第一篇:蘇教版分數(shù)的基本性質教案
分數(shù)的基本性質
教學內容:
蘇教版五年級下冊第66~67頁例
11、例12以及相應的練一練,練習十第1~2題。教學目標:
1.讓學生通過經歷操作——觀察——推理——發(fā)現(xiàn)規(guī)律的過程,理解和掌握分數(shù)的基本性質,知道它與整數(shù)除法中商不變性質之間的聯(lián)系。
2.根據(jù)分數(shù)的基本性質,學會把一個分數(shù)化成用指定的分母做分母或指定的分子做分子而大小不變的分數(shù),為學習約分和通分打下基礎。
3.培養(yǎng)學生觀察、分析和抽象概括的能力,滲透事物是互相聯(lián)系、發(fā)展變化的辯證唯物主義觀點。教學重點:
1.分數(shù)的基本性質的形成過程;
2.能運用分數(shù)的基本性質進行分數(shù)的轉化。教學難點:
分數(shù)的基本性質的形成過程。教學準備:
多媒體課件、正方形紙等。教學過程:
一、激發(fā)思考,引入新課
1.教學例1 談話:同學們,今天老師帶大家繼續(xù)研究分數(shù)。
出示例1,讓學生用分數(shù)表示各圖中的涂色部分,學生匯報。
談話:請你仔細觀察,這些圓的大小怎樣?(相等)你覺得哪幾個圓的涂色部分大小相等?指名回答(預設:第1,3,4圖的涂色部分大小相等)
123追問:由此你能得出哪三個分數(shù)相等嗎?(出示??)
369131提問:你能說說表示什么嗎?呢?呢?
3921追問:你能用你的正方形紙表示出嗎?學生嘗試。
212.提問:你是怎樣表示出的?(先對折把單位“1”平均分成兩份,表示這樣的12份),教師呈現(xiàn)結果。要求1:繼續(xù)對折,現(xiàn)在你可以用哪個分數(shù)來表示涂色部分?(2)4要求2:請你繼續(xù)對折,現(xiàn)在你可以用哪個分數(shù)來表示?(84)要求3:再對折呢?()
168觀察涂色部分有沒有發(fā)生改變?單位“1”呢?說明這幾個分數(shù)怎樣? 出示1248 ???24816我們來看看這些相等的分數(shù)中的分子、分母是怎樣變化的?從
12?24為例開始,多讓學生說說,分別板書。三個乘法算式說明后讓學生說說能否用一句話來概括你從這三個算式中發(fā)現(xiàn)的特點?(一個分數(shù)的分子和分母同時乘一個相同的數(shù),分數(shù)的大小不變)
再分別說說除法過程,要求總結(一個分數(shù)的分子和分母同時除以一個相同的數(shù),分數(shù)的大小不變)
2.你能總結一下,分數(shù)的分子和分數(shù)發(fā)生怎樣的變化,分數(shù)的大小會不變嗎?出示(同時乘或除以一個相同的數(shù),分數(shù)的大小不變)
提問:是不是所有的數(shù)都可以?為什么0除外?
引導學生根據(jù)分數(shù)與除法的關系來說明理由,補充板書,再請一個同學說說。這就是我們今天學習的知識:分數(shù)的基本性質。(板書課題)
三、深入性質,比較發(fā)現(xiàn)
1.讓學生說說分數(shù)的基本性質,出示完整性質。
提問:你覺得分數(shù)的基本性質中,哪些詞比較關鍵?(指出:同時,相同的數(shù),0除外)讓學生加重這些詞的語氣,再來讀一讀。2.利用分數(shù)的基本性質,你能再說出一個與
1相等的分數(shù)嗎?學生舉例。2你說的完嗎?也就是說一個分數(shù)有(無數(shù))個與它相等的分數(shù),那么我們就可以用省略號才表示,補充板書。3.出示例1,驗證規(guī)律。
引導:還記得我們一開始做的那道題嗎?我們根據(jù)涂色部分的大小得出了
123==,369現(xiàn)在你能用分數(shù)的基本性質來說說嗎?(師注意引導學生,指出它們的分子和分母具有同樣的變化規(guī)律)
3.溝通商不變的性質和分數(shù)基本性質之間的聯(lián)系。
談話:學到這里,你有沒有發(fā)現(xiàn),分數(shù)的基本性質和我們以前學習過得什么規(guī)律很相似(預設:商不變的規(guī)律)
讓學生說說什么是商不變的規(guī)律。
出示,引導學生用商不變的規(guī)律來說明分數(shù)的基本性質。
四、解釋應用,強化認知 1.第67頁“練一練”第2題。
根據(jù)分數(shù)的基本性質,先涂一涂,然后在括號里填上適當?shù)臄?shù)。學生獨立完成后,指名回答,著重讓學生說說自己的想法。
引導:如果不給你圖,你能寫出答案嗎?你是怎樣想的? 重點強調“說”。
2.第67頁“練一練”第3題。
學生獨立完成后,投影展示學生的作業(yè),全班一起思考檢查,并讓學生說說自己的想法。3.第67頁“練一練”第4題。學生說說理由。
4.第69頁練習十第1題。讓學生獨立完成,出示分法 5.第69頁練習十第2題。
出示分數(shù),能用你智慧的雙眼搜索一下,哪些分數(shù)大小相等嗎?出示數(shù)軸,那你覺得這些分數(shù)在直線上可以用幾個點來表示?
五、回顧反思,評價激勵
交流:今天我們學習了什么內容?你有什么收獲?
