欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      二次函數(shù)的最值教案

      時(shí)間:2019-05-13 01:37:48下載本文作者:會員上傳
      簡介:寫寫幫文庫小編為你整理了多篇相關(guān)的《二次函數(shù)的最值教案》,但愿對你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫還可以找到更多《二次函數(shù)的最值教案》。

      第一篇:二次函數(shù)的最值教案

      豐林中學(xué) 任志庫

      一、教學(xué)目標(biāo)

      (一)知識與技能

      1、會通過配方或公式求出二次函數(shù)的最大或最小值;

      2、在實(shí)際應(yīng)用中體會二次函數(shù)作為一種數(shù)學(xué)模型的作用,會利用二次函數(shù)的性質(zhì)求實(shí)際問題中的最大或最小值;

      (二)過程與方法

      通過實(shí)例的學(xué)習(xí),培養(yǎng)學(xué)生嘗試解決實(shí)際問題,逐步提高分析問題、解決問題的能力,培養(yǎng)學(xué)生用數(shù)學(xué)的意識。

      (三)情感態(tài)度價(jià)值觀

      1、使學(xué)生經(jīng)歷克服困難的活動,在數(shù)學(xué)學(xué)習(xí)活動中獲得成功的體驗(yàn),建立學(xué)好數(shù)學(xué)的信心;

      2、通過對解決問題過程的反思,獲得解決問題的經(jīng)驗(yàn)和獲得新的思想知識的方法,從而體會熟悉活動中多動腦筋、獨(dú)立思考、合作交流的重要性。

      四、教學(xué)重點(diǎn)與難點(diǎn)

      1、教學(xué)重點(diǎn):實(shí)際問題中的二次函數(shù)最值問題。

      2、教學(xué)難點(diǎn):自變量有范圍限制的最值問題。

      二、課堂教學(xué)設(shè)計(jì)過程

      (一)復(fù)習(xí)導(dǎo)入 以舊帶新

      1、二次函數(shù)的一般形式是什么?并說出它的開口方向、對稱軸、頂點(diǎn)坐標(biāo)。

      2、二次函數(shù)y=-x2+4x-3的圖象頂點(diǎn)坐標(biāo)是()

      當(dāng)x

      時(shí),y有最

      值,是______。

      3、二次函數(shù)y=x2+2x-4的圖象頂點(diǎn)坐標(biāo)是()當(dāng)x

      時(shí),y有最

      值,是______。

      分析:由于函數(shù)的自變量的取值范圍是全體實(shí)數(shù),所以只要確定他們的圖像有最高點(diǎn)或最低點(diǎn),就可以確定函數(shù)有最大值或最小值。

      設(shè)計(jì)意圖:復(fù)習(xí)與本節(jié)課有關(guān)的知識,可充分調(diào)動學(xué)生思維的積極性,又為新課做好準(zhǔn)備。

      (二)創(chuàng)設(shè)情境,導(dǎo)入新課

      1、試一試:

      1.有長為30米得籬笆,利用一面墻(墻的長度不超過10米),圍成中間隔有一道籬笆(平行于BC)的矩形花圃。設(shè)花圃的一邊BC為x米,面積為y平方米。

      (1)求y與x的函數(shù)關(guān)系式;

      (2)能否使所圍矩形花圃的面積最大?如果能,求出最大的面積;如果不能,請說明理由。設(shè)計(jì)意圖:讓學(xué)生從已學(xué)的用配方法或公式法求二次函數(shù)的最值,在教學(xué)時(shí),可讓學(xué)生充分討論、發(fā)言,培養(yǎng)學(xué)生的合作探究精神,可讓學(xué)生感受到成功的喜悅。

      2。直擊中考:

      例2.某商店購進(jìn)一批單價(jià)為20元的日用品,如果以單價(jià)30元銷售,那么一個(gè)月內(nèi)可以售出400件.根據(jù)銷售經(jīng)驗(yàn),提高單價(jià)會導(dǎo)致銷售量的減少,即銷售單價(jià)每提高1元,銷售量相應(yīng)減少20件.售價(jià)提高多少元時(shí),才能在一個(gè)月內(nèi)獲得最大利潤? 分析:解決實(shí)際問題時(shí),應(yīng)先分析問題中的數(shù)量關(guān)系,列出函數(shù)關(guān)系式,求出自變量的取值范圍,結(jié)合圖像和二次函數(shù)的性質(zhì)求w的最大值。

