1.(2014江蘇南京)如圖,在△ABC中,D,E分別是AB,AC的中點,過點E做EF∥AB,交BC于點F.(1)求證:四邊形DBFE是平行四邊形;(2)當△ABC滿足什么條件時,四邊形DBFE是菱形,為什么?
2.(2014江蘇南京)
[問題提出]
學(xué)習了三角形全等的判定方法(即“SAS”,“ASA”,“AAS”,“SSS”)和直角三角形全等的判定方法(即“HL”)后,我們繼續(xù)對“兩個三角形滿足兩邊和其中一邊的對角對應(yīng)相等”的情形進行研究.
[初步思考]
我們不妨將問題用符號語言表示為:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E.然后,對∠B進行分類,可分為“∠B是直角、鈍角、銳角”三種情況進行探究.
[深入探究]
第一種情況:當∠B是直角時,△ABC≌△DEF.
(1)如圖①,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根據(jù)________,可以知道Rt△ABC≌Rt△DEF.
第二種情況:當∠B是鈍角時,△ABC≌△DEF.
(2)如圖②,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是鈍角.求證:△ABC≌△DEF.
第三種情況:當∠B是銳角時,△ABC和△DEF不一定全等.
(3)在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是銳角,請你用尺規(guī)在圖③中作出△DEF,使△DEF和△ABC不全等.(不寫作法,保留作圖痕跡).
(4)∠B還要滿足什么條件,就可以使△ABC≌△DEF?請直接填寫結(jié)論:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是銳角,若________,則△ABC≌△DEF.
3.(2014江蘇蘇州)如圖,在△ABC中,點D在BC上,AB=AD=DC,∠B=80°,則∠C的度數(shù)為()。
4.(2014江蘇蘇州)如圖,在Rt△ABC中,∠ACB=90°,點D,F(xiàn)分別在AB,AC上,CF=CB.連接CD,將線段CD繞點C按順時針方向旋轉(zhuǎn)90°后得CE,連接EF.
(1)求證:△BCD≌△FCE;
(2)若EF∥CD,求∠BDC的度數(shù).
6.(2014江蘇泰州)如圖,BD是△ABC的角平分線,點E,F(xiàn)分別在BC、AB上,且DE∥AB,EF∥AC.
(1)求證:BE=AF;
(2)若∠ABC=60°,BD=6,求四邊形ADEF的面積.
7.(2014江蘇無錫)如圖,△ABC中,CD⊥AB于D,E是AC的中點,若AD=6,DE=5,則CD的長等于________.
8.(2014江蘇無錫)如圖,□ABCD中,AE⊥BD于E,∠EAC=30°,AE=3,則AC的長等于________.
9.(2014江蘇無錫)如圖,已知點P是半徑為1的⊙A上一點,延長AP到C,使PC=AP,以AC為對角線作□ABCD,若,則□ABCD面積的最大值為________.
10.(2014江蘇無錫)如圖,菱形ABCD中,∠A=60°,AB=3,⊙A、⊙B的半徑分別為2和1,P、E、F分別是邊CD、⊙A和⊙B上的動點,則PE+PF的最小值是________.
11.(2014江蘇徐州)如圖,在等腰三角形紙片ABC中,AB=AC,∠A=50°,折疊該紙片,使點A落在點B處,折痕為DE,則∠CBE=________°.
12.(2014江蘇徐州)已知:如圖,在□ABCD中,點E、F在AC上,且AE=CF.求證:四邊形BEDF是平行四邊形.
13.(2014江蘇揚州)如圖,已知∠AOB=60°,點P在邊OA上,OP=12,點M、N在邊OB上,PM=PN,若MN=2,則OM=()
14.(2014江蘇揚州)如圖,△ABC的中位線DE=5cm,把△ABC沿DE折疊,使點A落在邊BC上的點F處,若A、F兩點間的距離是8cm,則△ABC的面積為________cm2.
15.(2014江蘇揚州)如圖,已知Rt△ABC中,∠ABC=90°,先把△ABC繞點B順時針旋轉(zhuǎn)90°至△DBE后,再把△ABC沿射線AB平移至△FEG,DE、FG相交于點H.