六、布置作業(yè),拓展延伸
回到練習十第1題,指出這些數(shù)都滿足分數(shù)的基本性質,讓學生課后思考,分數(shù)的分子與分母是怎樣變化的。
第二篇:分數(shù)基本性質
《分數(shù)基本性質》教學設計
教學內容
人教版新課標教科書小學數(shù)學第十冊第75~77頁例
1、例2。教案背景
本課題是人教版五年級數(shù)學下冊第四單元的內容,分數(shù)的基本性質在分數(shù)教學中占有十分重要的地位,它是約分、通分的理論依據(jù),而約分、通分又是分數(shù)四則運算的重要基礎。只有理解和掌握分數(shù)的基本性質,能比較熟練地進行約分和通分,才能應用四則運算的法則正確、迅速地進行分數(shù)四則運算。因此,分數(shù)的基本性質是分數(shù)的意義和性質這一單元的教學重點之一。掌握分數(shù)與除法的關系,以及除法中被除數(shù)、除數(shù)同時擴大或同時縮小相同的倍數(shù)商不變的規(guī)律,是學好分數(shù)基本性質的基礎。
教學目標
1、知識與技能目標:
(1)經歷探索分數(shù)的基本性質的過程,理解分數(shù)的基本性質。(2)能運用分數(shù)的基本性質,把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)
2、過程與方法目標:
(1)經歷觀察、操作和討論等學習活動,并在探索過程中,能進行有條理的思考,能對分數(shù)的基本性質作出簡要的、合理的說明。(2)培養(yǎng)學生的觀察、比較、歸納、總結概括能力
(3)能根據(jù)解決問題的需要,收集有用的信息進行歸納,發(fā)展學生的歸納、推理能力。
3、情感態(tài)度與價值觀目標:
(1)經歷觀察、操作和討論等數(shù)學學習活動,使學生進一步體驗數(shù)學學習的樂趣。
(2)鼓勵學生敢于發(fā)現(xiàn)問題,培養(yǎng)學生勇于解決問題的學習品質
教材分析
本節(jié)教材圍繞著分數(shù)基本性質的得出與應用,安排了兩道例題。通過例
1,概括出分數(shù)基本性質。通過例2,運用、鞏固分數(shù)的基本性質。考慮到分數(shù)的基本性質是建立在分數(shù)大小相等這一概念基礎之上的。而兩個分數(shù)的大小相等,并不意味著兩個分數(shù)的分子、分母分別相同。這是分數(shù)與整數(shù)的區(qū)別。因此,教材在例1中,先讓學生通過折紙、涂色,感悟1/
2、2/
4、4/8三個分數(shù)的分子、分母雖然不同,但是分數(shù)的大小是相等的。接著引導學生探究三個分數(shù)的分子和分母是按照什么規(guī)律變化的。先從左往右看,再反過來從右往左看,引導學生發(fā)現(xiàn)三個分數(shù)的分子和分母是怎樣變化的。然后,要求學生自己進一步舉例驗證,并根據(jù)這些例子歸納出變化的規(guī)律。在此基礎上,教材給出了分數(shù)的基本性質。由于分數(shù)和整數(shù)除法有著內在聯(lián)系,分數(shù)的分子相當于除法中的被除數(shù),分母相當于除數(shù),分數(shù)值相當于除法中的商,所以分數(shù)的基本性質也可以利用整數(shù)除法中商不變的性質來說明。充分利用這一聯(lián)系,有利于促進學習的遷移。因此,教材在導出分數(shù)的基本性質之后,又提出了一個問題,讓學生根據(jù)分數(shù)與除法的關系以及整數(shù)除法中商不變的性質,來說明分數(shù)的基本性質。為了幫助學生在運用的過程中鞏固和加深對分數(shù)基本性質的理解,教材安排了例2,引導學生運用分數(shù)的基本性質,按指定的分母把兩個分數(shù)都化成分母相同而大小不變的分數(shù)。這樣不僅可以幫助學生掌握分數(shù)的基本性質,而且也能為后面學習約分、通分做好準備。練習中適當減少了單純依靠計算解決的練習題,增加了聯(lián)系現(xiàn)實生活,可以依據(jù)分數(shù)基本性質解決的實際問題。如練習十四的第2題、第5題、第9題和第10題。有利于通過應用,促進學生掌握分數(shù)的基本性質,也有利于培養(yǎng)學生的數(shù)學應用意識。在本節(jié)教材中,還穿插安排了一個“生活中的數(shù)學”欄目,介紹了分數(shù)在日常生活中的一些應用。涉及洗手液的使用方法、足球比賽的進程、照相機的曝光速度。這些例子,有助于引起學生的興趣,關注分數(shù)在現(xiàn)實生活中的種種應用。教學重點
探索、發(fā)現(xiàn)和掌握分數(shù)的基本性質,并能運用分數(shù)的基本性質解決問題。教學難點
自主探究、歸納概括分數(shù)的基本性質。
教法
引撥法,多媒體教學法,實驗法,歸納法,談話法等。學法
猜想驗證實驗法,討論法,小組合作法等。學生分析
五年級學生對于抽象的數(shù)學學習會感覺枯燥無味,所以要使學生對于本
節(jié)課有很好的收獲,就必須得給本節(jié)課的學習加以趣味性,并且讓學生經歷知識的形成過程,以幫助學生鞏固所學知識。
教學過程:
一、故事引人,揭示課題: 師:同學們,你們喜歡看《喜羊羊與灰太狼》的故事嗎? 生:喜歡。
師:老師這里有一個慢羊羊村長分餅的故事。羊村的小羊最喜歡吃村長
做的餅。有一天,村長做了三塊大小一樣的餅分給小羊們吃,它先把第一塊餅的1/2分給懶羊羊。再把第二塊餅的2/4分給喜羊羊。最后把第三塊餅的4/8分給美羊羊。懶羊羊不高興地說:“村長不公平,他們的多,我的少?!?/p>
師:孩子們,村長公平嗎?小朋友們,你知道哪只羊分得多? 生1:不公平,美羊羊分得多。
生2:公平,因為他們分得一樣多。
二、探究新知,解決問題
(一)驗證猜想
師:到底誰的猜想是正確地呢?讓我們一起來驗證一下。
1、折一折,畫一畫,剪一剪,比一比(1)折
請同學們拿出三張同樣大小的正方形紙,把每張紙都看作單位“1”。用
手分別平均折成2份、4份、8份。
(2)畫
在折好的正方形紙上,分別把其中的2份、4份、8份畫上陰影。(3)剪 把正方中的陰影部分剪下來。
(4)比 把剪下的陰影部分重疊,比一比結果怎樣。要求:
1)三人為一小組,小組中每人選擇一個不同的分數(shù),先折一折,再畫一
畫,剪一剪的方法把它表現(xiàn)出來。
2)三人做好之后,將三副圖進行比較,看看能發(fā)現(xiàn)什么? 3)學生匯報。
請這一小組同學談談發(fā)現(xiàn):通過比較,三副圖陰影部分面積一樣,因而
三個分數(shù)一樣大。
4)教師課件出示1/
2、2/
4、4/8相等的過程。
2、師:三只小羊分得的餅同樣多,仔細觀察這三個分數(shù)什么變了?什么沒變?
