欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      薄膜流研究進(jìn)展

      時(shí)間:2019-05-13 08:38:57下載本文作者:會(huì)員上傳
      簡(jiǎn)介:寫寫幫文庫小編為你整理了多篇相關(guān)的《薄膜流研究進(jìn)展》,但愿對(duì)你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫還可以找到更多《薄膜流研究進(jìn)展》。

      第一篇:薄膜流研究進(jìn)展

      薄膜流研究進(jìn)展

      班級(jí):機(jī)械工程專碩1班 學(xué)號(hào):6160805020 姓名:程帥

      摘要:液體在重力作用下以薄層形式沿壁面向下流動(dòng),稱為液體薄膜流。它具有小流量、小溫差、高傳熱傳質(zhì)系數(shù)、高熱流密度、結(jié)構(gòu)簡(jiǎn)單、動(dòng)力消耗小等獨(dú)特優(yōu)點(diǎn),己作為一項(xiàng)高效傳熱傳質(zhì)技術(shù)在化工、能源、航天、石油、制冷、電子等許多工業(yè)領(lǐng)域得到了廣泛應(yīng)用。本文介紹了非牛頓流體層流降膜流、新型薄膜覆蓋材料、薄膜流涎機(jī)。正是由于實(shí)際應(yīng)用的重要性和迫切性,在液體薄膜流的水動(dòng)力過程和傳熱傳質(zhì)特性力一面,近幾十年來開展了大量的深入研究。本文通過全面闡述液體薄膜流動(dòng)和傳熱特性的研究現(xiàn)狀,分析目前研究中存在的問題與不足,為未來研究提供借鑒。

      關(guān)鍵詞:液體薄膜流、非牛頓流薄膜流、新型薄膜覆蓋材料、薄膜流涎機(jī)

      1.液體薄膜流表面特征

      對(duì)于液膜沿傾斜壁或垂直管壁向下流動(dòng)的情形,從實(shí)驗(yàn)上觀察到三種不同的流動(dòng)狀態(tài):當(dāng)Re=4T/v<20~30(T為單位濕周的體積流率,v為流體的運(yùn)動(dòng)粘度),流動(dòng)為層流,膜表面呈平滑狀態(tài)且膜厚為常數(shù);當(dāng)2001000~2000,流動(dòng)呈波動(dòng)性劇烈的紊流。在工業(yè)應(yīng)用的雷諾數(shù)范圍內(nèi),降膜呈現(xiàn)出非常不規(guī)則的波動(dòng)表面。對(duì)于波峰高度是底層厚度兩倍以上,且其周圍存在至少一個(gè)波長(zhǎng)長(zhǎng)度的平坦部分的波,稱之為孤立波,如圖1所示。它起始于粘性底層,具有陡峭的波前和相對(duì)平緩的波后,在波后逐漸沒入粘性底層。對(duì)于波幅是其底層厚度2}5倍的大波,其攜帶著大部分流動(dòng)質(zhì)量,對(duì)波內(nèi)、波與壁面、波與外界的傳熱傳質(zhì)速率,起著明顯的控制作用。一般說來,界面處的波動(dòng)會(huì)在膜內(nèi)、特別是 在接近界面處將產(chǎn)生良好的混合。實(shí)驗(yàn)測(cè)量表明,紊流對(duì)動(dòng)量傳遞的影響與波動(dòng)的影響相比要小一些。

      (a)波峰高度/底層厚度=2.8(b)波峰高度/底層厚度=3.68 圖1不同波峰高度/底層厚度比下的流動(dòng)特性,R=600

      大多數(shù)模擬結(jié)果顯示:在孤立波內(nèi)存在與主流方向相反的回流區(qū),而在其周圍的微波內(nèi)不存在回流區(qū)(圖1)?;亓鲄^(qū)的存在,加快了界面處和膜內(nèi)冷熱流體的混合,在一定程度上加強(qiáng)了傳熱效果,而且,液體表面波的存在,尤其是大孤立波,可有效地喇氏平均液膜厚度,.這些特征可以從理論上解釋在波動(dòng)膜狀態(tài)下具有強(qiáng)傳熱傳質(zhì)速率的機(jī)理。

      2、非牛頓流薄膜流

      2.1非牛頓流體層流降膜流

      非牛頓流體層流降膜流中質(zhì)量傳遞過程.實(shí)驗(yàn)系采用溫壁塔測(cè)定二氧化碳在高分子水溶液中吸收速率。這些溶液符合冪律模型.實(shí)驗(yàn)證明非牛頓冪律流體降膜流中考慮速度分布的微分方程精確解是正確的;對(duì)擬塑性流體,用無因次長(zhǎng)度Z<0.1作為滲透論適用范圍的判據(jù)是合適的,而精確解則不受此范圍的限制。

      首先,理論研究方面,液膜表面波動(dòng)具有三維特征,在傳熱特性的理論研究中,通常假設(shè)液膜為二維流動(dòng),且表面無波動(dòng)和界面切應(yīng)力保持不變,這與實(shí)際的三維波動(dòng)液膜表面和沿流動(dòng)方向不斷減小的切應(yīng)力存在一定的差距;而且,影響傳熱特性的因素種類繁多,如何從理論上進(jìn)一步完善物理模型有待探討。其次,實(shí)驗(yàn)研究方面,目前所得液膜厚度和傳熱特性實(shí)驗(yàn)關(guān)聯(lián)式間相差較大,實(shí)驗(yàn)數(shù)據(jù) 相對(duì)缺乏,建立合理的簡(jiǎn)化的物理模型或?qū)で筮m合工程應(yīng)用的實(shí)驗(yàn)關(guān)聯(lián)式,這也值得進(jìn)一步深入研究。

      2.2流延帶的材料

      最早用以制造流延帶的材料是純銅。純銅有良好的延展性,有利于加工成無端帶;銅帶在使用過程中的變形可用輥壓法展平。因純銅對(duì)一般成膜溶液不具有良好的化學(xué)穩(wěn)定性,同時(shí)銅帶表面的光潔度和平面度不夠高,不適于直接在其表面上流延薄膜,而需先在其表面上流延一定厚度的鏡面層,在此鏡面層上再流延薄膜。鏡面層只能使用一定的期限,這樣就增加了生產(chǎn)過程的復(fù)雜性,又降低了設(shè)備的生產(chǎn)能力。雖然如此,由于鏡面層的質(zhì)量改進(jìn)和用期的延長(zhǎng),仍可見到使用銅帶的報(bào)道。目前廣泛使用的流延帶是不銹鋼無端帶。薄膜和塑料工業(yè)的發(fā)展要求提高流延帶的物理和化學(xué)性能。用以制造流延帶的不銹鋼材應(yīng)有高的機(jī)械強(qiáng)度和硬度(抗拉強(qiáng)度9(Y一100kg/mm2,表面硬度Hd300^-320),以保證在正常操作張力下不產(chǎn)生變形并且有高的抗擦傷能力;應(yīng)能易于加工,使之達(dá)到鏡面光潔度;同時(shí)對(duì)于成膜溶液應(yīng)有高度的穩(wěn)定性。18/8型不銹鋼的某些品種(例如AISI304冷軋帶材)可以滿足這些要求。經(jīng)過特殊機(jī)械加工制成的不銹鋼流延帶,可達(dá)到高度的厚度均一性和獲得峰到谷的平均高度值小于0.1微米的鏡面。因此,可以直接在這樣的帶的表面上流延薄膜。國外還制造純鎳帶。鎳具有高的腐蝕抵抗力,亦不需要中間層,物料可直接在其表面上流延。

      牛頓型流體薄膜流中的物質(zhì)傳遞與熱傳遞在吸收器、蒸餾塔、薄膜反應(yīng)器、蒸發(fā)器以及吸收式致冷機(jī)中的廣泛應(yīng)用,已為人們所熟知。近年來發(fā)現(xiàn),非牛頓流體薄膜流中的傳質(zhì)和反應(yīng)對(duì)于高分子加工、發(fā)酵液、生物制藥等領(lǐng)域,其潛在的應(yīng)用也十分廣泛。特別是擴(kuò)散系數(shù)的測(cè)定,由于非牛頓流體只有在其流動(dòng)受剪的情況下才顯示其特性,所以,一般的非流動(dòng)情況下擴(kuò)散系數(shù)的測(cè)定技術(shù)似乎難以利用。因此,對(duì)非牛頓薄膜流中的傳質(zhì)和傳熱加以研究就顯得十分必要。

      3.薄膜流的應(yīng)用

      新型薄膜覆蓋材料的研究和開發(fā)是我國設(shè)施農(nóng)業(yè)的重要研究方向。根據(jù)我國的國情,為滿足市場(chǎng)需求,本文在國內(nèi)首次提出采用日產(chǎn)的明凈華涂層薄膜作為我國設(shè)施農(nóng)業(yè)的保溫覆蓋材料?;诓牧媳旧矶喾矫鎯?yōu)異性能,研究其在國內(nèi)設(shè)施農(nóng)業(yè)方面的應(yīng)用前景。通過對(duì)新型薄膜覆蓋材料的性能分析及其應(yīng)用效果的研究,在理論和實(shí)踐兩方面加以驗(yàn)證。理論上推論出其具有良好的保溫效果,并在后面的應(yīng)用效果中得到證實(shí)。在應(yīng)用效果上,只對(duì)棚內(nèi)種植番茄 2 的葉數(shù)、株高、莖粗、產(chǎn)量、果實(shí)等進(jìn)行了測(cè)試和比較分析,作物生長(zhǎng)受到光照、溫度、水分、肥料、空氣等影響。實(shí)驗(yàn)在盡量保持溫、光、水、肥等基本一致的條件下對(duì)作物生長(zhǎng)進(jìn)行對(duì)比,在作物的生長(zhǎng)階段里可以較明顯的看出日產(chǎn)的明凈華涂層膜下的作物長(zhǎng)勢(shì)好、產(chǎn)量高、品質(zhì)好等華盾棚膜次之??傊?,日產(chǎn)的明凈華涂層膜在環(huán)境特性、光學(xué)特性及應(yīng)用效果等各方面都具有較好的性能,基本上滿足市場(chǎng)的需求,為解決目前我國設(shè)施農(nóng)業(yè)存在的問題提出一種新的解決方法。