(1)判斷線段DE、FG的位置關(guān)系,并說明理由;
(2)連結(jié)CG,求證:四邊形CBEG是正方形.
16.(2014江蘇揚州)已知矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點B落在CD邊上的P點處.
(1)如圖1,已知折痕與邊BC交于點O,連接AP,OP,OA.
①求證:△OCP∽△PDA;
②若△OCP與△PDA的面積比為1︰4,求邊AB的長;
(2)若圖1中的點P恰巧是CD邊的中點,求∠OAB的度數(shù);
(3)如圖2,在(1)的條件下,擦去折痕AO、線段OP,連結(jié)BP.動點M在線段AP上(點M與點P、A不重合),動點N在線段AB的延長線上,且BN=PM,連結(jié)MN交PB于點F,作ME⊥BP于點E.試問當點M、N在移動過程中,線段EF的長度是否發(fā)生變化?若變化,說明理由;若不變,求出線段EF的長度.
17.(2014江蘇南通)如圖,△ABC中,AB=AC=18,BC=12,正方形DEFG的頂點E,F(xiàn)在△ABC內(nèi),頂點D,G分別在AB,AC上,AD=AG,DG=6,則點F到BC的距離為()
18.(2014江蘇南通)如圖,四邊形ABCD中,AB∥DC,∠B=90°,連接AC,∠DAC=∠BAC.若BC=4cm,AD=5cm,則AB=________cm.
19.(2014江蘇南通)如圖,矩形ABCD中,AB=3,AD=4,E為AB上一點,AE=1,M為射線AD上一動點,AM=a(a為大于0的常數(shù)),直線EM與直線CD交于點F,過點M作MG⊥EM,交直線BC于G.
(1)若M為邊AD中點,求證:△EFG是等腰三角形;
(2)若點G與點C重合,求線段MG的長;
(3)請用含a的代數(shù)式表示△EFG的面積S,并指出S的最小整數(shù)值.
20.(2014江蘇鹽城)如圖,在矩形ABCD中,AD=1,把該矩形繞點A順時針旋轉(zhuǎn)α度得矩形AB′C′D′,點C′落在AB的延長線上,則圖中陰影部分的面積是________.
21.(2014江蘇鹽城)如圖,在平面直角坐標系中,邊長不等的正方形依次排列,每個正方形都有一個頂點落在函數(shù)y=x的圖象上,從左向右第3個正方形中的一個頂點A的坐標為(8,4),陰影三角形部分的面積從左向右依次記為S1、S2、S3、…、Sn,則Sn的值為________.(用含n的代數(shù)式表示,n為正整數(shù))
22.(2014江蘇鹽城)[問題情境]張老師給愛好學(xué)習的小軍和小俊提出這樣一個問題:如圖
①,在△ABC中,AB=AC,點P為邊BC上的任一點,過點P作PD⊥AB,PE⊥AC,垂足分別為D、E,過點C作CF⊥AB,垂足為F.求證:PD+PE=CF.
小軍的證明思路是:如圖
②,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.
小俊的證明思路是:如圖②,過點P作PG⊥CF,垂足為G,可以證得:PD=GF,PE=CG,則PD+PE=CF.
[變式探究]如圖
③,當點P在BC延長線上時,其余條件不變,求證:PD-PE=CF;請運用上述解答中所積累的經(jīng)驗和方法完成下列兩題:[結(jié)論運用]如圖
④,將矩形ABCD沿EF折疊,使點D落在點B上,點C落在點C′處,點P為折痕EF上的任一點,過點P作PG⊥BE、PH⊥BC,垂足分別為G、H,若AD=8,CF=3,求PG+PH的值;[遷移拓展]圖
⑤是一個航模的截面示意圖.在四邊形ABCD中,E為AB邊上的一點,ED⊥AD,EC⊥CB,垂足分別為D、C,且AD?CE=DE?BC,dm,AD=3dm,dm.M、N分別為AE、BE的中點,連接DM、CN,求△DEM與△CEN的周長之和.
23.(2014江蘇淮安)如圖,順次連接邊長為1的正方形ABCD四邊的中點,得到四邊形A1B1C1D1,然后順次連接四邊形A1B1C1D1的中點,得到四邊形A2B2C2D2,再順次連接四邊形A2B2C2D2四邊的中點,得到四邊形A3B3C3D3,…,按此方法得到的四邊形A8B8C8D8的周長為________.