小組合作,學生仔細觀察,討論,學生匯報小結:它們的分子和分母變化了,但分數(shù)的大小沒變。
(二)初步概括分數(shù)基本性質 算一算:
1、師: 這三個分數(shù)的分子、分母都不相同,為什么分數(shù)的大小卻相等的?你們能找出它們的變化規(guī)律嗎?請三人為一組,討論這個問題。
2、學生小組合作,觀察,討論。
自學提示:
A、從左到右觀察,想一下,這三個分數(shù)的分子、分母怎樣變化才能得到下一個分數(shù),且分數(shù)的大小不變呢。
B、從右到左觀察,想一下,這三個分數(shù)的分子、分母怎樣變化才能得
到下一個分數(shù),且分數(shù)的大小不變呢。
3、小組匯報 生:我發(fā)現(xiàn)了1/2的分子與分母同時乘以2得到了2/4,1/2的分子和分
母同時乘以4得到了4/8。
請二名同學重復。
師:你們想得一樣嗎?我把1/2的分子分母同時乘2得到了2/4,1/2的
分子和分母同時乘4又得到了4/8。在這個分數(shù)中我們是把分子分母同時乘2,分數(shù)的大小不變,那如果我們把分數(shù)的分子分母同時乘5,分數(shù)的大小變嗎?同時乘以6.8呢?那你們能不能根據(jù)這個式子來總結一個規(guī)律呢?(課件同時出示變化過程)
生回答:一個分數(shù)的分子分母同時乘相同的數(shù),分數(shù)的大小不變。請一至二名同學回答。
師板書:分數(shù)的分子分母同時乘 相同的數(shù),分數(shù)的大小不變。
師:誰來舉一個例子。指名三位同學回答,師板書,并問:同時乘以了幾? 師: 這樣的例子我們可以舉出很多很多,剛才我們是從左往右觀察的,如果把這個式子從右往左觀察,你們又會發(fā)現(xiàn)什么呢?(點擊課件出示)請一同學回答,生:我們發(fā)現(xiàn)了4/8的分子與分母同時除以2得了2/4,4/8的分子與分母同時除以4得到了1/2。課件點擊出示同時變化過程。師:嗯,分數(shù)的分子分母同時除以2分數(shù)的大小不變,如果同時除以5大小會變嗎?同時除以8.6呢?能不能根據(jù)這個式子再總結出一句話呢?
生:分數(shù)的分子分母同時除以相同的數(shù),分數(shù)的大小不變。(二名學生重復)師板書:或者除以
師:你能根據(jù)剛才總結的規(guī)律舉一個例子嗎?
讓三名學生舉出例子,師板書。并問:分子分母同時除以了幾?
4、(1)師:根據(jù)分數(shù)的這一變化規(guī)律,你認為這個式子對嗎?為什么?(課件出示下列式子)
43=4433??=169(強調“相同的數(shù)”)5 4 52252???(強調“同時”)
學生回答,并說明理由。
(2)師:分數(shù)的分子、分母都乘以或除以相同的數(shù),分數(shù)的大小不變。這里“相同的數(shù)”是不是任何的數(shù)都可以呢?我們一起來看這樣一個分數(shù)。(課件出示式子: ?0 40 343????)
師:這個式子成立嗎? 生:不成立,師:為什么 生:因為0不能作除數(shù),師:0不能作除數(shù),所以這個式子是錯誤的。
師:我再說一個式子,我不乘以0了,我除以0,這個式子成立嗎?(課件 出示:4 3 除以0。)
生:不成立,因為在分數(shù)當中分母相當于除數(shù),除數(shù)不能為0。師:對,因為分數(shù)的分子、分母都乘0,則分數(shù)成為 0 0,在分數(shù)里分母不能為0,所以分數(shù)的分子、分母不能同時乘0,又因為在除法里零不能作除數(shù),所以分數(shù)的分子、分母也不能同時除以0。所以這兩個式子都是不成立的?我們剛才總結的分數(shù)的分子分母同時乘或者除以相同的數(shù),要0除外。(師板書0除外)
師:到現(xiàn)在為止這個規(guī)律我們就總結完了,那在這個規(guī)律里你覺得什么地方需要我們注意一下呢? 生:同時和相同的數(shù)
師:“同時”和“相同的數(shù)”(師將重點詞語打點),大家想得一樣嗎?這個就是我們今天這節(jié)課要學習的分數(shù)的基本性質。(師板書課題:分數(shù)的基本性質)
師:我相信懶羊羊學會了分數(shù)的基本性質,那就不會生氣了,那咱們同學們千萬不要犯它那樣的錯誤了。下面讓我們一起把分數(shù)的基本性質邊讀邊記。生齊讀二遍。
師:這個分數(shù)的基本性質特別有用,我們可以根據(jù)分數(shù)的基本性質把一個分數(shù)化成和它相等的另外一個分數(shù)。我們一起來看例2.三、運用規(guī)律、自學例題
1、例2:把2/3 和10/24化成分母是12而大小不變的分數(shù)。(課件出示)請一同學讀題。
2、分組討論
問:分子分母應怎樣變化?變化的依據(jù)是什么?
3、讓生獨立完成,完成后和同位的同學說一說你是怎樣想的。
每題請二名同學回答,(課件點擊出示答案)
4、分數(shù)的基本性質與商不變性質
師:能否用商不變性質來說明分數(shù)的基本性質? 生:因為 被除數(shù)÷除數(shù)= 除數(shù) 被除數(shù)
(除數(shù)不能為0)
所以被除數(shù)與除數(shù)同時擴大或縮小相同的倍數(shù),就相當于分子、分母同
時擴大或縮小相同的倍數(shù)(0除外)。因此,商不變就相當于分數(shù)的大小不變。
四、課堂運用(課件出示)
1、判斷。(手勢表示,并說明理由。)
(1)分數(shù)的分子、分母都乘以或除以相同的數(shù),分數(shù)的大小不變。()(2)把 25 15 的分子縮小5倍,分母也同時縮小5倍,分數(shù)的大小不變。()
(3)4 3 的分子乘以3,分母除以3,分數(shù)的大小不變。()
(4)()
3、找朋友游戲:
拿出課前發(fā)的分數(shù)紙,并看清手中的分數(shù)。與 2 1 相等的,舉起自已的分數(shù)后請到右邊,與 32 相等的到左邊,與 4 3 相等的到講臺。
五、拾撿碩果,拓展延伸
1、看到同學們這么自信的回答,老師就知道今天大家的收獲不少,誰來說說這節(jié)課你都收獲了哪些東西?