      薄膜流涎機(jī)是生產(chǎn)包裝薄膜的主要生產(chǎn)設(shè)備。隨著國民經(jīng)濟(jì)的高速發(fā)展,人們對(duì)包裝薄膜的需求越來越旺盛,要求也越來越高,這就促使薄膜流涎機(jī)生產(chǎn)企業(yè)必須高效、高質(zhì)量地開發(fā)、生產(chǎn)符合客戶要求的薄膜流涎機(jī)。薄膜流涎機(jī)模塊化參數(shù)化設(shè)計(jì)技術(shù)研究,就是利用當(dāng)前最先進(jìn)的模塊化設(shè)計(jì)技術(shù)并結(jié)合參數(shù)化CAD設(shè)計(jì)技術(shù)解決薄膜流涎機(jī)快速開發(fā)設(shè)計(jì)的問題,提高企業(yè)競(jìng)爭(zhēng)力?,F(xiàn)如今的設(shè)計(jì),首先對(duì)薄膜流涎機(jī)模塊化參數(shù)化設(shè)計(jì)進(jìn)行了需求分析,在此基礎(chǔ)上,制定了適合薄膜流涎機(jī)模塊化參數(shù)化設(shè)計(jì)系統(tǒng)的總體方案,并搭建了薄膜流涎機(jī)模塊化參數(shù)化設(shè)計(jì)系統(tǒng)的框架;然后根據(jù)模塊化設(shè)計(jì)的基本原則和方法,并結(jié)合薄膜流涎機(jī)的功能以及自身結(jié)構(gòu)特點(diǎn),建立了以固定模塊、通用模塊和一般模塊為基本單元模塊,以功能模塊為高級(jí)單元模塊的層次分明的模塊結(jié)構(gòu)體系,建立了基本的三維模塊庫;根據(jù)薄膜流涎機(jī)自身零部件設(shè)計(jì)的要求和特點(diǎn),提出了適合其零部件的參數(shù)化設(shè)計(jì)方法,并以薄膜流涎機(jī)收卷機(jī)為例,詳細(xì)介紹了收卷機(jī)中各個(gè)零部件的參數(shù)化設(shè)計(jì)計(jì)算流程,完成了收卷機(jī)的參數(shù)化設(shè)計(jì)計(jì)算;最后以Visual Basic為二次開發(fā)工具,利用SolidWorks的二次開發(fā)技術(shù)并結(jié)合Access數(shù)據(jù)庫,開發(fā)出了薄膜流涎機(jī)收卷機(jī)參數(shù)化設(shè)計(jì)系統(tǒng)。經(jīng)實(shí)例運(yùn)行可知,此系統(tǒng)可以快速實(shí)現(xiàn)收卷機(jī)的三維建模,提高設(shè)計(jì)效率,有較強(qiáng)的實(shí)際應(yīng)用價(jià)值。

      4.薄膜流國外研究現(xiàn)狀

      A new approximate analytical technique to address for non-linear problems, namely Optimal Homotopy Asymptotic Method(OHAM)is proposed and has been applied to thin film flow of a fourth grade fluid down a vertical cylinder.This approach however, does not depend upon any small/large parameters in comparison to other perturbation method.This method provides a convenient way to control the convergence of approximation series and allows adjustment of convergence regions where necessary.The series solution has been developed and the recurrence relations are given explicitly.The results reveal that the proposed method is very accurate, effective and easy to use.the unsteady thin film flow of a fourth grade fluid over a moving and oscillating vertical belt.The problem is modeled in terms of non-nonlinear partial differential equations with some physical conditions.Both problems of lift and drainage are studied.Two different techniques namely the adomian decomposition method(ADM)and the optimal homotopy asymptotic method(OHAM)are used for finding the analytical solutions.These solutions are compared and found in excellent agreement.For the physical analysis of the problem, graphical results are provided and discussed for various embedded flow parameters.The thermally activated flux flow effect has been studied in epitaxial FeSe 0.6 Te 0.4 thin film grown by a PLD method through the electrical resistivity measurement under various magnetic fields for B //c and B //ab.The results showed that the thermally activated flux flow effect is well described by the nonlinear temperature-dependent activation energy.The evaluated apparent activation energy U 0(B)is one order larger than the reported results and showed the double-linearity in both magnetic field directions.Furthermore, the FeSe 0.6 Te 0.4 thin film shows the anisotropy of 5.6 near T c and 2D-like superconducting behavior in thermally activated 3 flux flow region.In addition, the vortex glass transition and the temperature dependence of the high critical fields were determined.We report the design methodology of thin film capacitor(TFC)device using thermal evaporation technique for quality study or material differentiation application by testing with liquid(different concentration)and solid.A simple and special modification was incorporated in thermal evaporation setup for depositing semi cylindrical capacitor design on a capillary tube(CT).In order to avoid the disturbance due to electrostatic noise disturbance, TFC was covered with another glass tube, aluminum(Al)metal foil(as shield)and finally by plastic tube cover.Electrodes were taken from the film using silvers paste and connected as input to the LCR-Z meter.The capacitance value of the thin film was varied up to 15-16 pF from the initial value(Al: 129 pF, Cu: 130 pF)when subjected to the static flow.A low cost embedded micro controller module with Liquid Crystal Display(LCD)was developed for the real time testing of TFC.We present results of a numerical study of turbulent droplet-laden channel flow with phase transition.Previous studies of the same system did not take into account the presence of gravity.Here, we do so introducing a thin film of water at the bottom wall and permitting droplets to fall into and merge with it.We treat the carrier phase with the Eulerian approach.Each droplet is considered separately in the Lagrangian formulation, adopting the point-particle approximation.We maintain the film thickness constant by draining water from the bottom wall to compensate for(a)the droplets that fall onto the film and(b)evaporation/condensation.We also maintain on average the total mass of water in the channel by inserting new droplets at the top wall to compensate for the water that has been drained from the bottom wall.We analyze the behavior of the statistically averaged gas and droplet quantities focusing on the heat exchange between the two phases.We increase(a)the initial droplet diameter keeping the same initial droplet volume fraction and(b)the initial number of droplets in the channel keeping their diameter the same.In both parameter studies we find that droplets grow less than in the reference case.In case(a)this is explained by the larger velocity with which they travel to the bottom wall and in case(b)by the lower rate of condensation of vapor due to the presence of neighboring droplets.And we presents an investigation for unsteady MHD flow and radiation heat transfer of a nanofluid in a finite thin film over stretching surface in which the effects of heat generation, thermophoresis and Brownian motion are taken into account.Boundary layer governing differential equations are formulated and reduced into a set of ordinary differential equations by suitable similarity transformations.Solutions are obtained numerically and some interesting results are found.Results show that the film thickness decreases monotonically with unsteady parameter and the magnetic parameter increase but increases with the power law index number m.The temperature profile decreases while the nanoparticle volume fraction increases as the thermophoresis parameter increases.More effects of involved parameters on velocity, temperature and concentration fields are graphically presented and analyzed in detail.Electrophoretic deposition(EPD)of colloidal nanocrystals(NCs)under flow is explored as a general method for the fabrication of semiconducting thin films.For photovoltaic applications, a low process voltage is highly desirable to avoid damaging the accreting semiconductor.Here we report a continuous flow reactor design that can operate at reduced voltage compared to a traditional batch reactor while preserving the electrophoretic velocity of the NCs by utilizing narrow electrode spacing.In a batch reactor, the low ratio of reactor volume to electrode surface area dictated by such a narrow spacing of the electrodes would impose a limit on the mass of nanocrystals that are resident in the reactor and therefore the thickness of the films that can be deposited.By continuously flowing the colloidal dispersion of NCs this limitation is obviated and thick films can be deposited.Through modeling and experiment we demonstrate the process parameters necessary to completely utilize the NCs in the feed solution, thereby achieving nearly 100% atom economy in the deposition process.The reactor design is compatible with large area substrates and is specifically designed to enable continuous, high-rate fabrication of the active layer of photovoltaic cells.The approach to calculating a new form of the exact analytic solution of thin film fluid flows rests upon a sequence of transformations including the modification of the classic technique due to Scipione del Ferro and Niccolò Fontana Tartaglia.Next the authors establish a lemma that justifies the new expression of the exact analytic solution for thin film fluid flows of fourth-grade fluids.Second, the authors apply a modification of the systematic ADM to quickly and easily calculate the sequence of analytic approximate solutions for this strongly nonlinear model of thin film flow of fourth-grade fluids.The ADM has been previously demonstrated to be eminently practical with widespread applicability to frontier problems arising in scientific and engineering applications.Herein, the authors seek to establish the relative merits of the ADM in the context of the thin film flows of fourth-grade fluids.;The ADM is shown to closely agree with the new expression of the exact analytic solution.The authors have calculated the error remainder functions and the maximal error remainder parameters in the error analysis to corroborate the solutions.The error analysis demonstrates the rapid rate of convergence and that we can approximate the exact solution as closely as we please;furthermore the rate of convergence is shown to be approximately exponential, and thus only a low-stage approximation will be adequate for engineering simulations as previously documented in the literature.;This paper presents an accurate work for solving thin film flows of fourth-grade fluids.The authors have compared the approximate analytic solutions by the ADM with the new expression of the exact analytic solution for this strongly nonlinear model.The authors commend this technique for more complex thin film fluid flow models.Evaporation in a thin film induces pronounced temperature gradient and surface tension gradient along the liquid-vapor interface and in turn engenders thermocapillary flow.This study aims to investigate the fluid flow characteristics attributed to the thermocapillarity in an evaporating thin liquid film of polar and nonpolar liquids.A numerical steady-flow model is derived based on the fundamental principles of fluid flow and heat transfer by applying the long-wave evolution technique.To scrutinize the underlying physical transport phenomena associated with the significance of thermocapillary effect in an evaporating thin liquid film, we investigate the hydrodynamic characteristics of thermocapillary convection which is typically characterized by the recirculation flow patterns.The two-dimensional recirculation flow patterns in different excess-temperature regimes are analyzed and a critical turning point at where the flow is reversed due to the thermocapillary action can be identified.Compared to other working fluids, water depicts a unique thermocapillary flow characteristic where its flow lines manifests in the form of swirls along the liquid-vapor interface.The normal and the shear stress distributions further provide a clearer picture on the strength of thermocapillarity to identify the manifestation of thermocapillary flow.The analysis of flow patterns and hydrodynamic behaviors of evaporating thin liquid films provide essential insights in discerning the occurrence of thermocapillary flow as well as the significance of thermocapillarity in polar and nonpolar liquids.The purpose of this paper is to study the thin film flow of a fourth grade fluid subject to slip conditions in order to understand its velocity profile.Design/methodology/approach。An exact expression for flow velocity is derived in terms of hyperbolic sine functions.The practical usage of the exact flow velocity is restrictive as it involves very complicated integrals.Therefore, an approximate solution is also derived using a Galerkin finite element method and numerical error analysis is performed.Findings – The behavior of fluid velocity with respect to various flow parameters is discussed.The results are not restrictive to small values of flow parameters unlike those obtained earlier using homotopy analysis method and homotopy perturbation method.Originality/value – An approximate solution based on finite element technique is derived.總結(jié)

