和價值觀:通過用“鴿巢問題”解決簡單的實際問題,激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生感受數(shù)學(xué)的魅力。

      教學(xué)重點:引導(dǎo)學(xué)生把具體問題轉(zhuǎn)化成“鴿巢問題”。教學(xué)難點:找出“鴿巢問題”中的“鴿巢”是什么,“鴿巢”有幾個,在利用“鴿巢原理”進行反向推理。

      教具準(zhǔn)備:多媒體課件

      教學(xué)過程:

      一、創(chuàng)設(shè)情境、引入新課: 師:一天晚上,有一個小女孩正要從抽屜里拿襪子。抽屜里有黑白兩種顏色的襪子各10雙。突然停電了。小女孩至少摸出多少只襪子,才能保證拿出相同顏色的襪子? 學(xué)生思考、發(fā)言。

      師:學(xué)習(xí)了這節(jié)課我們就能解決類似的問題了。------出示課題

      二、合作交流,探究新知

      (一)出示例3:盒子里有同樣大小的紅球和藍球各4個,要想摸出的球一定有2個同色的,至少要摸出幾個球?

      1、學(xué)生提出猜想。

      2、用預(yù)先準(zhǔn)備的學(xué)具,小組合作交流。

      3、小組反饋,師相機板書:

      4、得出結(jié)論:把顏色看作抽屜。

      有兩種顏色,只要摸出的球比他們的顏色至少多1,就能保證有兩個球同色。

      (二)研究規(guī)律

      師:如果盒子里有藍、紅、黃球各6個,從盒子里摸出兩個同色的球,至少要摸出幾個球? 分小組討論后匯報。

      再出示“做一做”第2題,匯報后得出:問題結(jié)論只與球的顏色種數(shù)也就是抽屜數(shù)有關(guān)。小結(jié):確定什么是抽屜什么是物體是解決抽屜問題的關(guān)鍵。

      三、鞏固新知,拓展應(yīng)用

      1、第70頁“做一做”第1題。

      2、解決課前有趣的問題

      3、有紅色、白色、黑色的筷子各10根混放在一起,讓你閉上眼睛去摸,(1)你至少要摸出幾根才敢保證有兩根筷子是同色的?(2)至少拿幾根,才能保證有兩雙同色的筷子?為什么?

      4、練習(xí)十三第3、4題。

      四、全課總結(jié),暢談收獲

      1、通過今天的學(xué)習(xí)你有什么收獲?

      2、回歸生活:你還能舉出一些能用抽屜原理解釋的生活中的例子嗎?

      五、作業(yè)

      個人調(diào)整意見

      教學(xué)反思:

      魚岳鎮(zhèn)第三小學(xué)電子教案 執(zhí)教:第3課時時間: 教學(xué)課題:“鴿巢原理”練習(xí)課

      教學(xué)內(nèi)容:教材71頁練習(xí)十三的5、6題,及相關(guān)的練習(xí)題。

      三維目標(biāo):

      1、知識與技能:進一步熟知“鴿巢原理”的含義,會用“鴿巢原理”熟練解決簡單的實際問題。

      2、過程與方法:經(jīng)歷探究“鴿巢原理”的學(xué)習(xí)過程,體驗觀察、猜測、實驗、推理等活動的學(xué)習(xí)方法,滲透數(shù)形結(jié)合的思想。

      3、情感、態(tài)度和價值觀:通過用“鴿巢問題”解決簡單的實際問題,激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生感受數(shù)學(xué)的魅力。

      教學(xué)重點:應(yīng)用“鴿巢原理”解決實際問題。引導(dǎo)學(xué)會把具體問題轉(zhuǎn)化成“鴿巢問題”。教學(xué)難點:理解“鴿巢原理”,找出”鴿巢問題“解決的竅門進行反復(fù)推理。教具準(zhǔn)備:多媒體課件。

      教學(xué)過程:

      一、談話導(dǎo)入------出示課題

      二、指導(dǎo)練習(xí)