2、拓展延伸:
村長運用什么規(guī)律來分餅的?如果沸羊羊要四塊,村長怎么分才公平呢?如果要五塊呢
教學反思
我講的這節(jié)課內容是人教版五年級教材《分數(shù)的基本性質》,本節(jié)課的主要目標是:使學生理解分數(shù)基本性質,并會用分數(shù)的基本性質把不同分母的分數(shù)化成分母相同而大小不變的分數(shù)。在課堂中,我充分利用學生的生活經驗,設計生動有趣的故事《羊村村長分餅》,激發(fā)學生的學習興趣,展開課堂教學。
1、教學的整個過程是學生親自驗證的過程,通過“驗證”學生感受了數(shù)學的嚴謹性。設計以“猜想--觀察--驗證--概括--深化--提高”的環(huán)節(jié),把知識的形成過程展現(xiàn)在學生的面前,使學生在掌握分數(shù)的基本性質的同時,感知到數(shù)學知識的形成過程,在這一過程中注意滲透學生自學方法、解決問題的策略、體會數(shù)學知識與生活的緊密聯(lián)系,同時教給學生學會學習,學會思考的方法。在師生共同協(xié)作的過程中,達到課堂教學方法的最優(yōu)化,提高了課堂教學效益。
2、在推導規(guī)律的過程中,抓住分數(shù)的分子、分母按怎樣的規(guī)律變化而分數(shù)大小不變這一點,通過動手操作、實踐, 引導學生自己去發(fā)現(xiàn)、證實并歸納:分數(shù)的分子分母同時乘以或除以一個相同的數(shù)(零除外),分數(shù)的大小不變。在這關鍵處,教師又進一步發(fā)動全班討論,把問題引向縱深,這種教學模式既重視學生自主參與,相互合作的發(fā)揮,又有利于學生展現(xiàn)自己知識的建構過程,不僅知其結果,而且更了解自己得出結果的過程和先決條件,促進知識與能力的同步發(fā)展。
3、教學中取舍教材、取舍手段,著眼于學生的學習。教學中既運用了信息
技術,又把傳統(tǒng)教學手段有機地結合,讓資源充分、有效地發(fā)揮作用,優(yōu)化教師的教學手段,提高課堂教學效率。
第三篇:分數(shù)的基本性質教案
精選分數(shù)的基本性質教案4篇
作為一名無私奉獻的老師,就有可能用到教案,教案有助于學生理解并掌握系統(tǒng)的知識。那么什么樣的教案才是好的呢?以下是小編為大家整理的分數(shù)的基本性質教案4篇,希望能夠幫助到大家。
分數(shù)的基本性質教案 篇1教學目標:
1、理解分數(shù)的基本性質。
2、初步掌握分數(shù)的基本性質。
3、培養(yǎng)學生觀察、比較、綜合、概括的能力和初步的邏輯推理能力。
教學重點:理解與掌握分數(shù)的基本性質。教材分析:分數(shù)的基本性質是在學習了商不變性質及分數(shù)與除法的關系的基礎上進行教學的。它是今后學習約分和通分的依據(jù),是分數(shù)四則運算的重要基礎知識,是學生準確進行分數(shù)加減法計算的依據(jù)。
設計意圖:通過復習商不變的性質和分數(shù)與出發(fā)的關系,為學生探索新知提供了材料,作好了鋪墊,也為后面溝通分數(shù)基本性質與商不變性質打下了基礎。
在新知的引入,我設計了讓學生動手操作的方法(折紙、涂色),調動學生的多種感觀充分感知數(shù)學事實,來引導學生觀察、思考,激發(fā)學生的求知欲,調動學生學習的積極性。
通過先進的電教手段,如:投影儀,電腦等多媒體輔助教學。用形象的電腦圖象,以活潑的形式將抽象的數(shù)學概念轉變?yōu)閷W生易于理解概念,激發(fā)學生的學習興趣,結合一系列的具有針對性的提問,引導學生觀察思考,共同討論新知,自己歸納出分數(shù)變化的規(guī)律,即分于分母都乘以或除以相同的數(shù),分數(shù)和大小不變。通過電腦出示的畫象的逐步引入,使學生加深對分數(shù)基本性質的理解,逐步建立清晰的概念。這樣讓學生參與概念形成的整個過程,有利于學生學習的主動性,發(fā)展學生的邏輯思維。
在練習的設計上,力求緊扣重點,做到新穎、多樣、層次分明,難度由淺入深。
第1、2題是基本練習,主要是幫助學生理解概念,并全面了解學生掌握新知識的情況。第3題是在第1、2題的基礎上,進一步讓學生進行鞏固練習,加深對所學知識的理解。第4題通過游戲的形式,加深學生對分數(shù)基本性質的認識,激發(fā)學生學習的興趣,活躍課堂氣氛。第5題,判斷練習,意在使學生加深對新知識的鞏固,糾正容易出錯的地方。第6題是思考題,是為了滿足學有余力的學生的需要,意在發(fā)展學生的智能。在聯(lián)系的過程中,也采用了電腦與投影及錄音機的有機結合有效地提高了課堂效率。
教學過程: 復習舊知,導入新課 被除數(shù) 除數(shù)= 根據(jù)120 30=3 填數(shù)(120 3)(40 3)=()(120 ___)(40 10)=4(復習商不變性質)驗證并結實課題 學生用準備好的兩張紙,進行動手操作。(感知 =)教師再演示,引導學生發(fā)現(xiàn)、、、三個分數(shù)的大小相等。觀察什么在變,什么不變。把單位1平均分的分數(shù)和取的分數(shù),也就是分數(shù)的分子和分母發(fā)生了變化,而分數(shù)的大小不便,為什么分數(shù)的分子、分母在變,而分數(shù)的大小不變?它們的變化規(guī)律是什么?(引導學生帶著問題去思考)新授,探索新知 啟發(fā)引導,揭示規(guī)律(1)= = = =