      (四)課堂練習(xí),見導(dǎo)學(xué)案

      (五)課堂小結(jié),回顧提升

      本節(jié)課我們研究了二次函數(shù)的最值問題,主要分兩種類型:

      (1)如果自變量的取值范圍是全體實(shí)數(shù),那么函數(shù)在頂點(diǎn)處取最值;

      (2)如果自變量的取值范圍不是全體實(shí)數(shù),要根據(jù)具體范圍加以分析,結(jié)合函數(shù)圖像的同時(shí)利用函數(shù)的增減性分析題意,求出函數(shù)的最大值或最小值。

      另:當(dāng)給出了函數(shù)的一般形式時(shí),不管自變量是否受限制,常常要配方化為頂點(diǎn)式來求最值問題。

      (六)布置作業(yè),

      第二篇:二次函數(shù)最值問題

      《二次函數(shù)最值問題》的教學(xué)反思

      大河鎮(zhèn) 件,設(shè)所獲利潤為y元,則y=(x-2.5)[500+200(13.5-x)],這樣,一個(gè)二元二次方程就列出,這也為后面學(xué)習(xí)二次函數(shù)與一元二次方程的關(guān)系奠定了基礎(chǔ),針對上述分析,把所列方程整理后,并得到y(tǒng)=-200x2+3700x-8000,這里再利用二次函數(shù)y=ax2+bx+c(a≠0)的解析式中a、b、c的大小來確定問題的最值。把問題轉(zhuǎn)化怎樣求這個(gè)函數(shù)的最值問題。

      b4ac?bb4ac?b根據(jù)a>0時(shí),當(dāng)x=-,y最小=;a<0時(shí),當(dāng)x=-,y最大=

      2a4a2a4a的公式求出最大利潤。

      例2是面積的最值問題(下節(jié)課講解)

      教學(xué)反饋:講得絲絲入扣,大部分學(xué)生能聽懂,但課后的練習(xí)卻“不會做”。反思一:本節(jié)課在講解的過程中,不敢花過多的時(shí)間讓學(xué)生爭辯交流,生怕時(shí)間不夠,完成了不教學(xué)內(nèi)容,只能按照自己首先設(shè)計(jì)好的意圖引領(lǐng)學(xué)生去完成就行了。實(shí)際上,這節(jié)課以犧牲學(xué)生學(xué)習(xí)的主動性為代價(jià),讓學(xué)生被動地接受,去聽講,體現(xiàn)不了學(xué)生是學(xué)習(xí)的主人這一關(guān)鍵環(huán)節(jié)。

      反思二:數(shù)學(xué)教學(xué)的目標(biāo)不僅是讓學(xué)生學(xué)到一些知識,更重要的是讓學(xué)生學(xué)會運(yùn)用知識去解決現(xiàn)實(shí)問題,讓學(xué)生“從問題的背景出發(fā),建立數(shù)學(xué)模型”的基本流程,如例題中,可讓學(xué)生從“列方程→轉(zhuǎn)化為二次函數(shù)解析式→

      b4ac?b當(dāng)x=-時(shí),y最大(?。健鉀Q問題”,讓學(xué)生在實(shí)踐中發(fā)現(xiàn)數(shù)2a4a學(xué),掌握數(shù)學(xué)。

      反思三:教學(xué)應(yīng)當(dāng)促進(jìn)學(xué)生成為學(xué)習(xí)的主人,離開了學(xué)生積極主動學(xué)習(xí),老師講得再好,學(xué)生也難以接受,或者是聽懂了,但不會做題的現(xiàn)象。傳統(tǒng)的教學(xué)“五環(huán)節(jié)”模式已成為過去,新的課程標(biāo)準(zhǔn)需要我們用新的理念對傳統(tǒng)的教學(xué)模式、教學(xué)方法等進(jìn)行改革,讓學(xué)生成為課堂的主角。