      液體薄膜流以其高傳熱傳質(zhì)系數(shù)、結(jié)構(gòu)簡(jiǎn)單且動(dòng)力消耗小等獨(dú)特優(yōu)點(diǎn),已作為一項(xiàng)高效傳熱傳質(zhì)技術(shù)在傳統(tǒng)工業(yè)和高新技術(shù)領(lǐng)域中得到了廣泛的應(yīng)用。現(xiàn)已成為國際傳熱傳質(zhì)科學(xué)與工程界的一個(gè)十分活躍的研究領(lǐng)域,其潛在的技術(shù)應(yīng)用領(lǐng)域?qū)⒎浅V泛。而且,近年來,利用液體薄膜流的特性來解決高技術(shù)領(lǐng)域中遇到的高熱流密度下的強(qiáng)化換熱問題,越來越引起人們的關(guān)注,這方面的實(shí)例有:大規(guī)模集成電路的薄膜冷卻、第二代核電站安全殼的薄膜蒸發(fā)冷卻方案、液滴輻射器以及新型太陽能集熱器、液膜除塵器等。顯然,要充分發(fā)揮液體薄膜強(qiáng)化傳熱傳質(zhì)的優(yōu)勢(shì),一個(gè)至關(guān)重要的問題就是要弄清其內(nèi)在的流動(dòng)過程和傳熱傳質(zhì)機(jī)理,維持薄膜流動(dòng)穩(wěn)定,使之均勻地包覆在傳熱表面;否則一旦液體薄膜發(fā)生破斷,傳熱表面出現(xiàn)干斑或干區(qū),那么就會(huì)引發(fā)各種各樣的嚴(yán)重后果,諸如熱敏性物料變味變質(zhì)、非熱敏性物料結(jié)焦、以至堵塞傳熱管,而在有些情況下,傳熱表面就會(huì)因干區(qū)溫度急劇上升而過熱或燒毀。本文對(duì)非牛頓薄膜流中物質(zhì)與熱能傳遞的規(guī)律性,尋求其濃度分布表達(dá)式以及局部和平均Sh數(shù)的理論值,然后再與實(shí)驗(yàn)數(shù)據(jù)相互對(duì)照、并介紹了薄膜流在工業(yè)上的應(yīng)用,目前己取得了大量的研究成果,并得到了廣泛的工業(yè)應(yīng)用。但在有些方面,所得的認(rèn)識(shí)規(guī)律尚不統(tǒng)一,因此仍需深入研究。

      參考文獻(xiàn)

      [1].液體薄膜流的流動(dòng)和傳熱特性

      閻維平;葉學(xué)民;李洪濤 華北電力大學(xué)學(xué)報(bào) 2005-01-30 [2].液體薄膜流穩(wěn)定性和破斷特性的研究進(jìn)展

      葉學(xué)民;閻維平華北電力大學(xué)學(xué)報(bào) 2006-11-30 [3].非牛頓流體薄膜流中傳質(zhì)和傳熱的理論研究

      江體乾;黃德成;瞿谷仁化工學(xué)報(bào) 1982-05-01 [4].非牛頓流體薄膜流中質(zhì)量傳遞的實(shí)驗(yàn)研究

      江體乾;褚家瑛;徐英農(nóng) 化工學(xué)報(bào) 1984-08-28 [5].薄膜流延帶及其應(yīng)用

      詹紹源 感光材料 1984-06-29

      [6].新型薄膜覆蓋材料的性能分析及其應(yīng)用效果的研究

      李勝戰(zhàn) 西北農(nóng)林科技大學(xué) 2009-05-01 [7].薄膜流涎機(jī)模塊化參數(shù)化設(shè)計(jì)技術(shù)研究

      林元華 南京理工大學(xué) 2011-12-01 [8].壁面薄膜流的熱質(zhì)傳遞和穩(wěn)定性研究

      葉學(xué)民 華北電力大學(xué)(河北)2002-07-01 [9].全自動(dòng)精密薄膜流延機(jī)的設(shè)計(jì)方案

      林偉強(qiáng) 機(jī)電工程技術(shù) 2001-12-30

      [10].Optimal homotopy asymptotic method with application to thin film flowVasile Marinca;Nicolae Heri?anu;

      Iacob Nemes De Gruyter2008 [11].Unsteady thin film flow of a fourth grade fluid over a vertical moving and oscillating beltTaza Gul;Fazle Ghani;S.Islam;R.A.Shah;I.Khan;Saleem Nasir;S.Sharidan;愛思唯爾期刊2015 [12].Thermally activated flux flow in superconducting epitaxial FeSe 0.6 Te 0.4 thin filmD.Ahmad;W.J Choi;Y.I.Seo;Sehun Seo;Sanghan Lee;Yong Seung Kwon

      愛思唯爾期刊2016 [13].Design of Thin Film Capacitive Sensor for Flow MeasurementK.J.Kumaresh;P.Deepak Raj;M.Sridharan;愛思唯爾期刊2016 [14].Influence of H 2 flow ratio on the photoelectric properties of hydrogenated AZO thin films with embedded silver layerGenghua Yan;Ye Yuan;Wenli Chen;Ruijiang Hong;

      Materials Letters2016 [15].Heat transfer in droplet-laden turbulent channel flow with phase transition in the presence of a thin film of waterA.Bukhvostova;J.G.M.Kuerten;B.J.Geurts;International Journal of Heat and Fluid Flow2016 [16].Unsteady MHD flow and radiation heat transfer of nanofluid in a finite thin film with heat generation and thermophoresisJing Li;Liancun Zheng;Lin Liu;Bandar Bin-Mohsin

      Journal of the Taiwan Institute of Chemical Engineers2016 [17].Thin films of copper indium selenide fabricated with high atom economy by electrophoretic deposition ofnanocrystals under flowAndrew D.Dillon;Long Le Quoc;Mustafa Goktas;Borirak Opasanont;Subham Dastidar;Shawn Mengel;Jason B.Baxter;Aaron T.Fafarman2016 [18].Exact and approximate analytic solutions of the thin film flow of fourth-grade fluids by the modified Adomian decomposition methodLazhar Bougoffa;Jun-Sheng Duan;Randolph Rach International Journal of Numerical Methods for Heat & Fluid Flow2016 [19].A hydrodynamic analysis of thermocapillary convection in evaporating thin liquid filmsElaine Lim;Yew Mun Hung;Boon Thong TanInternational Journal of Heat and Mass Transfer2016 Hanifa Hanif;Abdul WahabInternational Journal of Numerical Methods for Heat & Fluid Flow2015

      [20].Numerical study of a thin film flow of fourth grade fluidAmer Rasheed;Rab Nawaz;Sohail Ahmed Khan;

      第二篇:寬幅塑料流延薄膜技術(shù)及其裝備

      寬幅塑料流延薄膜技術(shù)及其裝備

      一、前言

      尊敬的先生們/女士們

      您們好!我是廣東仕誠塑料機(jī)械有限公司的總經(jīng)理:張春華, 我們公司是專業(yè)從事流延膜生產(chǎn)線、PVB玻璃夾層薄膜生產(chǎn)線等設(shè)備研發(fā)和生產(chǎn)的企業(yè)。目前,是中國國內(nèi)最早具備大規(guī)模生產(chǎn)寬幅為3500mm以上的超寬流延膜設(shè)備能力的企業(yè)。

      自20世紀(jì)90年代以來,我國塑料機(jī)械制造工業(yè)一直處于高速、穩(wěn)定的發(fā)展階段。不僅在量上急劇增長(zhǎng),而且在質(zhì)量上也得到了顯著提升。目前,我國塑料機(jī)械制造工業(yè)正處于由制造大國邁向制造強(qiáng)國的關(guān)鍵時(shí)期。進(jìn)入21世紀(jì),我國塑料機(jī)械制造技術(shù)有了質(zhì)的飛躍,產(chǎn)品在主要綜合經(jīng)濟(jì)技術(shù)指標(biāo)上取得了突破性進(jìn)展。代表我國塑料機(jī)械制造水平的企業(yè)或產(chǎn)品,其制造技術(shù)已進(jìn)入國際先進(jìn)行列。總體上說,國產(chǎn)塑料機(jī)械制造技術(shù)已經(jīng)接近國際先進(jìn)水平。然而,為搶占市場(chǎng)國外同行正通過獨(dú)資和合作辦企業(yè)的方法進(jìn)入中國,其對(duì)提高我國國產(chǎn)設(shè)備制造技術(shù)整體水平無疑是個(gè)機(jī)遇,但對(duì)國內(nèi)企業(yè)來說也是一次挑戰(zhàn),如何應(yīng)對(duì)這一挑戰(zhàn)是我們面臨的重要課題。此外,過度競(jìng)爭(zhēng)、價(jià)格低廉、效益下滑,企業(yè)管理水平低下、營銷理念落后及行業(yè)協(xié)會(huì)缺乏凝聚力、服務(wù)管理不到位等也是急需解決的問題。