從左往右觀察,探索分數(shù)的分子、分母的變化規(guī)律,引導學生去思考。討論得出:分數(shù)的分子墳墓都乘以相同的數(shù),分數(shù)的大小不變。,分數(shù)的分子分母有什么變化? 呢? 它們的大小又怎樣呢?想一想,小姐出規(guī)律:分子、分母都除以相同的數(shù),分數(shù)的大小不變。歸納性質 誰能把上面的分數(shù)的分子分母都乘以或除以相同的數(shù)。兩句話合成一句話來說。分數(shù)的分子分母都乘以或除以相同的數(shù),分數(shù)的大小不變。這里指的相同的數(shù)是指什么數(shù)? 指出:分母是0的分數(shù)是沒有意義的。假如分子、分母都乘以或都除以0,也是沒有意義的。所以0除外。相同的數(shù)可以是自然數(shù),也可以是小數(shù),也可以是分數(shù)。
請全班同學將結語說完整,全班讀。小結:就是我們今天學習的內容:分數(shù)的基本性質??磿|疑。勾出關鍵詞語,幫助理解掌握。(在新課的教學過程中,利用計算機,將各種圖形(也就是單位1)用主動的分割形式在大屏幕上清楚地進行演示,提高學生學習的積極性,更好地理解本課的學習內容,有效地提高教學效率,使教學目標得以順利地實施。)鞏固練習在括號里填上適當?shù)臄?shù)使等式成立 幾組相等分數(shù)的天空練習
(用計算機將題目演示在大屏幕上,全般一齊練習,再請個別學生說出答案,看答案是否和計算機演示的答案相同,全班同學來做小老師)
3、請找我的好朋友練習。(以游戲的形式來進行)
要求:(1)將幾張寫有分數(shù)的卡片發(fā)給幾位同學,請 他們看清楚上面的分數(shù)。
(2)練習開始,請有卡片的同學注意觀察,和老師受傷卡片上分數(shù)大小相等的同學走出來,看誰最快最好。(先將卡片上的分數(shù)用大屏幕顯示出來,便于全班同學練習。)
4、判斷對錯(1)= =()(2)= =()(3)= =()(4)= =()
(這道題用計算機一題一題來演示,讓全班學生能用所學的知識來進行判斷,并能說出錯在哪里,可以請個別同學來回答,如果答對了計算機回發(fā)出以示獎勵的音樂;錯了會告訴同學錯了,再試一次。這道題的形式,充分運用了計算機的多功能作用,較生動活潑,引起學生的興趣,提高教學效果。)
5、思考練習題 = 課堂總結 總結本課內容,復述分數(shù)的基本性質。
分數(shù)的基本性質教案 篇2教學前的思考:
一、一則Flash動畫故事引入:從前有座山,山里有座廟,廟里有個老和尚和一個小和尚,哦!不對,是三個小和尚。小和尚最喜歡吃老和尚烙的餅了。有一天,老和尚做了三塊一樣大小的餅,想給小和尚吃,還沒給,小和尚就叫開了。矮和尚說:“我要一塊!”高和尚說:“我要兩塊!”胖和尚說:“我不要多,只要四塊!”老和尚聽了二話沒說,立刻把一塊餅平均分成四塊,取其中的一塊給了矮和尚;把第二塊餅平均分成八塊,取其中的兩塊給了高和尚;把第三塊餅平均分成十六塊,取其中的四塊給了胖和尚,一一滿足了他們的要求。同學們,你知道哪個和尚吃的多嗎?---教師播放這則故事為學生提供“猜想”素材?!安孪搿Ⅱ炞C”不但是科學研究的方法,也是一種很好的數(shù)學學習方法。由此我聯(lián)想到“性質”的學習過程是否也可以讓學生在猜想、驗證中主動生成。
二、學生動手操作,用事實說明,作好新知鋪墊:在揭題前,我設計了讓學生動手操作的方法,用三個同樣大小的圓折紙、涂色,來調動學生的多種感觀,充分感知數(shù)學事實,引導學生觀察、思考,激發(fā)學生的求知欲,活躍課堂氣氛,為“驗證”“性質”作好鋪墊。
三、得出結論后,滲透“形式與實質”的辯證觀點:揭示“性質”后,教師讓學生回顧故事內容,驗證“猜想”到底哪個和尚吃的多,從形式上看矮和尚吃的多,但比較的事實說明吃的一樣多。教師再一次列舉生活中的事例說明“形式與實質”的辯證觀點。
教學設計:
一 故事提供“猜想”素材:Flash動畫故事引入.(教師出示課件)
師:今天老師很高興和同學們在一起共同學習,同學們心情怎樣?
生:高興!
師: 老師給大家?guī)砹艘粋€禮物,請同學們仔細欣賞。(教師出示Flash動畫故事,學生欣賞。同時教師提出欣賞要求,)
師:(欣賞后)同學們,你知道哪個和尚吃的多嗎?
生1:胖和尚吃的多。
生2:矮和尚吃的多。
……
師:到底誰回答得對呢?上完這節(jié)課你們一定能得到準確的答案.(通過欣賞為學生提供素材,設懸念,留給學生獨立思考的空間)
二 用事實“驗證”,完整性質。
1.實際操作列等式證實分數(shù)大小相等。
師:請同學們以小組為單位,拿出三個大小相等的圓來,分別用陰影部分表示每個圓的(教師觀察,學生小組合作,有平均分的,有涂色的,小組成員配合默契)
師:比較一下陰影部分的大小,結果怎樣?陰影部分相等,說明這三個分數(shù)怎樣?
生:陰影部分的大小相等。
師:陰影部分相等說明這三個分數(shù)怎樣?