      第三篇:二次函數(shù)的最值問題教案

      二次函數(shù)的最值問題 莘莊職校 :吳翩

      班級:莘莊職校03級(4)班

      2003/12/4 [教學(xué)目標(biāo)]1、2、3、4、使學(xué)生掌握二次函數(shù)在給定區(qū)間上最值的理論和方法。引入數(shù)形結(jié)合和分類討論的思想。

      培養(yǎng)學(xué)生敏銳的觀察能力,運(yùn)算準(zhǔn)確性,思維的靈活性,培養(yǎng)學(xué)生發(fā)現(xiàn)問題的創(chuàng)新意識,探索問題的創(chuàng)新精神以及多層次,多角度思考問題的創(chuàng)新思維。[教學(xué)重點(diǎn)、難點(diǎn)] 重點(diǎn):當(dāng)區(qū)間端點(diǎn)不定時(shí),討論二次函數(shù)最值問題。難點(diǎn):分類討論思想的正確運(yùn)用。[教學(xué)過程]

      一、知識回顧

      1、二次函數(shù)概念:形如y?ax2?bx?c(a?0)的函數(shù)叫一元二次

      函數(shù)。

      bb4ac?b2)

      其中對稱軸為x??,頂點(diǎn)坐標(biāo)為(?,2a2a2a2、圖象性質(zhì)

      (動畫演示)

      (1)單調(diào)性(2)最值

      二、問題探究

      例題:求函數(shù)f(x)?x2?2x?1在下列區(qū)間最大值和最小值。(動畫演示)

      (1)R

      f(x)min?f(?1)

      (2)[-2,2]

      f(x)min?f(?1)

      f(x)max?f(2)

      (3)[1,3]

      f(x)min?f(1)

      f(x)max?f(3)

      5(4)[-2,?]

      45f(x)min?f(?)

      f(x)max?f(?2)

      41?f(?2)

      [-2,?]

      f(x)min?f(?1)

      f(x)max31[-2,]

      3f(x)min?f(?1)

      f(x)ma1?f()x3(5)[-2,a]

      (學(xué)生觀察,討論)

      ?f(?2)?f(a)

      f(x)max①當(dāng)-2≤a<-1時(shí)

      f(x)min?f(?2)?f(?1)

      f(x)max②當(dāng)-1≤a<0 時(shí)

      f(x)min?f(a)③當(dāng)a≥0時(shí)

      f(x)min?f(?1)

      f(x)max

      三、問題引申

      求函數(shù)f(x)?x2?2x?1在區(qū)間[m,m+2]上的最大值和最小值。

      (動畫演示)

      ?f(m)解:當(dāng)m<-3時(shí)

      f(x)min?f(m?3)

      f(x)max?f(m)?f(?1)

      f(x)max當(dāng)-3<m<-2時(shí)

      f(x)min?f(m?2)?f(?1)

      f(x)max當(dāng)-2<m<-1時(shí)

      f(x)min?f(m?2)當(dāng)m>-1時(shí)

      f(x)min?f(m)

      f(x)max

      四、總結(jié)歸納

      五、開拓思維

      當(dāng)二次函數(shù)對稱軸變化時(shí),在指定區(qū)間內(nèi)求最值

      研究:二次函數(shù)f(x)?x2?2a?1在區(qū)間[-1,2]上最值。(動畫演示)

      第四篇:2015二次函數(shù)與最值問題

      2015年中招專題---二次函數(shù)與最值問題

      1.(2014?四川綿陽)如圖,拋物線y=ax2+bx+c(a≠0)的圖象過點(diǎn)M(﹣2,且與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn).(1)求拋物線的解析式;

      (2)點(diǎn)P為拋物線對稱軸上的動點(diǎn),當(dāng)△PBC為等腰三角形時(shí),求點(diǎn)P的坐標(biāo);

      (3)在直線AC上是否存在一點(diǎn)Q,使△QBM的周長最???若存在,求出Q點(diǎn)坐標(biāo);若不存在,請說明理由.