      今天我很榮幸能和各位嘉賓一起討論“寬幅塑料流延薄膜技術(shù)及其裝備”。

      塑料薄膜按生產(chǎn)方法可分為流延薄膜、吹脹薄膜和拉伸薄膜三種。流延薄膜占世界薄膜總消費(fèi)量的35%,主要有CPP薄膜、CPE薄膜、PVB夾層薄膜、PET薄膜等。目前,我國流延薄膜經(jīng)過幾十年來的積累,已經(jīng)有了長(zhǎng)足的發(fā)展,但與發(fā)達(dá)國家相比,國內(nèi)用流延方法生產(chǎn)的高檔薄膜在薄膜消費(fèi)中的比重還很小。

      二、流延薄膜的功能及用途

      1、CPP 薄膜具有透明性好、光澤度高、挺度好、阻濕性好、耐熱性優(yōu)良、易于熱封合等特點(diǎn)。CPP薄膜經(jīng)過印刷、制袋,適用于:服裝、針織品和花卉包裝袋;文件和相冊(cè)薄膜;食品包裝;及適用于阻隔包裝和裝飾的金屬化薄膜。潛在用途還包括:食品外包裝,糖果外包裝(扭結(jié)膜),藥品包裝(輸液袋),在相冊(cè)、文件夾和文件等領(lǐng)域代替PVC,合成紙,不干膠帶,名片夾,圓環(huán)文件夾以及站立袋復(fù)合材料。

      CPP耐熱性優(yōu)良。由於PP軟化點(diǎn)大約為140℃,該類薄膜可應(yīng)用于熱灌裝、蒸煮袋、無菌包裝等領(lǐng)域。加上耐酸、耐堿、耐油脂性能優(yōu)良,使之成為面包產(chǎn)品包裝或?qū)訅翰牧系阮I(lǐng)域的首選材料。其與食品接觸性安全,演示性能優(yōu)良,不會(huì)影響內(nèi)裝食品的風(fēng)味,并可選擇不同品級(jí)的樹脂以獲得所需的特性。

      2、CPE膜也就是聚乙烯膜,它的用途極為廣泛。特點(diǎn)是造價(jià)低廉、防水性好、但阻氣性差。低壓聚乙烯延伸性小,抗拉強(qiáng)度大,可將包裝袋制得很薄,但熱封性能差些,不宜用作復(fù)合里膜。高壓聚乙烯膜延伸性大,抗沖擊力較好,但不宜用作油炸食品類和真實(shí)、蒸煮袋的復(fù)合里膜。

      3、PVB夾層膜是由聚乙烯醇縮丁醛樹脂與增塑劑按一定比例混合后擠出制得的薄膜,外觀為半透明薄膜,無雜質(zhì),表面平整,有一定的粗糙度和良好的柔軟性。PVB夾層膜厚度一般為0.38mm、0.76mm和1.5mm三種,對(duì)無 機(jī)玻璃具有良好的粘結(jié)性,具有透明、耐熱、耐寒、耐濕,機(jī)械強(qiáng)度高等特性。

      PVB夾層玻璃由具有安全、保溫、控制噪音和隔離紫外線等多項(xiàng)功能,廣泛應(yīng)用于建筑、汽車等行業(yè)。采用特殊配方生產(chǎn)的PVB玻璃夾層膜在航天、軍事和高新技術(shù)工業(yè)等領(lǐng)域也有著廣泛的應(yīng)用,如用于飛機(jī)、航天器,軍事儀器,太陽能電池和太陽能接收器等,在工業(yè)領(lǐng)域應(yīng)用于復(fù)合減震鋼板等。

      4、PET彩虹膜,抗拉強(qiáng)度極高,抗沖擊力差,透明度高,阻氧阻氣性好,但不耐日曬、水蒸氣透過性小,可作為一種包裝或裝飾材料單獨(dú)使用,也可作為基材與其它材料復(fù)合。主要用于印刷品、文具、禮品、紡織品等裝飾物,但不宜作蒸煮袋。

      如上所述流延膜生產(chǎn)工藝一般采用T型模頭法,這種制法特點(diǎn)為:(1)流延法省去管膜法的吹膜階段,容易開車,廢料少;

      (2)流延法生產(chǎn)時(shí),化學(xué)分子排列有序,故有利于提高薄膜的透明性、光澤及厚薄均勻度,適合于高級(jí)包裝;(3)流延部分采用電動(dòng)的上下擺動(dòng)和前后移動(dòng)結(jié)構(gòu),操作簡(jiǎn)便;(4)電暈部分采用風(fēng)冷和水冷方式,產(chǎn)品不易變形。

      擠出機(jī)先將原料樹脂熔化,熔融樹脂經(jīng)機(jī)頭流延到表面光潔的冷卻輥上迅速冷卻成薄膜。經(jīng)厚度測(cè)量、牽引、電暈處理、展平后,切去邊緣較厚的邊料,再次展開并收卷為薄膜卷。

      三、流延膜生產(chǎn)工藝的要點(diǎn):

      T型機(jī)頭是生產(chǎn)關(guān)鍵設(shè)備之一,機(jī)頭設(shè)計(jì)應(yīng)使物料沿整個(gè)機(jī)唇寬度均勻地流出,機(jī)頭內(nèi)部流道內(nèi)無滯留死角,并且使物料模具有均勻的溫度,需考慮包括物料流變行為在內(nèi)的多方面因素。要采用精密加工機(jī)頭,常用的是漸減歧管衣架式機(jī)頭。冷卻輥的表面應(yīng)經(jīng)過精加工,表面粗糙度不大于0.15mm,轉(zhuǎn)速應(yīng)穩(wěn)定,動(dòng)力平衡性能應(yīng)良好,以免產(chǎn)生縱向的厚度波動(dòng)。采用β射線或紅外測(cè)厚儀對(duì)薄膜厚度進(jìn)行監(jiān)測(cè),以達(dá)到滿意的厚薄公差。要生產(chǎn)合格的流延薄膜,不僅要在原料上調(diào)節(jié)工藝,而且要掌握好加工工藝條件。

      對(duì)薄膜性能影響最大的是溫度。樹脂溫度升高,膜的縱向(MD)拉伸強(qiáng)度增大,透明度增高,霧度逐漸下降,但膜的橫向(TD)拉伸強(qiáng)度下降。比較適宜的溫度為230~250℃。冷卻輥上風(fēng)刀使薄膜與冷卻輥表面形成一層薄薄的空氣層,使薄膜均勻冷卻,從而保持高速生產(chǎn)。風(fēng)刀的調(diào)節(jié)必須適當(dāng),風(fēng)量過大或角度不當(dāng)都可能使膜的厚度不穩(wěn)定或不貼輥,造成折皺或出現(xiàn)花紋影響外觀質(zhì)量。冷卻輥溫度升高,膜的挺度增加,霧度增大。

      冷卻輥筒表面若有原料內(nèi)部添加物析出,必須停機(jī)清理,以免影響薄膜外觀質(zhì)量。流延薄膜比較柔軟,收卷時(shí)必須根據(jù)膜的厚度、生產(chǎn)速度等因素調(diào)整好壓力和張力。否則會(huì)產(chǎn)生波紋影響平整性。張力選擇要根據(jù)產(chǎn)品的拉伸強(qiáng)度大小而定,通常收卷張力越大,卷取后的產(chǎn)品不易出現(xiàn)卷筒松弛和跑偏現(xiàn)象,但在開始卷取時(shí)易出現(xiàn)波紋,影響卷平整。反之,卷取張力小,開始效果好,但越卷越易出現(xiàn)膜松弛、跑偏現(xiàn)象。因此,張力大小應(yīng)適中,并控制張力恒定。

      四、多層共擠流延膜的工藝特點(diǎn):

      為了提高薄膜性能,降低成本,滿足用戶多種用途和高性能要求,多層復(fù)合膜發(fā)展很快,尤其在生活水平相對(duì)高、重視環(huán)境保護(hù)、要求延長(zhǎng)食品保質(zhì)期和質(zhì)量的發(fā)達(dá)國家。多層共聚流延膜也是其中的一種多層膜,改變了 CPP薄膜產(chǎn)品性能單

      一、不能滿足市場(chǎng)多方面要求的問題和弊端。

      1、通用型:多層共聚流延膜可根據(jù)不同用途、設(shè)計(jì)不同的如用于自動(dòng)包裝機(jī)上的面包包裝、衣料(特別是內(nèi)衣、褲)包裝、水果包裝等,或用于與印刷后BOPP膜復(fù)合成BOPP/CPP二層膜,用于衣料、干燥食品(如快餐面袋、碗蓋等)包裝,通用型的結(jié)構(gòu)是共聚PP/均聚PP/共聚PP或均聚。

      2、金屬化型:要求產(chǎn)品表面對(duì)蒸鍍金屬(如鋁)具有極強(qiáng)的附著強(qiáng)度,蒸鍍后仍能保持較好的尺寸穩(wěn)定性和剛性,另一表面具有較低的熱封溫度和較高的熱封強(qiáng)度,金屬化型的結(jié)構(gòu)亦為共聚PP/均聚PP/共聚PP。

      3、蒸煮型:用于蒸煮的二層共聚CPP,能承受120℃和15MPa壓力的蒸煮殺菌。既保持了內(nèi)部食品的形狀、風(fēng)味,且薄膜不會(huì)開裂、剝離或粘結(jié),并具有優(yōu)良的尺寸穩(wěn)定性,常與尼龍薄膜或聚酯薄膜復(fù)合,包裝含湯汁類食品以及肉丸、餃子等食品或食前加工冷凍食品,蒸煮型三層PP膜結(jié)構(gòu)為共聚PP/共聚PP/共聚PP。