24.(2014江蘇淮安)如圖1,矩形OABC頂點B的坐標為(8,3),定點D的坐標為(12,0),動點P從點O出發(fā),以每秒2個單位長度的速度沿x軸的正方向勻速運動,動點Q從點D出發(fā),以每秒1個單位長度的速度沿x軸的負方向勻速運動,PQ兩點同時運動,相遇時停止.在運動過程中,以PQ為斜邊在x軸上方作等腰直角三角形PQR.設(shè)運動時間為t秒.
(1)當t=________時,△PQR的邊QR經(jīng)過點B;
(2)設(shè)△PQR和矩形OABC重疊部分的面積為S,求S關(guān)于t的函數(shù)關(guān)系式;
(3)如圖2,過定點E(5,0)作EF⊥BC,垂足為F,當△PQR的頂點R落在矩形OABC的內(nèi)部時,過點R作x軸、y軸的平行線,分別交EF、BC于點M、N,若∠MAN=45°,求t的值.
25.(2014江蘇宿遷)如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,點P為AB邊上一動點,若△PAD與△PBC是相似三角形,則滿足條件的點P的個數(shù)是()
26.(2014江蘇宿遷)如圖,正方形ABCD的邊長為2,點E為邊BC的中點,點P在對角線BD上移動,則PE+PC的最小值是________.
27.(2014江蘇宿遷)如圖,在Rt△ABC中,∠ACB=90°,AD平分∠BAC與BC相交于點D,若BD=4,CD=2,則AB的長是________.
28.(2014江蘇宿遷)如圖,在△ABC中,點D,E,F(xiàn)分別是AB,BC,CA的中點,AH是邊BC上的高.
(1)求證:四邊形ADEF是平行四邊形;
(2)求證:∠DHF=∠DEF.
29.(2014江蘇宿遷)如圖,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=8cm,BC=4cm,CD=5cm.動點P從點B開始沿折線BC-CD-DA以1cm/s的速度運動到點A.設(shè)點P運動的時間為t(s),△PAB面積為S(cm2).
(1)當t=2時,求S的值;
(2)當點P在邊DA上運動時,求S關(guān)于t的函數(shù)表達式;
(3)當S=12時,求t的值.
30.(2014江蘇宿遷)如圖,已知△BAD和△BCE均為等腰直角三角形,∠BAD=∠BCE=90°,點M為DE的中點.過點E與AD平行的直線交射線AM于點N.
(1)當A,B,C三點在同一直線上時(如圖1),求證:M為AN的中點;
(2)將圖1中的△BCE繞點B旋轉(zhuǎn),當A,B,E三點在同一直線上時(如圖2),求證:△ACN為等腰直角三角形;
(3)將圖1中△BCE繞點B旋轉(zhuǎn)到圖3位置時,(2)中的結(jié)論是否仍成立?若成立,試證明之,若不成立,請說明理由.
31.(2014江蘇常州)在平面直角坐標系xOy中,如圖,已知Rt△DOE,∠DOE=90°,OD=3,點D在y軸上,點E在x軸上,在△ABC中,點A,C在x軸上,AC=5.∠ACB+∠ODE=180°,∠ABC=∠OED,BC=DE.按下列要求畫圖(保留作圖痕跡):
(1)將△ODE繞O點按逆時針方向旋轉(zhuǎn)90°得到△OMN(其中點D的對應(yīng)點為點M,點E的對應(yīng)點為點N),畫出△OMN;
(2)將△ABC沿x軸向右平移得到△A′B′C′(其中點A,B,C的對應(yīng)點分別為點A′,B′,C′),使得B′C′與(1)中的△OMN的邊NM重合;
(3)求OE的長.
32.(江蘇泰州)如圖,△ABC中,AB=AC,D是BC的中點,AC的垂直平分線分別交AC、AD、AB于點E、O、F,則圖中全等三角形的對數(shù)是()
34.(江蘇泰州)如圖,△ABC中,D為BC上一點,∠BAD=∠C,AB=6,BD=4,則CD的長為________.