      2.(2014?四川內(nèi)江)如圖,拋物線y=ax+bx+c經(jīng)過A(﹣3.0)、C(0,4),點(diǎn)B在拋物線上,CB∥x軸,且AB平分∠CAO.(1)求拋物線的解析式;

      (2)線段AB上有一動點(diǎn)P,過點(diǎn)P作y軸的平行線,交拋物線于點(diǎn)Q,求線段PQ的最大值;

      (3)拋物線的對稱軸上是否存在點(diǎn)M,使△ABM是以AB為直角邊的直角三角形?如果存在,求出點(diǎn)M的坐標(biāo);如果不存在,說明理由.

      3.(2014?攀枝花)如圖,拋物線y=ax2﹣8ax+12a(a>0)與x軸交于A、B兩點(diǎn)(A在B的左側(cè)),與y

      2),頂點(diǎn)坐標(biāo)為N(﹣1,),軸交于點(diǎn)C,點(diǎn)D的坐標(biāo)為(﹣6,0),且∠ACD=90°.(1)請直接寫出A、B兩點(diǎn)的坐標(biāo);(2)求拋物線的解析式;

      (3)拋物線的對稱軸上是否存在點(diǎn)P,使得△PAC的周長最小?若存在,求出點(diǎn)P的坐標(biāo)及周長的最小值;若不存在,說明理由;

      (4)平行于y軸的直線m從點(diǎn)D出發(fā)沿x軸向右平行移動,到點(diǎn)A停止.設(shè)直線m與折線DCA的交點(diǎn)為G,與x軸的交點(diǎn)為H(t,0).記△ACD在直線m左側(cè)部分的面積為s,求s關(guān)于t的函數(shù)關(guān)系式及自變量t的取值范圍.

      4.(2014?襄陽)如圖,在平面直角坐標(biāo)系中,矩形OCDE的三個(gè)頂點(diǎn)分別是C(3,0),D(3,4),E(0,4).點(diǎn)A在DE上,以A為頂點(diǎn)的拋物線過點(diǎn)C,且對稱軸x=1交x軸于點(diǎn)B.連接EC,AC.點(diǎn)P,Q為動點(diǎn),設(shè)運(yùn)動時(shí)間為t秒.

      (1)填空:點(diǎn)A坐標(biāo)為

      ;拋物線的解析式為

      (2)在圖1中,若點(diǎn)P在線段OC上從點(diǎn)O向點(diǎn)C以1個(gè)單位/秒的速度運(yùn)動,同時(shí),點(diǎn)Q在線段CE上從點(diǎn)C向點(diǎn)E以2個(gè)單位/秒的速度運(yùn)動,當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)隨之停止運(yùn)動.當(dāng)t為何值時(shí),△PCQ為直角三角形?

      (3)在圖2中,若點(diǎn)P在對稱軸上從點(diǎn)A開始向點(diǎn)B以1個(gè)單位/秒的速度運(yùn)動,過點(diǎn)P做PF⊥AB,交AC于點(diǎn)F,過點(diǎn)F作FG⊥AD于點(diǎn)G,交拋物線于點(diǎn)Q,連接AQ,CQ.當(dāng)t為何值時(shí),△ACQ的面積最大?最大值是多少?

      5.(2014?德州)如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A的坐標(biāo)是(4,0),并且OA=OC=4OB,動點(diǎn)P在過A,B,C三點(diǎn)的拋物線上.(1)求拋物線的解析式;

      (2)是否存在點(diǎn)P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說明理由;

      (3)過動點(diǎn)P作PE垂直于y軸于點(diǎn)E,交直線AC于點(diǎn)D,過點(diǎn)D作y軸的垂線.垂足為F,連接EF,當(dāng)線段EF的長度最短時(shí),求出點(diǎn)P的坐標(biāo).