      4、高溫蒸煮型:包裝燒雞、燒排骨和果醬、飲料需121~135℃高溫殺菌的三層共聚CPP膜,其中共聚PP要求比一般蒸煮型用共聚PP性能更好。除三層膜外,還有流延阻隔性五層包裝,其結(jié)構(gòu)為:PP/粘合劑/PA/粘合劑/共聚PE;PP/粘合劑/PA/粘合劑/ EVA;PP/粘合劑/EVOH/粘合劑/PE;PP/粘合劑/ EVOH/ 粘合劑/ EVA;PP/粘合劑/ EVOH/粘合劑/ PP。

      五、現(xiàn)階段我國CPP 生產(chǎn)設(shè)備情況

      我國從80年代中期開始引進(jìn)國外的流延膜生產(chǎn)裝置,大多是單層結(jié)構(gòu),屬初級(jí)階段。進(jìn)入90年代后,我國從德國、日本、意大利、奧地利等國引進(jìn)了多層共聚流延膜生產(chǎn)線,是我國流延膜工業(yè)的主力軍,其最小生產(chǎn)能力為500t/a,最大生產(chǎn)能力達(dá)6500t/a。引進(jìn)的主要設(shè)備廠家為德國Reifenhauser、Barmag、Battenfeld公司,奧地利Lenzing公司,日本三菱重工公司、日本制鋼所、日本摩登機(jī)械設(shè)備公司、意大利Colines、Dolci公司等。

      進(jìn)入21世紀(jì),我國的流延膜設(shè)備生產(chǎn)企業(yè),在二十幾年來的不斷學(xué)習(xí)與積累基礎(chǔ)上,已經(jīng)有了長(zhǎng)足的發(fā)展,國產(chǎn)流延膜設(shè)備的各項(xiàng)技術(shù)指標(biāo)均已基本達(dá)到國際先進(jìn)水平。例如:廣東仕誠塑料機(jī)械有限公司于2003年6月推出自主創(chuàng)新,寬幅為2500mm的三層流延薄膜生產(chǎn)線;同年10月又推出寬幅為3000mm的三層流延薄膜生產(chǎn)線。2004年廣東仕誠公司逐漸邁向成熟,于當(dāng)年2月推出寬幅為2500mm的五層流延薄膜生產(chǎn)線,5月推出寬幅為3500mm的三層流延薄膜生產(chǎn)線,6月推出了國內(nèi)首條PVB玻璃夾層膜生產(chǎn)線,又于9月推出寬幅為4500mm的三層流延薄膜生產(chǎn)線。經(jīng)過一年多市場(chǎng)與時(shí)間的洗禮,廣東仕誠塑料機(jī)械有限公司已經(jīng)成長(zhǎng)為行業(yè)的領(lǐng)航者,于2005年3推出了更加精密、配置更高的新一代PVB玻璃夾層膜生產(chǎn)線,并通過技術(shù)監(jiān)督部門的技術(shù)鑒定,各項(xiàng)技術(shù)指標(biāo)均達(dá)到國際先進(jìn)水平,標(biāo)志著國產(chǎn)PVB玻璃夾層膜生產(chǎn)線已經(jīng)走向成熟。在流延設(shè)備方面,廣東仕誠公司已經(jīng)成長(zhǎng)為國內(nèi)僅有的,有能力生產(chǎn)超寬、高精密流延膜設(shè)備的企業(yè)之一,并于2005年5月推出寬幅達(dá)5000mm的三層大型流延薄膜生產(chǎn)線,屆時(shí)在第十九屆中國國際塑料橡膠工業(yè)展覽會(huì)中,將現(xiàn)場(chǎng)展示5000mm超寬流延膜生產(chǎn)線的“收卷” 部分,并作現(xiàn)場(chǎng)推介,歡迎各界朋友蒞臨指導(dǎo)。隨著廣東仕誠塑料機(jī)械有限公司等一批國內(nèi)企業(yè)的崛起,中國流延膜設(shè)備一定超越國際領(lǐng)先技術(shù),并進(jìn)一步完善產(chǎn)業(yè)化生產(chǎn)。

      六、總結(jié)

      隨著國產(chǎn)設(shè)備的不斷成熟,進(jìn)入流延薄膜生產(chǎn)的門檻也隨之降低。據(jù)有關(guān)部門統(tǒng)計(jì),2004年我國流延薄膜市場(chǎng)需求增加到約27萬噸。在市場(chǎng)需求的刺激下,去年流延薄膜的全國產(chǎn)量同比增長(zhǎng)18%。目前全行業(yè)光引進(jìn) 的流延薄膜生產(chǎn)線就已超過60臺(tái)套,總生產(chǎn)能力達(dá)到20萬噸以上,預(yù)計(jì)2005年仍將保持這一強(qiáng)勁的增長(zhǎng)態(tài)勢(shì)。

      但同時(shí),業(yè)內(nèi)人士預(yù)測(cè),隨著我國流延薄膜新建和在建項(xiàng)目的紛紛投產(chǎn),2005年流延薄膜的產(chǎn)能的大幅提高,新一輪的價(jià)格戰(zhàn)將迅速拉開陣勢(shì)。如果這一預(yù)測(cè)成真,那么,走自主創(chuàng)新之路,合理選擇設(shè)備,開發(fā)差異化、專用化產(chǎn)品將是流延薄膜企業(yè)避免市場(chǎng)惡性競(jìng)爭(zhēng)的唯一辦法。

      據(jù)統(tǒng)計(jì),從國外引進(jìn)一條5層共擠設(shè)備約需資金5800萬元,總投資在8000萬元左右。若沒有市場(chǎng)作支撐,或市場(chǎng)發(fā)生變化,勢(shì)必造成巨大的投資損失。而目前同噸位國產(chǎn)設(shè)備的生產(chǎn)線的投資只有進(jìn)口線的1/8左右,而且技術(shù)指標(biāo)、功能與進(jìn)口設(shè)備相差不遠(yuǎn),在性價(jià)比方面的優(yōu)勢(shì)已得到國外同行的認(rèn)同。因此國內(nèi)企業(yè)不能盲目迷信國外的大型設(shè)備,只有投入產(chǎn)出比相宜,在盡可能短期內(nèi)能夠得到良好的投資回報(bào)率,這才是最明知智的投資。

      隨著我國宏觀經(jīng)濟(jì)調(diào)控政策實(shí)施,今年中國GDP增長(zhǎng)短期內(nèi)有所放緩,但流延薄膜仍屬朝陽工業(yè),未來幾年市場(chǎng)需求仍將保持12%~17%的快速增長(zhǎng),但國內(nèi)流延薄膜企業(yè)仍要認(rèn)真調(diào)查研究市場(chǎng),理性投資。

      謝謝各位,祝大家身體健康!

      我們公司將在2005年6月21日至24日舉辦的第十九屆中國國際塑料橡膠工業(yè)展的B332展位中,現(xiàn)場(chǎng)展示5000mm超寬流延膜生產(chǎn)線的“收卷” 部分,歡迎各界朋友蒞臨指導(dǎo)。

      附:第十九屆中國國際塑料橡膠工業(yè)展覽會(huì)

      展出時(shí)間:2005年6月21日—2005年6月24日 展出地點(diǎn):廣州國際會(huì)議展覽中心(廣州琶洲)展位號(hào)碼:B332(廣東仕誠塑料機(jī)械有限公司)

      第三篇:薄膜電容介紹

      電容

      1、電容在電路中一般用“C”加數(shù)字表示(如C13表示編號(hào)為13的電容)。電容是由兩片金屬膜緊靠,中間用絕緣材料隔開而

      組成的元件。電容的特性主要是隔直流通交流。電容容量的大小就是表示能貯存電能的大小,電容對(duì)交流信號(hào)的阻礙作用稱

      為容抗,它與交流信號(hào)的頻率和電容量有關(guān)。

      容抗XC=1/2πf c(f表示交流信號(hào)的頻率,C表示電容容量)

      電話機(jī)中常用電容的種類有電解電容、瓷片電容、貼片電容、獨(dú)石電容、鉭電容和滌綸電容等。

      2、識(shí)別方法:電容的識(shí)別方法與電阻的識(shí)別方法基本相同,分直標(biāo)法、色標(biāo)法和數(shù)標(biāo)法3種。電容的基本單位用法拉(F)表

      示,其它單位還有:毫法(mF)、微法(uF)、納法(nF)、皮法(pF)。

      其中:1法拉=103毫法=106微法=109納法=1012皮法

      容量大的電容其容量值在電容上直接標(biāo)明,如10 uF/16V

      容量小的電容其容量值在電容上用字母表示或數(shù)字表示

      字母表示法:1m=1000 uF 1P2=1.2PF 1n=1000PF

      數(shù)字表示法:一般用三位數(shù)字表示容量大小,前兩位表示有效數(shù)字,第三位數(shù)字是倍率。如:102表示10×102PF=1000PF 224表示22×104PF=0.22 uF3、電容容量誤差表

      表2 電容容量誤差表

      符號(hào)FGJKLM

      允許誤差 ±1% ±2% ±5% ±10% ±15% ±20%

      如:一瓷片電容為104J,表示容量為0.1 uF、誤差為±5%。

      薄膜電容的種類可以從原理上分為:有感和無感;從材料上可以分為:CBB電容(聚乙烯),滌綸電容。

      各種電容的優(yōu)缺點(diǎn)及用途

      無感CBB電容

      制作工藝: 2層聚丙乙烯塑料和2層金屬箔交替夾雜然后捆綁而成。

      優(yōu)點(diǎn): 無感,高頻特性好,體積較小

      缺點(diǎn): 不適合做大容量,價(jià)格比較高,耐熱性能較差。

      用途:耦合/震蕩,音響,模擬/數(shù)字電路,高頻電源濾波/退耦

      有感CBB電容

      制作工藝: 2層聚乙烯塑料和2層金屬箔交替夾雜然后捆綁而成。

      優(yōu)點(diǎn): 有感,高頻特性好,體積較小

      缺點(diǎn): 不適合做大容量,價(jià)格比較高,耐熱性能較差。

      用途:耦合/震蕩,模擬/數(shù)字電路,電源濾波/退耦

      薄膜電容

      其結(jié)構(gòu)和紙質(zhì)電容相似,但用聚酯,聚苯乙烯等低損耗塑料材作介質(zhì),頻率特性好,介電損耗小,不能做成大容量,耐熱能力差,用于濾波器、積分電路、振蕩電路、定時(shí)電路等。