      (一)基礎(chǔ)練習(xí)題

      1、填一填:

      (1)魚岳三小六年級有30名學(xué)生是二月份(按28天計算)出生的,六年級至少有()名學(xué)生的生日是在二月份的同一天。

      (2)有3個同學(xué)一起練習(xí)投籃,如果他們一共投進16個球,那么一定有1個同學(xué)至少投進了()個球。

      (3)把6只雞放進5個雞籠,至少有()只雞要放進同1個雞籠里。

      (4)某班有個小書架,40個同學(xué)可以任意借閱,小書架上至少要有()本書,才可以保證至少有1個同學(xué)能借到2本或2本以上的書。學(xué)生獨立思考解答,集體交流糾正。

      2、解決問題。(1)(易錯題)六(1)班有50名同學(xué),至少有多少名同學(xué)是同一個月出生的?

      (2)書籍里混裝著3本故事書和5本科技書,要保證一次一定能拿出2本科技書。一次至少要拿出多少本書?

      (3)把16支鉛筆最多放入幾個鉛筆盒里,可以保證至少有1個鉛筆盒里的鉛筆不少于6支?

      (二)拓展應(yīng)用

      1、把27個球最多放在幾個盒子里,可以保證至少有1個盒子里有7個球?教師引導(dǎo)學(xué)生分析:盒子數(shù)看作抽屜數(shù),如果要使其中1個抽屜里至少有7個球,那么球的個數(shù)至少要比抽屜數(shù)的(7-1)倍多1個,而(27-1)÷(7-1)=4...2,因此最多放進4個盒子里,可以保證至少有1個盒子里有7個球。教師引導(dǎo)學(xué)生規(guī)范解答:

      2、一個袋子里裝有紅、黃、藍襪子各5只,一次至少取出多少只可以保證每種顏色至少有1只?

      教師引導(dǎo)學(xué)生分析:假設(shè)先取5只,全是紅的,不符合題意,要繼續(xù)去;假設(shè)再取5只,5只有全是黃的,這時再取一只一定是藍色的,這樣取5×2+1=11(只)可以保證每種顏色至少有1只。

      教師引導(dǎo)學(xué)生規(guī)范解答:

      3、六(2)班的同學(xué)參加一次數(shù)學(xué)考試,滿分為100分,全班最低分是75。已知每人得分都是整數(shù),并且班上至少有3人的得分相同。六(2)班至少有多少名同學(xué)?

      教師引導(dǎo)學(xué)生分析:因為最高分是100分,最低分是75分,所以學(xué)生可能得到的不同分?jǐn)?shù)有100-745+1=26(種)。教師引導(dǎo)學(xué)生規(guī)范解答:

      三、鞏固練習(xí):

      完成教材第71頁練習(xí)十三的5、6題。(學(xué)生獨立思考解答問題,集體交流、糾正。)

      四、課堂總結(jié)

      說說這節(jié)課你有什么收獲?還有什么疑問,我們一起解決。

      五、作業(yè)

      個人調(diào)整意見

      教學(xué)反思:

      第五篇:六年級鴿巢問題

      東莞市東城博而思培訓(xùn)中心

      教學(xué)輔導(dǎo)教案

      學(xué)科

      任課教師:

      授課時間:

      ****年**月**日(星期)

      鴿巢問題

      基礎(chǔ)知識點

      1.鴿巢原理又稱抽屜原理,它是組合數(shù)學(xué)的一個基本原理,最先是由德國數(shù)學(xué)家狹利克雷明確地提出來的,因此,也稱為狹利克雷原理。把3個蘋果放進2個抽屜里,一定有一個抽屜里放了2個或2個以上的蘋果。類似的, 如果有5只鴿子飛進四個鴿籠里, 那么一定有一個鴿籠飛進了2只或2只以上的鴿子。2.鴿巢原理