      6.(2014?甘肅蘭州)如圖,拋物線y=﹣x+mx+n與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對稱軸交x軸于點(diǎn)D,已知A(﹣1,0),C(0,2).(1)求拋物線的表達(dá)式;

      (2)在拋物線的對稱軸上是否存在點(diǎn)P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點(diǎn)的坐標(biāo);如果不存在,請說明理由;

      (3)點(diǎn)E時(shí)線段BC上的一個(gè)動點(diǎn),過點(diǎn)E作x軸的垂線與拋物線相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動到什么位置時(shí),四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時(shí)E點(diǎn)的坐標(biāo).

      7.(2014?重慶)如圖,拋物線y=﹣x2﹣2x+3 的圖象與x軸于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)D拋物線的頂點(diǎn).

      (1)求A、B、C的坐標(biāo);

      交為2(2)點(diǎn)M為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過點(diǎn)M作x軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過點(diǎn)P作PQ∥AB交拋物線于點(diǎn)Q,過點(diǎn)Q作QN⊥x軸于點(diǎn)N.若點(diǎn)P在點(diǎn)Q左邊,當(dāng)矩形PQMN的周長最大時(shí),求△AEM的面積;

      (3)在(2)的條件下,當(dāng)矩形PMNQ的周長最大時(shí),連接DQ.過拋物線上一點(diǎn)F作y軸的平行線,與直線AC交于點(diǎn)G(點(diǎn)G在點(diǎn)F的上方).若FG=

      2DQ,求點(diǎn)F的坐標(biāo).

      8.(四川瀘州)如圖,已知一次函數(shù)y1=x+b的圖象l與二次函數(shù)y2=﹣x+mx+b的圖象C′都經(jīng)過點(diǎn)B(0,1)和點(diǎn)C,且圖象C′過點(diǎn)A(2﹣(1)求二次函數(shù)的最大值;

      (2)設(shè)使y2>y1成立的x取值的所有整數(shù)和為s,若s是關(guān)于x的方程a的值;

      (3)若點(diǎn)F、G在圖象C′上,長度為的線段DE在線段BC上移動,EF與DG始終平行于y軸,當(dāng)四

      =0的根,求2,0).

      邊形DEFG的面積最大時(shí),在x軸上求點(diǎn)P,使PD+PE最小,求出點(diǎn)P的坐標(biāo).

      第五篇:二次函數(shù)的最值問題修改版

      利用數(shù)形結(jié)合法解決二次函數(shù)在閉區(qū)間

      上的最值問題

      數(shù)學(xué)組:王勇

      一、教學(xué)目標(biāo):

      1. 理解二次函數(shù)的最值概念,掌握二次函數(shù)的最值求法; 2. 培養(yǎng)學(xué)生數(shù)形結(jié)合的能力和將數(shù)學(xué)問題轉(zhuǎn)化的能力。

      二、教學(xué)重點(diǎn):二次函數(shù)最值求法

      教學(xué)難點(diǎn):二次函數(shù)在閉區(qū)間上的最值

      三、教學(xué)過程:

      二次函數(shù)是函數(shù)中重要的函數(shù),二次函數(shù)在閉區(qū)間上的最值問題一直是函數(shù)中的一個(gè)難點(diǎn)。今天我們用數(shù)形結(jié)合的方法來突破這個(gè)問題。請看下面例題

      問題1 求函數(shù)f(x)?x2?2x?3,x??2,4?的最大值與最小值

      練習(xí):將題中條件x??2,4?改為(1)x???3,0?,(2)x???3,4?

      小結(jié):求二次函數(shù)在固定區(qū)間上的最大值與最小值:考慮對稱軸與區(qū)間的位置關(guān)系。

      如果我們將x???3,4?改為x??a,4?,怎樣求最值呢?

      問題2 求函數(shù)f(x)?x2?2x?3,x??a,4?的最值

      小結(jié):注意分類討論

      以上問題是函數(shù)的圖像不變,要研究的區(qū)間含字母,如果我們將區(qū)間固定,函數(shù)的解析式中含字母,又怎樣求最值呢?