生:三個分數(shù)相等。
(隨著學生的回答,老師將板書的三個分數(shù)用“=”連接。)
2.觀察課件證實分數(shù)大小相等。
師:(出示課件)老師有三個同樣大小的長方形,誰能用分數(shù)表示出黃色部分呢?
師:這三個分數(shù)所表示的長度怎樣?這又說明了什么?
(隨著學生回答老師在三個分數(shù)間用“=”連接。)
3.初步概括分數(shù)基本性質.師:仔細觀察兩個等式,每個等式的三個分數(shù)什么變了?什么沒變?
生:第一個等式中的三個分數(shù)分子、分母都變了,但分數(shù)的大小沒變。(師進行評價)
師:同學們從左到右觀察第一個等式,想一下,這三個分數(shù)的分子、分母怎樣變化才保證了分數(shù)的大小不變的?
(教師請同學們小組討論,學生各抒己見,爭論不休,氣氛活躍。)
師:誰能用一句話把這個變化規(guī)律敘述出來呢?(師指名口述)
生1:從左往右看,分數(shù)的分子、分母同時擴大了,也就是分子分母都乘了一個相同的數(shù),但三個分數(shù)的大小沒有變。(生2進行了補充)
師:你們觀察的真仔細!請大家給點掌聲好嗎?
(學生掌聲起,激情高長,課堂教學充滿活力。)
師:(出示課件)請看大屏幕,老師是這樣敘述的“分數(shù)的分子、分母都乘上同一個數(shù),分數(shù)大小不變”。
師:同學們從左到右仔細觀察第二個等式,這三個分數(shù)的分子、分母發(fā)生了怎樣的變化,才保證了分數(shù)大小不變呢?誰能用一句話把這個變化規(guī)律敘述出來?
(小組討論后,同法讓學生小結規(guī)律,并請同學給予評價,讓學生抒發(fā)自己的見解,體現(xiàn)課堂教學的民主化。然后教師在課件中補充“或除以”三個字。)
4、完整分數(shù)基本性質:
師:(出示課件)請同學們填空:
(教師請一位會操作鼠標的同學在課件中填空)
師:第3題()里可以填多少個數(shù)?第4題呢?
生:可以填無數(shù)個。
師:()里填任何數(shù)都行嗎?哪個數(shù)不行?(學生交流后老師指名回答)
生:不能填零。
師:為什么不能填零?
生:分數(shù)的分母不能為零。
(教師對學生的回答進行評價)
師:所以我們總結的這條規(guī)律必須加上一個條件“零除外”
(教師在課件中填上“零除外”三個紅色的字,以便引起學生的`注意。)
師:這個變化規(guī)律就是“分數(shù)的基本性質”。(指名照課件主讀出性質)
三 深入理解分數(shù)基本性質
1.學生自學,深入理解性質。
師:請同學們把書翻到108頁,自讀分數(shù)的基本性質。
師歸問:分數(shù)的基本性質里哪幾個詞比較重要?為什么“都”和“相同”很重要?為什么“分數(shù)大小不變”也很重要?為什么“零除外”也很重要?
生:因為都乘上或除以相同的數(shù)(0除外),分數(shù)的大小才不會變化。(同學評價)
2.學生獨立完成做一做1。(完成后小組內互相評價)
3.找出與
相等的分數(shù):
(教師出示課件,請一位同學在課件中連線,教師進行評價)
4.請同學們自學并完成例2、(教師巡視,個別進行輔導)
……
四 照應Flash動畫故事,滲透“形式與實質”的辯證觀點
教師在黑板上出示自制的三個同樣大小的圓餅
師:現(xiàn)在誰知道三個和尚,誰吃的多呢?(學生爭先恐后的想回答老師提出的問題)
生:三個和沿吃的一樣多。
師:同學們以后思考問題一定要多動腦筋,了解實質后才能得出正確答案,我們不能從形式上看著事物去做出判斷。
……
五 課堂小結:這節(jié)課你有什么收獲?(學生板書課題)
教學后的感悟:
1.教學的整個過程是學生親自驗證的過程,通過“驗證”學生感受了數(shù)學的嚴謹性。設計以“猜想--判斷--觀察--驗證--概括--深化--提高”的環(huán)節(jié),把知識的形成過程展現(xiàn)在學生的面前,使學生在掌握分數(shù)的基本性質的同時,感知到數(shù)學知識的形成過程,在這一過程中注意滲透學生自學方法、解決問題的策略、體會數(shù)學知識與生活的緊密聯(lián)系,同時教給學生學會學習,學會思考的方法。在師生共同協(xié)作的過程中,達到課堂教學方法的最優(yōu)化,提高了課堂教學效益。
2.猜想素材有利于激發(fā)學生主動學習的興趣和熱情,有利于學生思維的碰撞,開啟了學生發(fā)自內心的探索學習。
3.教學中取舍教材、取舍手段,著眼于學生的學習。教學中既運用了信息技術,又把傳統(tǒng)教學手段有機地結合,讓資源充分、有效地發(fā)揮作用,優(yōu)化教師的教學手段,提高課堂教學效率。
分數(shù)的基本性質教案 篇3(一)激趣引思、提出要求
同學們,你們聽過阿凡提的故事嗎?今天老師也帶來了一則阿凡提的故事。讓我們一一看!誰來讀一讀?(指名讀)你知道,阿凡提為什么會笑嗎?他對三兄弟講了哪些話呢?
有一些同學知道,還有一些同學不知道。不過沒有關系,等我們學習了今天的內容之后,我相信在座的每一位同學都能夠回答。你們有信心嗎?恩,好,那我們就開始上課了!
(二)自主探究,發(fā)現(xiàn)規(guī)律
1、出示例1的四幅圖。
我們先來看一道題目。分別用分數(shù)表示每個圖里的涂色部分。
(1)誰來說第一個?
全部答完后問:這里的1/3誰來說說它表示什么含義呢?3/9呢?
同學們,你們比較比較這幾幅圖的陰影部分,想想看,你發(fā)現(xiàn)了什么呢?也就是說,哪3個分數(shù)是相等的呢?
(2)師:這里有個1/2,你能說一個和1/2相等的分數(shù)嗎?
2/4、4/8、8/16......還有吧,是不是還可以說出好多好多?。?/p>
那,這些分數(shù)是不是相等呢?咱們口說無憑,咱們來做個小實驗證明它門是相等的,好不好?