      (一):如果把m個物體任意放進n個抽屜里(m>n,且n是非零自然數(shù)),那么一定有一個抽屜里至少放進了放進了2個物體。

      如:將4支鉛筆放入3個筆筒,總有一個筆筒至少有2支鉛筆,“總有”和“至少”是指把4支鉛筆放進3個筆筒中,不管怎么放,一定有1個筆筒里的鉛筆數(shù)大于或等于2支。

      3.鴿巢原理

      (二):如果把多于kn個的物體任意分別放進n個空抽屜(k是正整數(shù),n是非0的自然數(shù)),那么一定有一個抽屜中至少放進了(k+1)個物體。

      如:把10本書放進3個抽屜中,不管怎么放,總有1個抽屜里至少放進4本書。

      我們把這些例子中的“蘋果”、“鴿子”、“信”看作一種物體,把“盒子”、“鴿籠”、“信箱”看作鴿巣, 可以得到鴿巣原理最簡單的表達形式

      物體個數(shù)÷鴿巣個數(shù)=商??余數(shù)

      至少個數(shù)=商+1 摸同色球計算方法:①要保證摸出同色的球,摸出的球的數(shù)量至少要比顏色數(shù)多1。

      物體數(shù)=顏色數(shù)×(相同顏色數(shù)-1)+1

      ②極端思想(最壞打算): 用最不利的摸法先摸出兩個不同顏色的球,再無論摸出一個什么顏色的球,都能保證一定有兩個球是同色的。

      鴿巢問題的計算總結(jié):

      東莞市東城博而思培訓(xùn)中心

      二、例題講解:

      1、教室里有5名學(xué)生正在做作業(yè),今天只有數(shù)學(xué)、英語、語文、地理四科作業(yè)

      求證:這5名學(xué)生中,至少有兩個人在做同一科作業(yè)。

      2、班上有50名學(xué)生,將書分給大家,至少要拿多少本,才能保證至少有一個學(xué)生能得到兩本或兩本以上的書。

      3、木箱里裝有紅色球3個、黃色球5個、藍色球7個,若蒙眼去摸,為保證取出的球中有兩個球的顏色相同,則最少要取出多少個球?

      4、把紅、白、藍三種顏色的球各10個放到一個袋子里,至少取多少個球,可以保證取到3個顏色相同的球。

      5、證明:某班有52名學(xué)生,至少有5個人在同一個月出生?

      6、一幅撲克牌除大小王有52張,最少要抽取幾張牌,方能保證其中至少有2張牌有相同的點數(shù)?

      最少要抽取幾張牌,方能保證其中至少有2張牌有相同的花色?

      7、幼兒園買來了不少白兔、熊貓、長頸鹿塑料玩具,每個小朋友任意選擇兩件,那么不管怎樣挑選,在任意七個小朋友中總有兩個彼此選的玩具都相同,試說明道理。

      8、學(xué)校圖書館里科普讀物、故事書、連環(huán)畫三種圖書。每個學(xué)生從中任意借閱兩本,那么至少要幾個學(xué)生借閱才能保證其中一定有2人借閱的讀書相同?

      9、某班有學(xué)生49名,在這一次的英語期中考試中,除3人以外,分?jǐn)?shù)都在85分以上,是否可以推斷,至少有幾人的分?jǐn)?shù)會一樣?

      三、課堂練習(xí)1、6只雞放進5個雞籠,至少有幾只雞要放進同一個雞籠里。

      2、400人中至少有兩個人的生日相同,請證明。

      3、紅、黃、藍、白四色小球各10個,混合放在一個暗盒中,一次至少摸出多少個,才能保證有6個小球是同色的。

      4、有一個晚上你的房間的電燈忽然間壞了,伸手不見五指,而你又要出去,于是你就摸床底下的襪子。你有三雙分別為紅、白、藍顏色的襪子,可是你在黑暗中不能知道哪一雙是顏色相同的。你想拿最少數(shù)目的襪子出去,在外面借街燈配成同顏色的一雙。這最少數(shù)目應(yīng)該是多少?