      問題3 求函數(shù)f(x)?x?2ax?3,x??1,3?的最大值與最小值

      小結(jié):對稱軸的討論是關(guān)鍵

      練習(xí)4 已知f?x??x-2ax?3在區(qū)間??1,2?上最大值為4,求a的值 2

      f(x)?a(x?h)2?k(a?0)x?[m,n]小結(jié):二次函數(shù)在閉區(qū)間[m,n]上的最值

      (三)作業(yè):

      1. 求函數(shù)f?x??x2?2x?3在區(qū)間?t,t?1?上的最值 2. 求函數(shù)f?x??x2?ax?3在區(qū)間??1,1?上的最小值

      下載二次函數(shù)的最值教案word格式文檔
      下載二次函數(shù)的最值教案.doc
      將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
      點(diǎn)此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        二次函數(shù)最值問題參考答案范文合集

        精英輔導(dǎo)學(xué)校 賈天宇 2013.7.17. 二次函數(shù)最值問題 二、例題分析歸類: (一)、正向型 是指已知二次函數(shù)和定義域區(qū)間,求其最值。對稱軸與定義域區(qū)間的相互位置關(guān)系的討論往往成為......

        含參二次函數(shù)最值問題探討

        含參二次函數(shù)最值問題探討 甘肅畜牧工程職業(yè)技術(shù)學(xué)院 張發(fā)榮733006 二次函數(shù)模型是重要的函數(shù)模型,在北師大版高中《數(shù)學(xué)》新教材中占了大量的篇幅,詳盡介紹了二次函數(shù)的性質(zhì)......

        二次函數(shù)的最值問題

        二次函數(shù)的最值問題 雷州市第一中學(xué) 徐曉冬 一、 知識要點(diǎn) 對于函數(shù)f?x??ax2?bx?c?a?0?, 當(dāng)a?0時(shí),f?x?在區(qū)間R上有最 值,值域?yàn)?。 當(dāng)a?0時(shí),f?x?在區(qū)間R上有最 值,值域?yàn)?。 二、 典例講解 例1......

        二次函數(shù)的最值問題

        漣水縣第四中學(xué)(紅日校區(qū))周練專用紙 初三:年級 數(shù)學(xué):學(xué)科 出核人:楊守德 審核人:高陽 時(shí)間:12月26日 1.若二次函數(shù)y=x-3x+c圖象的頂點(diǎn)在x軸上,則c=( ) 24411A. B.- C. D.- 9999222.拋物線y=ax+bx......

        專題六 二次函數(shù)的最值問題

        專題強(qiáng)化訓(xùn)練 專題六二次函數(shù)的最值問題初高中銜接教材 專題六 二次函數(shù)的最值問題 【要點(diǎn)回顧】 1.二次函數(shù)y?ax?bx?c (a?0)的最值. 二次函數(shù)在自變量x取任意實(shí)數(shù)時(shí)的最值情況 2......

        二次函數(shù)的最值問題的研究

        二次函數(shù)的最值問題的研究 (文獻(xiàn)綜述) (內(nèi)江師范學(xué)院數(shù)學(xué)與應(yīng)用數(shù)學(xué),四川 641100 王強(qiáng)) 摘 要函數(shù)的最值問題是高中階段研究函數(shù)性質(zhì)的一個(gè)重要指標(biāo),除了知道什么是函數(shù)最值如何求......

        二次函數(shù)最值問題-解析版

        【A+級課程】第1講:二次函數(shù)最值問題 1、當(dāng)?2?x?2時(shí),求函數(shù)y?x2?2x?3的最大值和最小值. 分析:作出函數(shù)在所給范圍的及其對稱軸的草圖,觀察圖象的最高點(diǎn)和最低點(diǎn),由此得到函數(shù)的最大值、......

        二次函數(shù)的最值(教學(xué)設(shè)計(jì))

        第一章1.3函數(shù)的基本性質(zhì)(教學(xué)設(shè)計(jì))習(xí)題課:二次函數(shù)的最值教學(xué)分析:二次函數(shù)是重要的初等函數(shù)之一,很多問題都要化歸為二次函數(shù)來處理。二次函數(shù)的最值又與不等式等有著密切的聯(lián)......