      (1)聚酯(滌綸)電容(CL)

      電容量:40p-4u

      額定電壓:63-630V

      主要特點(diǎn):小體積,大容量,耐熱耐濕,穩(wěn)定性差。

      用于:對(duì)穩(wěn)定性和損耗要求不高的低頻電路。

      (2)聚苯乙烯電容(CB)

      電容量:10p-1u

      額定電壓:100-30KV

      主要特點(diǎn):穩(wěn)定,低損耗,體積較大。

      用于:對(duì)穩(wěn)定性和損耗要求較高的電路。

      (3)聚丙烯電容(CBB)

      電容量:1000p-10u

      額定電壓:63-2000V

      主要特點(diǎn):性能與聚苯乙烯相似,但是體積小,穩(wěn)定性略差。

      用于:代替大部分聚苯乙烯或云母電容,用于要求較高的電路。

      塑料薄膜電容器Plastic Film Capacitor

      種類 Polyester 聚乙烯

      Metallized Polyester 金屬化聚乙烯

      Polystrene 聚乙脂

      電容值范圍 0.001-0.47uf / 0.01-10uf / 100-10000pf

      額定電壓范圍 50/100/200/400V 50/100/250/400/630V 50/100/125/250/500V 容值誤差范圍 J, K, M / G, J, K / K(>0.01uf),M(<0.01uf)

      溫度范圍-40℃--+85℃ /-40℃--+85℃ /-40℃--+85℃

      損失角(1KHz)<=0.006 / <=0.01 / <=0.001

      Withstand Voltage 200% 1 Min.175% 3 Sec.Inductive / 代號(hào)

      No/Yes, PEN(Red)/PEI(Green)No / MPE(Red)No / PS

      金屬化聚丙烯 Metallized Polypropylene

      種類 Polypropylene 聚丙烯

      Metallized Polypropylene 金屬化聚丙烯

      電容值范圍 0.001-0.68uf / 0.01-3.3uf / 0.001-0.47uf

      額定電壓范圍 50/100/250/400/630/1000V 100/250/400/630V 250/275VAC 容值誤差范圍 J, K, M / G, J, K / K(>0.01uf),M(<0.01uf)

      溫度范圍-40℃--+85℃-40℃--+85℃-40℃--+85℃

      損失角(1KHz)<=0.0008 / <=0.001 / <=0.001

      Withstand Voltage 250 % Rated Voltage DC 2000V / 1Sec.DC 2000V / 1Sec.Inductive / 代號(hào) No,PPN / PPS(Hi-Voltage)No / MP No / MPX(X2 Cap.)Across the line cap.

      第四篇:薄膜物理學(xué)實(shí)驗(yàn)報(bào)告

      實(shí)驗(yàn)一、旋涂法制備薄膜

      一、實(shí)驗(yàn)原理

      旋涂法利用儀器高速旋轉(zhuǎn)時(shí)產(chǎn)生的離心力使基片上的膠液由中心向四周均勻擴(kuò)散而形成致密薄膜。實(shí)驗(yàn)用到的原料需要提前制備且一般為溶液,實(shí)驗(yàn)上常見的是使用溶膠-凝膠法作為薄膜材料的之輩手段,本次實(shí)驗(yàn)是使用現(xiàn)成的或制備較為簡(jiǎn)單的溶液。

      二、材料準(zhǔn)備

      (一)實(shí)驗(yàn)原料:面粉、雞蛋清、三級(jí)水

      (二)溶液制備

      稱取適量的面粉放置燒杯中,加入50mL三級(jí)水,攪拌均勻,得到面粉膠體溶液;

      在燒杯中加入適量的雞蛋清,加入適量三級(jí)水,攪拌均勻,得到雞蛋清膠體溶液。

      三、實(shí)驗(yàn)過程

      (一)用玻璃棒沾取膠體溶液涂覆于載玻片上;

      (二)開啟真空泵,將載玻片牢牢吸附于勻膠機(jī)的樣品臺(tái)上,蓋上保護(hù)蓋;

      (三)根據(jù)所用溶液的粘稠度、附著性選擇轉(zhuǎn)速和旋轉(zhuǎn)時(shí)間,啟動(dòng)勻膠機(jī);

      (四)關(guān)閉真空泵,用鑷子將載玻片取出,防止到顯微鏡下觀察成膜情況。

      四、注意事項(xiàng)

      在勻膠機(jī)運(yùn)行過程中不宜開啟保護(hù)蓋,溶液應(yīng)該多次涂覆以保證成膜的質(zhì)量。

      實(shí)驗(yàn)二、提拉法制備薄膜

      一、實(shí)驗(yàn)原理

      浸漬提拉法是將整個(gè)洗凈的基板浸入預(yù)先制備好的溶膠之中,然后以精準(zhǔn)控制的均勻速度將基板平穩(wěn)地從溶膠中提拉出來,在粘度和重力作用下基板表面形成一層均勻的液膜,緊接著溶劑迅速蒸發(fā),于是附著在基板表面的溶膠迅速凝膠化形成一層凝膠膜。

      二、材料準(zhǔn)備

      (一)實(shí)驗(yàn)原料:面粉、雞蛋清、三級(jí)水

      (二)溶液制備

      稱取適量的面粉放置燒杯中,加入50mL三級(jí)水,攪拌均勻,得到面粉膠體溶液;

      在燒杯中加入適量的雞蛋清,加入適量三級(jí)水,攪拌均勻,得到雞蛋清膠體溶液。

      三、實(shí)驗(yàn)過程

      將配置好的面粉清導(dǎo)入小燒杯;打開鍍膜提拉機(jī)電源,取一塊干凈的載玻片用夾具夾住其1/3處;設(shè)置提拉機(jī)參數(shù),提拉速度設(shè)置為20mm/min,提拉高度60mm,浸漬速度為20mm/min,浸漬時(shí)間30s鍍膜次數(shù)設(shè)置為四次,鍍膜間隔30s,點(diǎn)擊

      “開始”按鈕,開始鍍膜;鍍膜完成后取下載玻片,放到顯微鏡下觀察。將面粉清換成液體膠,重復(fù)上述過程,獲得液體膠薄膜。

      最后將旋涂法及提拉法獲得的薄膜基片放到烘箱60℃烘干一個(gè)小時(shí)取出,得到薄膜樣品。

      實(shí)驗(yàn)三、層層自組裝法制備薄膜

      一、實(shí)驗(yàn)原理

      層層自組裝是利用逐層交替沉積的方法,借助各層分子間的弱相互作用(如靜電引力、氫鍵、配位鍵等),使層與層自發(fā)地締和形成結(jié)構(gòu)完整、性能穩(wěn)定、具有某種特定功能的分子聚集體或超分子結(jié)構(gòu)的過程。

      二、材料準(zhǔn)備

      (一)實(shí)驗(yàn)原料:VB2、膠水、三級(jí)水

      (二)實(shí)驗(yàn)儀器:傅里葉紅外光譜儀、載玻片、烘干機(jī)、燒杯、玻璃棒

      (三)VB2加入適量三級(jí)水調(diào)制成VB2溶液;

      膠水加入適量三級(jí)水制成膠體溶液。

      三、實(shí)驗(yàn)過程

      (一)將載玻片放入傅里葉紅外儀測(cè)量吸收光譜;

      (二)將載玻片浸漬在VB2溶液中,取出,用烘干機(jī)緩慢烘干溶液,進(jìn)行(一)過程;

      (三)將載玻片浸漬在聚乙烯醇溶液中,取出,用烘干機(jī)緩慢烘干溶液,進(jìn)行(一)過程;

      (四)交替進(jìn)行(二)(三)過程,以達(dá)到層層自組裝的目的。

      四、層層自組裝實(shí)驗(yàn)數(shù)據(jù)處理及結(jié)果分析

      數(shù)據(jù)處理利用Excel處理合成,由下圖15層薄膜的圖像可以看出,以空白組作為對(duì)比,發(fā)現(xiàn)第一層VB2和第二層曲線和其他層有很大不同,且這兩組曲線有一部分呈現(xiàn)負(fù)吸光度,推測(cè)這是因?yàn)榉肿优帕猩y導(dǎo)致薄膜未成型。從第三層開始,我們可以明顯看到隨著薄膜層數(shù)增加,吸光度呈現(xiàn)線性增長(zhǎng)的趨勢(shì)。根據(jù)朗伯—比爾定律,在同一組分下,各組分吸光度具有加和性,即

      這與實(shí)驗(yàn)獲得圖像比較符合。圖像分析我們可以看到在360nm到530nm出出現(xiàn)一個(gè)矮寬峰,說明該組裝薄膜主要吸收該范圍的光,此范圍后吸光度逐漸下降。從曲線看,譜線不是特別平滑,有些許小尖峰(這里排除Abs1、2),我猜測(cè)是分子振動(dòng)引起微擾,產(chǎn)生噪聲,最終導(dǎo)致譜線出現(xiàn)小尖峰。

      圖1

      層層自組裝圖像

      圖2

      VB2圖像

      圖3

      液體膠圖像

      觀察圖2,在波數(shù)為880處薄膜的透過率隨著鍍膜層數(shù)的增加而提高,其他波數(shù)范圍均為鍍膜層數(shù)越多,薄膜透過率越低,說明制得的該薄膜對(duì)于有波長(zhǎng)約為10mm左右的遠(yuǎn)紅外線有良好的透過性。