先別急,先來看看有哪些實驗要求。
咱們這個實驗的目的上一什么?驗證什么?
咱們實驗的方法有哪些呢?
實驗有什么要求?操作有序什么意思呢?要聽從小組長的安排
1、實驗目的:驗證猜想
2、方法:折一折、分一分、畫一畫、算一算......3、要求:小組合作,明確分工,操作有序
我們要來比一比,哪個小組做的實驗既快又好。一會兒,我們把他的作品展示一下。好,開始!
學生操作,老師巡視指導。
集體交流結果。
咱們剛才通過做實驗,發(fā)現(xiàn)這些分數(shù)的大小怎樣?也就是分數(shù)的大小不變。這些分數(shù)的大小相等,可是它們的分子、分母變了吧!怎么回事呢?這里面有什么規(guī)律呢?你發(fā)現(xiàn)了什么?能不能告訴老師。
把你的發(fā)現(xiàn)先和同桌交流交流。
生1:我發(fā)現(xiàn)由到,分子被擴大了2倍,分母也被擴大了2倍,所以它們是相等的。
師:還有誰想說說你的發(fā)現(xiàn)?
生2:我發(fā)現(xiàn)由到,分子被擴大了3倍,分母也被擴大了3倍,所以它們的大小相等。
師:換一組數(shù)據(jù)來說說自己的發(fā)現(xiàn)?
生:由到,分子、分母都被縮小了3倍,它們的大小不變。
師:剛才同學們都說了自己的發(fā)現(xiàn),想想看,要使分數(shù)的大小不變分數(shù)的分子和分母應該怎樣變化就能使分數(shù)的大小不變了呢?
師:為什么要0除外?
師:這就是咱們今天學習的“分數(shù)的基本性質”(板書課題)
師:誰來說說看,分數(shù)的基本性質是什么呢?
生:一個分數(shù)的分子和分母同時乘或除以一個相同的數(shù)(0除外),它們的大小不變。
我們一齊讀一遍。
師:這個分數(shù)的基本性質跟咱們以前學的什么知識有點相似???除法中商不變的性質你還記得嗎?
同學們想想看,這兩個性質之間有什么關系呢?
根據(jù)分數(shù)與除法的關系,被除數(shù)相當于分數(shù)的分子,除數(shù)相當于分數(shù)的分母,在除法當中有商不變的性質,那在分數(shù)中也有它的基本性質。
師:好,那現(xiàn)在你知道阿凡提為什么會笑嗎?他又說了哪些話呢?
師:2/6到3/9分子分母怎樣變化的?分子和分母同時乘了1.5,呢也就是說這里相同的數(shù)不僅可以指整數(shù),還可以指小數(shù)。
(三)鞏固練習,強化記憶
好,那下面咱們就用今天學的知識來做幾道題,好不好?
1、把書翻到61頁,練一練第一題,請你涂一涂填一填。我看誰的動作最快。
集體交流。
2、下面我們來填空補缺想理由。(出示練一練第二題)
他們這樣填是根據(jù)什么?
3、出示練習十一第二題
獨立完成,集體訂正。
(四)課堂作業(yè),運用知識
練習十一第三題
(五)課堂,認識自己
今天這節(jié)課,你學到了什么?
分數(shù)的基本性質教案 篇4教材簡析:
分數(shù)的基本性質是以分數(shù)大小相等這一概念為基礎的。因為分數(shù)與整數(shù)不同,兩個分數(shù)的大小相等,并不意味著兩個分數(shù)的分子、分母分別相同。教學時,可引導學生觀察一組相等分數(shù)的分子、分母是按什么規(guī)律變化的,再結合分數(shù)的意義歸納出分數(shù)的基本性質。由于分數(shù)和整數(shù)除法存在著內在聯(lián)系,所以分數(shù)的基本性質也可以利用整數(shù)除法中商不變的性質來說明。
設計理念:
分數(shù)的基本性質是約分和通分的基礎,而約分、通分又是分數(shù)四則運算的重要基礎,因此,理解分數(shù)的基本性質顯得尤為重要。因此我把學生的學習定位在自主建構知識的基礎上,建立了猜想試驗分析合情推理探究創(chuàng)造的教學模式。
在課堂上,我先通過故事讓學生進入情境,然后讓學生去猜想、觀察、試驗、感悟,進而得出結論。當學生得出分數(shù)的分子、分母都乘或除以同一個數(shù),分數(shù)的大小不變之后,再結合商不變的性質深入理解,把知識融會貫通。整個教學過程注重讓學生經歷了探索知識的過程,使學生知道這些知識是如何被發(fā)現(xiàn)的,結論是如何獲得的,體現(xiàn)了方法比知識更重要這一新的教學價值觀,構建了新的教學模式。
《數(shù)學課程標準》指出:學生是學習數(shù)學的主人,教師是數(shù)學學習的組織者、引導者與合作者。這就要求我們在教學活動中應該為學生提供大量數(shù)學活動的機會,讓學生去探索、交流、發(fā)現(xiàn),從而真正落實學生的主體地位。
教學目標:
1、使學生理解和掌握分數(shù)的基本性質,能應用性質解決一些簡單問題.
2、培養(yǎng)學生觀察、分析、思考和抽象、概括的能力.
3、滲透形式與實質的辯證唯物主義觀點,使學生受到思想教育.