35.(江蘇泰州)如圖,矩形ABCD中,AB=8,BC=6,P為AD上一點,將△ABP沿BP翻折至△EBP,PE與CD相交于點O,且OE=OD,則AP的長為________.
36.(2015·泰州中考)如圖所示,正方形ABCD的邊長為8cm,E,F(xiàn),G,H分別是AB,BC,CD,DA上的動點,且AE=BF=CG=DH.(1)求證:四邊形EFGH是正方形.(2)判斷直線EG是否經(jīng)過某一定點,說明理由.(3)求四邊形EFGH面積的最小值.37.(江蘇淮安)將一副三角尺按如圖所示的方式放置,使含30°角的三角尺的短直角邊和含45°角的三角尺的一條直角邊重合,則∠1的度數(shù)是________°.
38.(江蘇淮安)已知:如圖,在矩形ABCD中,點E、F在邊AD上,且AE=DF.求證:BF=CE.
39.(江蘇淮安)閱讀理解:如圖①,如果四邊形ABCD滿足AB=AD,CB=CD,∠B=∠D=90°,那么我們把這樣的四邊形叫做“完美箏形”.將一張如圖①所示的“完美箏形”紙片ABCD先折疊成如圖②所示形狀,再展開得到圖③,其中CE、CF為折痕,∠BCE=∠ECF=∠FCD,點B′為點B的對應(yīng)點,點D′為點D的對應(yīng)點,連接EB′、FD′相交于點O.
簡單應(yīng)用:
(1)在平行四邊形、矩形、菱形、正方形四種圖形中,一定為“完美箏形”的是________;
(2)當圖③中∠BCD=120°時,∠AEB′=________°;
(3)當圖②中的四邊形AECF為菱形時,對應(yīng)圖③中的“完美箏形”有________個(包含四邊形ABCD).拓展提升:當圖③中的∠BCD=90°時,連接AB′,請?zhí)角蟆螦B′E的度數(shù),并說明理由.
40.(江蘇淮安)如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8.動點M從點A出發(fā),以每秒1個單位長度的速度沿AB向點B勻速運動;同時,動點N從點B出發(fā),以每秒3個單位長度的速度沿BA向點A勻速運動.過線段MN的中點G作邊AB的垂線,垂足為點G,交△ABC的另一邊于點P,連接PM、PN.當點N運動到點A時,M、N兩點同時停止運動,設(shè)運動時間為t秒.
(1)當t=________秒時,動點M、N相遇;
(2)設(shè)△PMN的面積為S,求S與t之間的函數(shù)關(guān)系式;
(3)取線段PM的中點K,連接KA、KC.在整個運動過程中,△KAC的面積是否變化?若變化,直接寫出它的最大值和最小值;若不變化,請說明理由.
41.(鎮(zhèn)江)如圖,△ABC和△DBC是兩個具有公共邊的全等的等腰三角形,AB=AC=3cm,BC=2cm.將△DBC沿射線BC平移一定的距離得到△D1B1C1,連結(jié)AC1、BD1.如果四邊形ABD1C1是矩形,那么平移的距離為________cm.
42.(鎮(zhèn)江)如圖,菱形ABCD的對角線AC、BD相交于點O,分別延長OA、OC到點E、F,使AE=CF,依次連結(jié)B、F、D、E各點.
(1)求證:△BAE≌△BCF;
(2)若∠ABC=50°,則當∠EBA=________°時,四邊形BFDE是正方形.
43.(2015·鎮(zhèn)江中考)某興趣小組開展課外活動.如圖,A,B兩地相距12米,小明從點A出發(fā)沿AB方向勻速前進,2秒后到達點D,此時他(CD)在某一燈光下的影長為AD,繼續(xù)按原速行走2秒到達點F,此時他在同一燈光下的影子仍落在其身后,并測得這個影長為1.2米,然后他將速度提高到原來的1.5倍,再行走2秒到達點H,此時他(GH)在一燈光下的影長為BH(點C,E,G在一條直線上).(1)請在圖中畫出光源O點的位置,并畫出他位于點F時在這個燈光下的影長FM(不寫畫法);
(2)求小明原來的速度.44.(江蘇南通)如圖,△ABC中,D是BC上一點,AC=AD=DB,∠BAC=102°,則∠ADC=________度.