      第五篇:聚氨酯研究進(jìn)展

      聚氨酯樹脂的研究進(jìn)展

      摘要:本文綜述了聚氨酯目前研究熱點(diǎn),其中包括氟硅改性、水性化、非異氰酸酯聚氨酯和聚氨酯納米復(fù)合材料的研究,指出了聚氨酯未來研究方向。

      關(guān)鍵詞:聚氨酯;氟硅改性;水性;非異氰酸酯;納米復(fù)合材料

      Research progress of polyurethane

      Abstract:This article reviews the current research focus of polyurethane, including fluorine-modified, water-based, non-isocyanate polyurethane and polyurethane nano-composites, demonstrating future research directions of polyurethane.Keyword: polyurethane;fluorine-modified;non-isocyanate;nano-composites

      引言

      聚氨酯樹脂(PU)是一種重要的合成樹脂,它具有優(yōu)良的性能,如硬度范圍寬、強(qiáng)度高、耐磨、耐油、耐臭氧性能優(yōu)良,且具有良好的吸振,抗輻射和耐透氣性能,具有高拉伸強(qiáng)度和斷裂伸長(zhǎng)率,良好的耐磨損性、抗撓曲性、耐溶劑性,而且容易成型加工,并具有性能可控的優(yōu)點(diǎn);它的產(chǎn)品形態(tài)多樣,如泡沫塑料、彈性體、涂料、膠黏劑、纖維素、合成革等;因此廣泛應(yīng)用于交通運(yùn)輸、建筑、機(jī)械、家具等諸多領(lǐng)域。

      1.氟硅改性

      氟硅改性聚氨酯是目前研究的熱點(diǎn)之一,氟硅具有獨(dú)特的化學(xué)結(jié)構(gòu),其表面能較低,因此在成膜過程中向表面富集,可賦予改性聚合物涂膜優(yōu)良的耐水、耐油污、耐候、耐高低溫使用性能以及良好的機(jī)械性能。常有兩種: 一種方法是將含有羥基或胺基的硅氧烷樹脂或單體與二異氰酸酯反應(yīng),將有機(jī)硅氧烷引到水性聚氨酯中,利用硅氧烷的水解縮合交聯(lián)來改善聚氨酯的性能;另一種方法是在環(huán)氧硅氧烷作為后交聯(lián)劑引入到體系中,形成環(huán)氧交聯(lián)改性聚氨酯體系。Cheng(Cheng, Zhang et al.2005)等人基于聚丙二醇(PPG),聚醚接枝聚硅氧烷(PE-PSI),2,4丁二醇(BDO)合成一個(gè)新穎的硅氧烷改性聚氨酯(PE-PSI)。Luo(Luo, Huang et al.2010)等人基于異佛爾酮二異氰酸酯(IPDI),以二端羥烷基聚[甲基-(3,3,3-三氟丙基)]硅氧烷(PMTFPS)為軟段,聚己內(nèi)酯(PCL)的混合軟段的基礎(chǔ)上,合成氟-硅氧烷改性聚氨酯系列。Linlin(Linlin, Xingyuan et al.2007)等以2,4-甲苯二異氰酸酯、二端羥丁基聚二甲基硅氧烷(DHPDMS)、聚四氫呋喃醚二醇、1,4-丁二醇為主要原料合成了系列的有機(jī)硅改性聚氨酯(Si-PU)。硅烷改性聚氨酯的研究十分活躍,以聚氨酯為主鏈通過硅烷封端改性,是一個(gè)重要的發(fā)展方向。Mahdi(Mahdi, Syed Z.Rochester Hills et al.2001)通過硅烷偶聯(lián)劑改性聚氨酯,提高了聚氨酯密封膠對(duì)玻璃的粘接性,而且不用底涂劑,甚至可膠接油漆面和有機(jī)物污染的表面。Sun, DX(Sun, Miao et al.2011)等用硅烷偶聯(lián)劑(SiCA)改性功能化的納米二氧化硅聚氨酯,提高其熱穩(wěn)定性、硬度、耐水性和耐候性。Xu(Xu, Lu et al.2011)等利用2-三氟甲基-4,4'-二氨基二苯醚合成了一系列含氟聚氨酯彈性體,性能測(cè)定結(jié)果表明含氟聚氨酯彈性體具有較低的表面張力,更好的疏水性、熱穩(wěn)定性、良好的機(jī)械性能和阻燃性能。

      2.水性聚氨酯

      20世紀(jì)60年代以來,溶劑型聚氨酯得到了廣泛的使用,然而有機(jī)溶劑使用時(shí)造成空氣污染,具有或多或少的毒性,水性聚氨酯以水為基本介質(zhì),具有不污染環(huán)境、節(jié)能、操作加工方便等優(yōu)點(diǎn),已受到人們的重視(仝鋒 2000;顏俊, 涂偉萍 et al.2001)。水性聚氨酯按照分散粒子是否帶電可分為離子型和非離子型, 而離子型水性聚氨酯按照聚氨酯主鏈上的帶電性質(zhì)又可分為陰離子型、陽離子型和兩性離子型。LU(Lu, Tighzert et al.2005)等利用蓖麻油改性的水性聚氨酯與熱塑性淀粉共混,試驗(yàn)表明,兩者具有較好的相容性,這種改性彌補(bǔ)了熱塑性淀粉的耐水性、物理機(jī)械性能方面的不足,為高性能的可降解淀粉塑料的研究提供了理論支持。Tyre(Tyre 2008)等人對(duì)作為木地板涂料的水性聚氨酯-丙烯酸混合物與油性產(chǎn)品的硬度、耐磨性和耐化學(xué)性坐了詳細(xì)比較。Zhang(Zhang W)等人以聚醚多元醇、聚酯多元醇、異氰酸酯、二羥甲基丙酸、三乙烷、羥乙基丙烯酸酯為原料,合成作為水性油墨連接料的水性聚氨酯乳液,制成的水性油墨不燃,無毒,無害,環(huán)境友好,既安全又節(jié)能。Yang.Z(Yang Z 2010)等人以水和非羥基溶劑作為混合溶劑,得到環(huán)硫氯丙烷單體和巰基改性聚氨酯混合水性乳液,該乳液可以用作高效、環(huán)保的工業(yè)廢水汞離子吸附劑。Lagiewczyk(Lagiewczyk and Czech 2011)等基于羥基聚丁二烯(HTPB),聚丙二醇(PPG),二羥甲基丙酸(DMPA)和異佛爾酮二異氰酸酯(IPDI)制備水性聚氨酯的壓敏粘合劑(PU-PSA),其具有低粘性,低附著力和良好的凝聚力。

      3.非異氰酸酯聚氨酯

      20世紀(jì)90年代開始, 發(fā)達(dá)國家重視非異氰酸聚氨酯(NIPU)的開發(fā)與應(yīng)用,在歐美國家正逐步實(shí)現(xiàn)工業(yè)化,在涂料、彈性體、膠粘劑等行業(yè)的應(yīng)用大有與常規(guī)異氰酸酯競(jìng)爭(zhēng)之勢(shì)(Rokicki 2000;Figovsky and Shapovalov 2002;Yu, Yuan et al.2009)。NIPU由環(huán)碳酸酯齊聚物與胺類齊聚物反應(yīng)制得, Garipov RM(Garipov, Sysoev et al.2003)等研究了環(huán)碳酸酯與胺的反應(yīng)動(dòng)力學(xué)特征。Kim(Kim, Kim et al.2001)等利用二氧化碳在相轉(zhuǎn)移催化劑(PTC)作用下與二縮水甘油醚和雙酚S的反應(yīng)產(chǎn)物(DGEBS)反應(yīng)制備二元環(huán)碳酸酯。Tamami(Tamami, Sohn et al.2004)等[利用環(huán)氧大豆油(ESBO)在催化劑作用下于110 ℃與二氧化碳反應(yīng)合成大豆油環(huán)碳酸酯(CSBO),進(jìn)而與胺類化合物反應(yīng)可合成NIPU。Oleg Figovsky(Oleg Figovsky 2007)等研究了星形環(huán)碳酸酯的制備和其在合成星形羥基NIPU齊聚物、星形NIPU、星形雜化NIPU中的應(yīng)用,同時(shí)還研究了丙烯酸環(huán)氧化合物、丙烯酸環(huán)碳酸酯、丙烯酸羥基NIPU齊聚物、丙烯酸NIPU、丙烯酸雜化NIPU的制備方法。通過采用特殊的樹枝狀氨基硅烷低聚物(dendroaminosilane oligomer),可以將硅烷鏈段引入NIPU網(wǎng)絡(luò)結(jié)構(gòu)中,成為一種雜化非異氰酸酯聚氨酯(hybrid NIPU,HNIPU)(王北海 2007)。雜化非異氰酸酯聚氨酯(HNIPU)涂料具有更好的耐化學(xué)性和透氣性,是無分子間氫鍵類似結(jié)構(gòu)的傳統(tǒng)聚

      氨酯涂料的1.5-2.5倍(Figovsky, Shapovalov et al.2001)。Poul-Ernst Meier,Farum(DK)(Poul-Ernst Meier 2004)發(fā)明了以HNIPU為基的膠粘劑和密封膠,用于金屬表面涂裝材料。