      5、某班有42人開展讀書活動,他們從學(xué)校圖書館借了212本圖書,那么其中至少有一人借多少本書?

      6、學(xué)校五(一)班40名學(xué)生中,年齡最大的是13歲,最小的是11歲,那么其中必有幾名學(xué)生是同年同月出生的。

      東莞市東城博而思培訓(xùn)中心

      四、鞏固練習(xí)

      1、今天參加數(shù)學(xué)競賽的210名同學(xué)中至少有幾名同學(xué)是同一個月出生的?

      2、有紅、黃、藍、白四色小球各10個,混合放在一個暗盒里,一次至少摸出個,才能保證有2個小球是同色的.3、五年級某班有學(xué)員13人,請說明在這13名同學(xué)中一定有兩個同學(xué)是同一星座。

      4、盒子里放有三種不同顏色的筷子各若干根,最少摸幾根,才能保證至少有3根筷子同色的。

      5、在一間能容納1500個座位的戲院里,證明如果戲院坐滿人時,一定最少有五個觀眾是同月同日生。

      6、在38個小朋友中,至少有幾個小朋友同一個月出生的?

      模擬試卷:

      一、填空

      1.箱子中有5個紅球,4個白球,至少要取出()個才能保證兩種顏色的球都有,至少要?。ǎ﹤€才 能保證有2個白球。

      2.“六一”兒童節(jié)那天,幼兒園買來了許多的蘋果、桃子、桔子和香蕉,每個小朋友可以任意選擇兩種水果,那么至少要有()個小朋友才能保證有兩人選的水果是相同的;如果每位小朋友拿的兩個水果可以是同一種,那么至少要有()個小朋友才能保證兩人拿的水果是相同的。

      3.將紅、黃、藍三種顏色的帽子各5頂放入一個盒子里,要保證取出的帽子有兩種顏色,至少應(yīng)取出()頂帽子;要保證三種顏色都有,則至少應(yīng)取出()頂;要保證取出的帽子中至少有兩頂是同色的,則至少應(yīng)取出()頂。

      4.張阿姨給孩子買衣服,有紅、黃、白三種顏色,但結(jié)果總是至少有兩個孩子的顏色一樣,她至少有()孩子。

      5.二、選擇

      1.把25枚棋子放入下圖的三角形內(nèi),那么一定有一個小三角形中至少放入()枚。

      A.6

      B.7

      C.8

      D.9 2.某班有男生25人,女生18人,下面說法正確的是()。

      東莞市東城博而思培訓(xùn)中心

      A.至少有2名男生是在同一個月出生的 B.至少有2名女生是在同一個月出生的C.全班至少有5個人是在同一個月出生的 D.以上選項都有誤

      3.某班48名同學(xué)投票選一名班長(每人只許投一票),候選人是小華、小紅和小明三人,計票一段時間后的統(tǒng)計結(jié)果如下:

      規(guī)定得票最多的人當(dāng)選,那么后面的計票中小華至少還要得()票才能當(dāng)選?

      A.6

      B.7

      C.8

      D.9 4.學(xué)校有若干個足球、籃球和排球,體育老師讓二(2)班52名同學(xué)到體育器材室拿球,每人最多拿2個(可以一個都不拿),那么至少有()名同學(xué)拿球的情況完全相同。

      A.8

      B.6

      C.4

      D.2 5.如圖,在小方格里最多放入一個“☆”,要想使得同一行、同一列或?qū)蔷€上的三個小方格都不同時出現(xiàn)三個“☆”,那么在這九個小方格里最多能放入()個“☆”。

      A.4

      B.5

      C.6

      D.7

      三、應(yīng)用

      1.4名運動員練習(xí)投籃,一共投進30個球,一定有一名運動員至少投進幾個球?

      2.某幼兒班有40名小朋友,現(xiàn)有各種玩具122件,把這些玩具全部分給小朋友,是否會有小朋友得到 4件以上的玩具?