45.(2015·南通中考)如圖,在ꎬABCD中,點E,F(xiàn)分別在AB,DC上,且ED⊥DB,F(xiàn)B⊥BD.(1)求證:△AED≌△CFB.(2)若∠A=30°,∠DEB=45°,求證:DA=DF.46.(江蘇南通)如圖,Rt△ABC中,∠C=90°,AB=15,BC=9,點P,Q分別在BC,AC上,CP=3x,CQ=4x(0<x<3).把△PCQ繞點P旋轉(zhuǎn),得到△PDE,點D落在線段PQ上.
(1)求證:PQ∥AB;
(2)若點D在∠BAC的平分線上,求CP的長;
(3)若△PDE與△ABC重疊部分圖形的周長為T,且12≤T≤16,求x的取值范圍.
47.如圖,AB∥CD,點E、F分別在AB、CD上,連接EF,∠AEF、∠CFE的平分線交于點G,∠BEF、∠DFE的平分線交于點H.
(1)求證:四邊形EGFH是矩形.
(2)小明在完成(1)的證明后繼續(xù)進行了探索.過G作MN∥EF,分別交AB、CD于點M、N,過H作PQ∥EF,分別交AB、CD于點P、Q,得到四邊形MNQP.此時,他猜想四邊形MNQP是菱形.請在下表中補全他的證明思路.小明的證明思路
由AB∥CD,MN∥EP,PQ∥EF,易證四邊形MNQP是平行四邊形.要證□MNQP是菱形,只要證NM=NQ.由已知條件________,MN∥EF,可證NG=NF,故只要證GM=FQ,即證△MGE≌△QFH.易證________,________,故只要證∠MGE=∠QFH.易證∠MGE=∠GEF,∠QFH=∠EFH,________,即可得證.
48.如圖,在邊長為4的正方形ABCD中,請畫出以A為一個頂點,另外兩個頂點在正方形ABCD的邊上,且含邊長為3的所有大小不同的等腰三角形.(要求:只要畫出示意圖,并在所畫等腰三角形長為3的邊上標注數(shù)字3)
49.(蘇州)如圖,在△ABC中,CD是高,CE是中線,CE=CB,點A、D關(guān)于點F對稱,過點F作FG∥CD,交AC邊于點G,連接GE.若AC=18,BC=12,則△CEG的周長為________.
50.(2015·蘇州中考)如圖,四邊形ABCD為矩形,過點D作對角線BD的垂線,交BC的延長線于點E,取BE的中點F,連接DF,DF=4.設(shè)AB=x,AD=y,則x2+(y-4)2的值為__________.51.(蘇州)如圖,在矩形ABCD中,AD=acm,AB=bcm(a>b>4),半徑為2cm的⊙O在矩形內(nèi)且與AB、AD均相切.現(xiàn)有動點P從點A出發(fā),在矩形邊上沿著A→B→C→D的方向勻速移動,當點P到達點D時停止移動;⊙O在矩形內(nèi)部沿AD向右勻速平移,移動到與CD相切時立即沿原路按原速返回,當⊙O回到出發(fā)時的位置(即再次與AB相切)時停止移動.已知點P與⊙O同時開始移動,同時停止移動(即同時到達各自的終止位置).
(1)如圖(1),點P從A→B→C→D,全程共移動了________cm(用含a、b的代數(shù)式表示);
(2)如圖(1),已知點P從A點出發(fā),移動2s到達B點,繼續(xù)移動3s,到達BC的中點.若點P與⊙O的移動速度相等,求在這5s時間內(nèi)圓心O移動的距離;
(3)如圖(2),已知a=20,b=10.是否存在如下情形:當⊙O到達⊙O1的位置時(此時圓心O1在矩形對角線BD上),DP與⊙O1恰好相切?請說明理由.
52.(2015·江蘇連云港)在△ABC中,AB=4,AC=3,AD是△ABC的角平分線,則△ABD與△ACD的面積之比是__________.53.(2015連云港)如圖,在△ABC中,∠BAC=60°,∠ABC=90°,直線l1∥l2∥l3,l1與l2之間距離是1,l2與l3之間距離是2.且l1,l2,l3分別經(jīng)過點A,B,C,則邊AC的長為________.