      4.聚氨酯納米復(fù)合材料

      聚氨酯/納米復(fù)合材料是未來的研究方向之一,近年來國內(nèi)外聚氨酯/納米復(fù)合材料的制備方法,主要介紹了共混法、原位聚合法、插層聚合法、溶膠-凝膠法等幾種常用的納米材料改性聚氨酯的方法(Dong-mei, Shao-ling et al.2011)。Zheng(Zheng, Gao et al.)等通過分散蒙脫石和多元醇,加入氨基烷基聚硅氧烷中和,制備蒙脫土/有機(jī)硅嵌段聚氨酯納米復(fù)合材料。Petrovic(Petrovic, Cho et al.2004)等用溶膠-凝膠法制備并表征了兩系列軟段質(zhì)量分?jǐn)?shù)為50%和70% 的嵌段SiO2 納米復(fù)合材料,研究了不同含量球形納米SiO2溶膠對(duì)軟、硬段相分離的影響。Yang hong-yan(Hongyan, Daocheng et al.2006)等以聚四氫呋喃醚二醇-1000(PTMG)、甲苯-2,4-二異氰酸酯(TDI)、3,3-二氯-4,4-二苯基甲烷二胺(MOCA)為原料,采用預(yù)聚法合成聚氨酯彈性體,并選用納米CaCO3 對(duì)聚氨酯彈性體進(jìn)一步增強(qiáng),通過對(duì)納米CaCO3進(jìn)行表面改性及采用超聲波促進(jìn)納米粒子在基體中更好地分散,并考察了納米的CaCO3含量和合成溫度對(duì)聚氨酯彈性體力學(xué)性能的影響。You(You, Park et al.2011)等制備泡沫聚氨酯(PUF)/多壁碳納米管復(fù)合材料,并研究了其電學(xué)、熱學(xué)和形態(tài)學(xué)特性,為制備高性能復(fù)合材料提供了理論依據(jù)。

      展望

      1.聚氨酯制備方法多為傳統(tǒng)的制備方法,需進(jìn)一步研究新的制備方法,進(jìn)一步提高材料的綜合性能;

      2.針對(duì)特定缺陷利用多元復(fù)合改性聚氨酯涂料進(jìn)行改良研究;

      3.對(duì)于聚氨酯納米復(fù)合材料的研究,期待新型納米材料如納米金剛石、納米SiC等新型超硬納米材料的應(yīng)用研究;

      4.聚氨酯復(fù)合材料還處于實(shí)驗(yàn)研究階段,工業(yè)應(yīng)用領(lǐng)域還有待于進(jìn)一步開發(fā)。

      參考文獻(xiàn):

      Cheng, Z., X.Y.Zhang, et al.(2005).“Synthesis and surface property of siloxane-modified aqueous 18(3): 448-452.Dong-mei, W., X.Shao-ling, et al.(2011).”Research Progress in the Preparation Methods of Figovsky, O.L.and L.D.Shapovalov(2002).“Features of reaction amino-cyclocarbonate for production of new 187: 325-332.Figovsky, O.L., L.D.Shapovalov, et al.(2001).”Nonisocyanate polyurethanes for adhesives and coatings.“ Garipov, R.M., V.A.Sysoev, et al.(2003).”Reactivity of cyclocarbonate groups in modified epoxy-amine 393(1-3): 289-292.Hongyan, Y., L.Daocheng, et al.(2006).“Study on the Properties of Polyurethane/Nano CaCO_3 Composite.” 22(6): 106-109.Kim, M.R., H.S.Kim, et al.(2001).“Syntheses and thermal properties of poly(hydroxy)urethanes by 81(11): 2735-2743.Lagiewczyk, M.and Z.Czech(2011).”Polyurethane pressure-sensitive adhesives as raw materials for the 13(1): 47-50.Linlin, F., Z.Xingyuan, et al.(2007).“Synthesis and Surface Properties of Dihydroxybutyl

      Terminated-Polydimethylsiloxane Modified Polyurethane.” 23(3): 47-50.Lu, Y.S., L.Tighzert, et al.(2005).“Preparation and properties of starch thermoplastics modified with waterborne 46(23): 9863-9870.Luo, Z.H., Z.H.Huang, et al.(2010).”Synthesis and Surface Properties of Polyurethane Modified with

      Fluro-Siloxane.“ Mahdi, M.Syed Z.(Rochester Hills, Hsieh, et al.(2001).Method of bonding a window to a substrate using a

      silane functional adhesive composition, Essex Specialty Products, Inc.(Auburn Hills, MI).US 6828403.Oleg Figovsky, L.S.(2007).Preparation of Oligomeric Cyclocarbonates and Their Use in Nonisocyanate or

      Hybrid Nonisocyanate Polyurethanes.US7232877, Homecom Communications,Inc.: 8.Petrovic, Z.S., Y.J.Cho, et al.(2004).”Effect of silica nanoparticles on morphology of segmented 45(12): 4285-4295.Poul-Ernst Meier, F.D.(2004).Plate-shaped cover material.US20040025462Al: 5.Rokicki, G.(2000).“Aliphatic cyclic carbonates and spiroorthocarbonates as monomers.” 25(2): 259-342.Sun, D.X., X.Miao, et al.(2011).“Triazole-forming waterborne polyurethane composites fabricated with silane 361(2): 483-490.Tamami, B., S.Sohn, et al.(2004).”Incorporation of carbon dioxide into soybean oil and subsequent preparation

      and studies of nonisocyanate polyurethane networks.“ 92(2): 883-891.Tyre, C.I.(2008).”Utilization of polyurethane-acrylic blends to achieve optimum performance in a 1K 5(5): 60-64.Xu, W.Z., B.Lu, et al.(2011).“Synthesis and Characterization of Novel Fluorinated Polyurethane Elastomers.” 23(5): 2284-2288.Yang Z, C.N.(2010).Preparing mercury ion adsorbent used for treatment of industrial wastewater, by mixing

      chloromethylthioirane monomer with water-based polyurethane dispersion to obtain polyurethane

      emulsion, modifying emulsion and centrifuging emulsion, Univ Tongji(Uytj): 8.You, K.M., S.S.Park, et al.(2011).“Preparation and characterization of conductive carbon 46(21): 6850-6855.Yu, W., S.U.N.Yuan, et al.(2009).”Research Progress in Nonisocyanate Polyurethane and Its Application.“ 23(1): 11-17.Zhang W, C.N.Polyurethane vehicle for pure water based ink, prepared by mixing polyether and polyester

      polyols, preparing compound emulsion, adding pure water, organic paint, auxiliary agent and grinding, ZHANG W(ZHAN-Individual): 4.Zheng, Q., C.Gao, et al.Preparing aqueous dispersion montmorillonite/organosilicon segmented polyurethane

      nano composite material as coating agent by dispersing montmorillonite and polyol, adding amino alkyl polysiloxane and neutralizing, Univ Zhejiang(Uyzh): 10.仝鋒(2000).”水性聚氨酯研究進(jìn)展綜述.“ 光譜實(shí)驗(yàn)室 17(1): 55.王北海(2007).”納米結(jié)構(gòu)化的非異氰酸酯聚氨酯.“ 聚氨酯 66: 74-81.顏俊, 涂偉萍, et al.(2001).”水性聚氨酯研究進(jìn)展." 化工進(jìn)展 20(7): 22.

      下載薄膜流研究進(jìn)展word格式文檔
      下載薄膜流研究進(jìn)展.doc
      將本文檔下載到自己電腦,方便修改和收藏,請(qǐng)勿使用迅雷等下載。
      點(diǎn)此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會(huì)在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        藥用植物研究進(jìn)展

        植物是藥物的重要來源之一,人類利用藥用植物的歷史淵遠(yuǎn)流長(zhǎng)。今天,盡管科學(xué)家已經(jīng)能夠利用化學(xué)方法研制品類繁多的藥品,但開發(fā)利用植物藥的熱情在世界范圍內(nèi)卻有增無減。這主要......

        生物信息學(xué)研究進(jìn)展

        我國生物信息學(xué)發(fā)展現(xiàn)狀及展望 摘要:簡(jiǎn)要敘述了我國生物信息學(xué)發(fā)展現(xiàn)狀,以及我國當(dāng)前生物信息學(xué)發(fā)展中的一些問題,并對(duì)生物信息學(xué)的發(fā)展前景進(jìn)行概述。關(guān)鍵詞:生物信息學(xué) 現(xiàn)狀......

        生命科學(xué)研究進(jìn)展

        生命科學(xué)研究進(jìn)展尹強(qiáng)(江西農(nóng)業(yè)大學(xué)理學(xué)院,江西南昌,330045)現(xiàn)代生物技術(shù)已進(jìn)入商品生產(chǎn)的激烈競(jìng)爭(zhēng)階段。據(jù)在京舉行的關(guān)于“分子生物學(xué)進(jìn)展”方面的學(xué)術(shù)報(bào)告會(huì)透露,美國科學(xué)院......

        納米薄膜小論文

        納米技術(shù)在薄膜中的應(yīng)用與發(fā)展 摘要:近年來納米技術(shù)的發(fā)展研究是一個(gè)熱烈的話題,受到了廣泛的關(guān)注。而納米薄膜材料是一種新型材料,由于其特殊的結(jié)構(gòu)特點(diǎn),時(shí)期作為功能材料和結(jié)......

        電容薄膜廠年度工作總結(jié)

        在公司領(lǐng)導(dǎo)的重視和關(guān)懷下,電容薄膜四廠走過了xx,又迎來了新的一年XX年,在過岀的一年里我們?nèi)〉昧艘欢ǖ某煽?jī),但在某些方面也存在不足之處.在總結(jié)經(jīng)驗(yàn)的基礎(chǔ)上,我們發(fā)揚(yáng)銅峰......

        合肥薄膜項(xiàng)目實(shí)施方案大全

        合肥薄膜項(xiàng)目實(shí)施方案 泓域咨詢機(jī)構(gòu)報(bào)告說明—隨著下游需求的日益擴(kuò)大及行業(yè)供需格局逐步改善,BOPET 聚酯薄膜作為應(yīng)用領(lǐng)域最廣泛的薄膜材料有望迎來新一輪景氣周期。該功能......

        音響薄膜電容介紹

        薄膜電容廣泛被使用在模擬信號(hào)的交連,電源雜訊的旁路(反交連)等地方。 薄膜電容器是以金屬箔當(dāng)電極,將其和聚乙窬,聚丙烯,聚笨乙烯或聚碳酸窬等塑膠薄膜,從兩端重疊後,卷繞成圓筒......

        二維納米薄膜材料概述

        二維納米材料概述 -----納米薄膜概述 班級(jí):材料科學(xué)與工程103班姓名:盧忠學(xué)號(hào):201011601322 摘要 納米科學(xué)技術(shù)是二十世紀(jì)八十年代末期誕生并快速崛起的新科技,而其二維納米......