      3.有白、黑、灰三種顏色的襪子各50只混放在一個袋子里,如果閉上眼睛去摸。(同色兩只為一雙)(1)至少摸出多少只,可以配到一雙襪子?(2)至少摸出多少只,才能保證有3只不同色的襪子?

      (3)至少摸出多少只,可以保證摸出1雙黑色的襪子?

      (4)至少摸出多少只,可以配2雙的襪子?

      下載數(shù)學(xué)廣角鴿巢問題教案word格式文檔
      下載數(shù)學(xué)廣角鴿巢問題教案.doc
      將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
      點此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進行舉報,并提供相關(guān)證據(jù),工作人員會在5個工作日內(nèi)聯(lián)系你,一經(jīng)查實,本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        鴿巢問題_教學(xué)設(shè)計_教案

        教學(xué)準(zhǔn)備 1. 教學(xué)目標(biāo) 1.1 知識與技能: 1.初步了解“抽屜原理”, 會運用“抽屜原理”解決簡單的實際問題或解釋相關(guān)的現(xiàn)象。 2.通過操作、觀察、比較、推理等數(shù)學(xué)活動,引導(dǎo)學(xué)......

        六年級下冊 鴿巢問題教案

        第1課時 鴿巢問題(1) 【教學(xué)內(nèi)容】 最簡單的鴿巢問題(教材第68頁例1和第69頁例2)。 【教學(xué)目標(biāo)】 1.理解簡單的鴿巢問題及鴿巢問題的一般形式,引導(dǎo)學(xué)生采用操作的方法進行枚舉及......

        六年級下冊《鴿巢問題》教案

        “鴿巢問題”教案 教學(xué)內(nèi)容:教材第68-70頁例1、例2,及“做一做”。 學(xué)習(xí)目標(biāo): 1、知識與技能:了解“鴿巢問題”的特點,理解“鴿巢原理”的含義。使學(xué)生學(xué)會用此原理解決簡單的實......

        六年級數(shù)學(xué)集體備課《鴿巢問題》

        《鴿巢問題》教學(xué)設(shè)計 【教學(xué)內(nèi)容】(人教版)數(shù)學(xué)六年級下冊第五單元數(shù)學(xué)廣角。 【教學(xué)目標(biāo)】 1、經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的......

        《鴿巢問題》教學(xué)設(shè)計

        《鴿巢問題》教學(xué)設(shè)計【教學(xué)內(nèi)容】(人教版)數(shù)學(xué)六年級下冊第68頁例1?!窘虒W(xué)目標(biāo)】知識與技能:初步了解抽屜原理,會用抽屜原理解決簡單的實際問題。過程與方法:經(jīng)歷抽屜原理的探......

        鴿巢問題教學(xué)設(shè)計[合集]

        鴿巢問題教學(xué)設(shè)計在教學(xué)工作者開展教學(xué)活動前,很有必要精心設(shè)計一份教學(xué)設(shè)計,教學(xué)設(shè)計一般包括教學(xué)目標(biāo)、教學(xué)重難點、教學(xué)方法、教學(xué)步驟與時間分配等環(huán)節(jié)。如何把教學(xué)設(shè)計做......

        《鴿巢問題》教學(xué)反思

        《鴿巢問題》教學(xué)反思 課堂上,我首先采用學(xué)生搶凳子游戲?qū)?,使學(xué)生初步感受總是有一個凳子上要坐兩個同學(xué),使學(xué)生明確這是現(xiàn)實生活中存在著的一種現(xiàn)象,激發(fā)了學(xué)生的學(xué)習(xí)興趣,也......

        《鴿巢問題》教學(xué)設(shè)計

        《鴿巢問題》教學(xué)設(shè)計 【教學(xué)內(nèi)容】 人教版課標(biāo)教材小學(xué)數(shù)學(xué)六年級下冊第五單元數(shù)學(xué)廣角第70-71頁。 【教學(xué)目標(biāo)】 1.通過操作、觀察、比較、分析、推理、抽象概括,引導(dǎo)學(xué)生......