54.(2015·連云港中考)如圖,將平行四邊形ABCD沿對角線BD進行折疊,折疊后點C落在點F處,DF交AB于點E.(1)求證:∠EDB=∠EBD.(2)判斷AF與DB是否平行,并說明理由.55.(2015連云港)在數(shù)學(xué)興趣小組活動中,小明進行數(shù)學(xué)探究活動.將邊長為2的正方形ABCD與邊長為的正方形AEFG按圖1位置放置,AD與AE在同一條直線上,AB與AG在同一條直線上.
(1)小明發(fā)現(xiàn)DG⊥BE,請你幫他說明理由.
(2)如圖2,小明將正方形ABCD繞點A逆時針旋轉(zhuǎn),當點B恰好落在線段DG上時,請你幫他求出此時BE的長.
(3)如圖3,若小明將正方形ABCD繞點A繼續(xù)逆時針旋轉(zhuǎn),線段DG與線段BE將相交,交點為H,寫出△GHE與△BHD面積之和的最大值,并簡要說明理由.
56.(常州)將一張寬為4cm的長方形紙片(足夠長)折疊成如圖所示圖形,重疊部分是一個三角形,則這個三角形面積的最小值是()
57.(2015常州)如圖,在□ABCD中,∠BCD=120°,分別延長DC、BC到點E,F(xiàn),使得△BCE和△CDF都是正三角形.(1)求證:AE=AF;
(2)求∠EAF的度數(shù).58.(常州)如圖,在四邊形ABCD中,∠A=∠C=45°,∠ADB=∠ABC=105°.
(1)若AD=2,求AB;
(2)若,求AB.
59.(揚州)如圖,已知矩形紙片的一條邊經(jīng)過直角三角形紙片的直角頂點,若矩形紙片的一組對邊與直角三角形紙片的兩條直角邊相交成∠1、∠2,則∠2-∠1=________.
60.(揚州)如圖,已知Rt△ABC中,∠ACB=90°,AC=6,BC=4,將△ABC繞直角頂點C順時針旋轉(zhuǎn)90°得到△DEC,若點F是DE的中點,連接AF,則AF=________.
61.(2015·揚州中考)如圖,已知△ABC的三邊長為a、b、c,且a
64.(徐州)如圖,在△ABC中,∠C=31°,∠ABC的平分線BD交AC于點D,如果DE垂直平分BC,那么∠A=________°.
65.(徐州)如圖,正方形ABCD的邊長為1,以對角線AC為邊作第二個正方形,再以對角線AE為邊作第三個正方形AEGH,如此下去,第n個正方形的邊長為________.
66.(徐州)如圖,點A,B,C,D在同一條直線上,點E,F(xiàn)分別在直線AD的兩側(cè),且AE=DF,∠A=∠D,AB=DC.
(1)求證:四邊形BFCE是平行四邊形;
(2)若AD=10,DC=3,∠EBD=60°,則EB=________時,四邊形BFCE是菱形.
67.(2015鹽城)設(shè)△ABC的面積為1,如圖①將邊BC、AC分別2等份,BE1、AD1相交于點O,△AOB的面積記為S1;如圖②將邊BC、AC分別3等份,BE1、AD1相交于點O,△AOB的面積記為S2;…,依此類推,則Sn可表示為________.(用含n的代數(shù)式表示,其中n為正整數(shù))
68.(鹽城)如圖,把△EFP按圖示方式放置在菱形ABCD中,使得頂點E、F、P分別在線段AB、AD、AC上.已知EP=FP=4,∠BAD=60°,且.
(1)求∠EPF的大??;
(2)若AP=6,求AE+AF的值;
(3)若△EFP的三個頂點E、F、P分別在線段AB、AD、AC上運動,請直接寫出AP長的最大值和最小值.
69.如圖,在四邊形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,E是邊CD的中點,連接BE并延長與AD的延長線相交于點F.
(1)求證:四邊形BDFC是平行四邊形;
(2)若△BCD是等腰三角形,求四邊形BDFC的面積.