教學重點:
使學生理解和掌握分數(shù)的基本性質,培養(yǎng)學生的抽象、概括的能力。
教學難點:
讓學生自主探索,發(fā)現(xiàn)和歸納分數(shù)的基本性質,以及應用它解決相關的問題。
教具準備:
每生三張正方形紙
教學方法:
演示法、觀察法、討論法、交流法。
第四篇:分數(shù)的基本性質(教案)
分數(shù)的基本性質(教案)
大泊中心小學
眭金明
教學內容:分數(shù)的基本性質。(95頁例1、96頁例2練一練等)教學要求:
1、組織學生探究、發(fā)現(xiàn)、歸納分數(shù)的基本性質,并理解它與商不變的性質之間的聯(lián)系。
2、使學生能初步應用分數(shù)的基本性質,把一個分數(shù)化成分母不同而大小不變的分數(shù)。
教學重點:組織學生探究、發(fā)現(xiàn)、歸納分數(shù)的基本性質
教學難點:應用分數(shù)的基本性質,把一個分數(shù)化成分母不同而大小不變的分數(shù)。教學過程:
一、復習鋪墊,猜想導入
1、仔細觀察,不計算,很快得出每個算式的商。
80÷20=4(80×5)÷(20×5)=()(80÷4)÷(20÷4)=()(80×a)÷(20×a)=()(80÷m)÷(20÷m)=()你的依據(jù)是什么?(商不變的性質)
2、還記得3÷0.25是怎樣簡便運算的嗎?試試看。
3÷0.25 =(3×4)÷(0.25×4)= 12÷1 = 12
3、小結(商不變的性質)
被除數(shù)和除數(shù)同時乘或除以相同的數(shù)(0除外), 商不變.4、啟發(fā)學生大膽猜想:
除法和分數(shù)是有關系的,除法有商不變的性質,分數(shù)是不是也有什么性質呢?聽說過或是看到過嗎?
二、觀察、探究、發(fā)現(xiàn)、歸納
1、小明和小華小玲分吃一塊月餅(出示圖)
小明吃這塊月餅的1/3 小華吃這塊月餅的2/6 小玲吃這塊月餅的3/9(1)從圖上看他們三人分得同樣多。(2)板書:1/3 = 2/6 = 3/9(3)觀察:從左往右1/3 = 2/6(子、母同時乘2)1/3 = 3/9(子、母同時乘3)
從右往左2/6 = 1/3(子、母同時除以2)
3/9 = 1/3(子、母同時除以3)(4)從剛才的分析中你發(fā)現(xiàn)了什么規(guī)律?(5)歸納:
分數(shù)的分子和分母同時乘或除以相同的數(shù)(零除外),分數(shù)的大小不變。(6)板書課題:分數(shù)的基本性質
2、想一想:
商不變的性質和分數(shù)的基本性質有什么聯(lián)系?
3、應用分數(shù)的基本性質,可以把一個分數(shù)化成分母不同而大小不變的分數(shù)。例: 3/4 和 15/24 都可以化成分母是8而大小不變的分數(shù) 3/4=3×2/4×2=6/8 15/24=15÷3/24÷3=5/8
4、想試試嗎?
(1)、把 2/3 和 10/24 化成分母都是12而大小不變的分數(shù)。(2)、在()里填上合適的數(shù) 1/5=()/15 9/18=()/6 1/4=3/()15/20=3/()
三、鞏固練習看誰學得好
1、口答:
把2/7的分母乘4,要使分數(shù)的大小不變,分子應當怎樣變化? 把10/15 的分子除以5,要使分數(shù)的大小不變,分母應當怎樣變化?
2、下列每組中的兩個分數(shù)相等嗎?為什么?
1/3和3/9(等)15/33和5/11(等)4/16和1/8(不等)2/4和9/12(不等)3、這一點可以表示那些分數(shù)?
4、思考、討論
6/8 = 9/12 你能解釋它們?yōu)槭裁聪嗟葐幔?/p>
第五篇:分數(shù)的基本性質教案
五年級數(shù)學下冊《分數(shù)的基本性質
(二)》,教案教學目的
1.使學生理解和掌握分數(shù)的基本性質.
2.培養(yǎng)學生[此文轉于斐斐課件園 FFKJ.Net]觀察、思考、動手操作和自學能力.
教學過程(本文來自優(yōu)秀教育資源網斐.斐.課.件.園)
一、導入新課.
故事引入:中秋節(jié),媽媽買了一個大西瓜,分給哥哥這個西瓜的,(板書:).
分給姐姐這個西瓜的,(板書:).分給弟弟這個西瓜的,(板書:).哥哥、姐姐、弟弟三個人,他們誰吃的西瓜多呢?(學生答案不一)
到底誰回答得對呢?上完這節(jié)課你們一定能得到準確的答案.
二、新課.
1.實際操作列等式證實兩組分數(shù),每組分數(shù)大小相等.
(1)教師講解:請同學們拿出三個大小相等的圓來,分別用陰影部分表示每個圓的
.(板書:)
(2)教師提問:比較一下陰影部分的大小,結果怎樣?
陰影部分相等,說明這三個分數(shù)怎樣?
(隨著學生回答老師將三個分數(shù)用“=”連接)
(3)教師拿出畫著三條數(shù)軸的小黑板,講:誰能在三條數(shù)軸上標出
(4)教師提問:這三個分數(shù)在數(shù)軸上所表示的長度怎樣?這又說明了什么?
(隨著學生回答老師在三個分數(shù)間用“=”連接)
2.初步概括分數(shù)基本性質.
(1)觀察兩個等式,每個等式的三個分數(shù)什么變了?什么沒變?
?
(2)同學們從左到右觀察第一個等式,想一下,這三個分數(shù)的分子、分母怎樣變化才保證了分數(shù)的大小不變.
板書:
(3)誰能用一句話把這個變化規(guī)律敘述出來?
板書:分數(shù)的分子、分母都乘上同一個數(shù),分數(shù)大小不變.
(4)從左到右觀察第二個等式,這三個分數(shù)的分子、分母發(fā)生了怎樣的變化,才保證了分數(shù)大小不變呢?
板書:
(5)問:誰能用一句話把這個變化規(guī)律敘述出來?
誰能用一句話把這兩個變化規(guī)律敘述出來?
(板書:或除以)
3.完整分數(shù)基本性質.
填空:
教師追問:第三題()里可以填多少個數(shù)?第4題呢?
為什么3、4題()里可以填無數(shù)個數(shù)?
()里填任何數(shù)都行嗎?哪個數(shù)不行?(板書:零除外)
這里為什么必須“零除外”?
教師小結:我們總結的分數(shù)的這個變化規(guī)律就是“分數(shù)的基本性質.
(板書課題:分數(shù)基本性質)
4.深入理解分數(shù)基本性質.
教師提問:分數(shù)的基本性質里哪幾個詞比較重要?
為什么“都”和“相同”很重要?
為什么“分數(shù)大小不變”也很重要?
為什么“零除外”也很重要?
5.全課小結
板書(上面)