第一篇:初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):軸對(duì)稱與中心對(duì)稱
知識(shí)點(diǎn)總結(jié)
一、軸對(duì)稱與軸對(duì)稱圖形:
1.軸對(duì)稱:把一個(gè)圖形沿著某一條直線折疊,如果它能夠與另一個(gè)圖形重合,那么就說(shuō)這兩個(gè)圖形關(guān)于這條直線對(duì)稱,兩個(gè)圖形中的對(duì)應(yīng)點(diǎn)叫做對(duì)稱點(diǎn),對(duì)應(yīng)線段叫做對(duì)稱線段。
2.軸對(duì)稱圖形:如果一個(gè)圖形沿著一條直線折疊,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì)稱圖形,這條直線就是它的對(duì)稱軸。
注意:對(duì)稱軸是直線而不是線段
3.軸對(duì)稱的性質(zhì):
(1)關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形;
(2)如果兩個(gè)圖形關(guān)于某條直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線;
(3)兩個(gè)圖形關(guān)于某條直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上;
(4)如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱。
4.線段垂直平分線:
(1)定義:垂直平分一條線段的直線是這條線的垂直平分線。
(2)性質(zhì):①線段垂直平分線上的點(diǎn)到這條線段兩個(gè)端點(diǎn)的距離相等;
②到一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上。
注意:根據(jù)線段垂直平分線的這一特性可以推出:三角形三邊的垂直平分線交于一點(diǎn),并且這一點(diǎn)到三個(gè)頂點(diǎn)的距離相等。
5.角的平分線:
(1)定義:把一個(gè)角分成兩個(gè)相等的角的射線叫做角的平分線.(2)性質(zhì):①在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等.②到一個(gè)角的兩邊距離相等的點(diǎn),在這個(gè)角的平分線上.注意:根據(jù)角平分線的性質(zhì),三角形的三個(gè)內(nèi)角的平分線交于一點(diǎn),并且這一點(diǎn)到三條邊的距離相等.6.等腰三角形的性質(zhì)與判定:
性質(zhì):
(1)對(duì)稱性:等腰三角形是軸對(duì)稱圖形,等腰三角形底邊上的中線所在的直線是它的對(duì)稱軸,或底邊上的高所在的直線是它的對(duì)稱軸,或頂角的平分線所在的直線是它的對(duì)稱軸;
(2)三線合一:等腰三角形頂角的平分線、底邊上的中線、底邊上的高互相重合;
(3)等邊對(duì)等角:等腰三角形的兩個(gè)底角相等。
說(shuō)明:等腰三角形的性質(zhì)除三線合一外,三角形中的主要線段之間也存在著特殊的性質(zhì),如:①等腰三角形兩底角的平分線相等;②等腰三角形兩腰上的中線相等;
③等腰三角形兩腰上的高相等;④等腰三角形底邊上的中點(diǎn)到兩腰的距離相等。
判定定理:如果一個(gè)三角形的兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(簡(jiǎn)稱:等角對(duì)等邊)。
7.等邊三角形的性質(zhì)與判定:
性質(zhì):(1)等邊三角形的三個(gè)角都相等,并且每個(gè)角都等于60;
(2)等邊三角形具有等腰三角形的所有性質(zhì),并且在每條邊上都有三線合一。因此等邊三角形是軸對(duì)稱圖形,它有三條對(duì)稱軸,而等腰三角形(非等邊三角形)只有一條對(duì)稱軸。
判定定理:有一個(gè)角是60的等腰三角形是等邊三角形。
說(shuō)明:等邊三角形是一種特殊的三角形,容易知道等邊三角形的三條高(或三條中線、三條角平分線)都相等。
二、中心對(duì)稱與中心對(duì)稱圖形:
1.中心對(duì)稱:把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180,如果它能夠和另外一個(gè)圖形重合,那么就說(shuō)這兩個(gè)圖形關(guān)于這個(gè)點(diǎn)對(duì)稱或中心對(duì)稱,這個(gè)點(diǎn)叫做對(duì)稱中心,這兩個(gè)圖形中的對(duì)應(yīng)點(diǎn)叫做關(guān)于中心的對(duì)稱點(diǎn)。
2.中心對(duì)稱圖形:在平面內(nèi),一個(gè)圖形繞某個(gè)點(diǎn)旋轉(zhuǎn)180,如果旋轉(zhuǎn)前后的圖形互相重合,那么這個(gè)圖形叫做中心對(duì)稱圖形,這個(gè)點(diǎn)叫做它的對(duì)稱中心。
3.中心對(duì)稱的性質(zhì):(1)關(guān)于中心對(duì)稱的兩個(gè)圖形是全等形;
(2)在成中心對(duì)稱的兩個(gè)圖形中,連接對(duì)稱點(diǎn)的線段都經(jīng)過(guò)對(duì)稱中心,并且被對(duì)稱中心平分;
(3)成中心對(duì)稱的兩個(gè)圖形,對(duì)應(yīng)線段平行(或在同一直線上)且相等。
三、軸對(duì)稱與中心對(duì)稱的區(qū)別與聯(lián)系:
軸對(duì)稱
中心對(duì)稱
有一條對(duì)稱軸直線
有一個(gè)對(duì)稱中心點(diǎn)
圖形沿對(duì)稱軸對(duì)折(翻折180)后重合圖形繞對(duì)稱中心旋轉(zhuǎn)180 后重合對(duì)稱點(diǎn)的連線被對(duì)稱軸垂直平分
對(duì)稱點(diǎn)連線經(jīng)過(guò)對(duì)稱中心,且被對(duì)稱中心平分
四、幾種常見的軸對(duì)稱圖形和中心對(duì)稱圖形: 軸對(duì)稱圖形:線段、角、等腰三角形、等邊三角形、菱形、矩形、正方形、等腰梯形、圓
對(duì)稱軸的條數(shù):角有一條對(duì)稱軸,即該角的角平分線;等腰三角形有一條對(duì)稱軸,是底邊的垂直平分線;等邊三角形有三條對(duì)稱軸,分別是三邊上的垂直平分線;菱形有兩條對(duì)稱軸,分別是兩條對(duì)角線所在的直線,矩形有兩條對(duì)稱軸分別是兩組對(duì)邊中點(diǎn)的直線;
中心對(duì)稱圖形:線段、平行四邊形、菱形、矩形、正方形、圓
對(duì)稱中心:線段的對(duì)稱中心是線段的中點(diǎn);平行四邊形、菱形、矩形、正方形的對(duì)稱中心是對(duì)角線的交點(diǎn),圓的對(duì)稱中心是圓心。
說(shuō)明:線段、菱形、矩形、正方形以及圓它們即是軸對(duì)稱圖形又是中心對(duì)稱圖形。
五、坐標(biāo)系中的軸對(duì)稱變換與中心對(duì)稱變換:
點(diǎn)P(x,y)關(guān)于x軸對(duì)稱的點(diǎn)P1的坐標(biāo)為(x,-y),關(guān)于y軸對(duì)稱的點(diǎn)P2的坐標(biāo)為(-x,y)。關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)P3的坐標(biāo)是(-x,-y)這個(gè)規(guī)律也可以記為:關(guān)于y軸(x軸)對(duì)稱的點(diǎn)的縱坐標(biāo)(橫坐標(biāo))相同,橫坐標(biāo)(縱坐標(biāo))互為相反數(shù)。關(guān)于原點(diǎn)成中心對(duì)稱的點(diǎn)的,橫坐標(biāo)為原橫坐標(biāo)的相反數(shù),縱坐標(biāo)為原縱坐標(biāo)的相反數(shù),即橫坐標(biāo)、縱坐標(biāo)同乘以-1。
常見考法
(1)判別某些圖形是不是軸對(duì)稱圖形能找出對(duì)稱軸,對(duì)稱軸的條數(shù)、判別某些圖形是中心對(duì)稱圖形能找到對(duì)稱中心;(2)利用垂直平分線性質(zhì)、角平分線性質(zhì)證明一些結(jié)論;(3)利用等腰三角形三線合一性質(zhì)證明線段相等、線段垂直;(4)直接證明某一個(gè)三角形是等腰三角形;(4)軸對(duì)稱圖形的實(shí)際應(yīng)用(如鏡子中的軸對(duì)稱問(wèn)題、解決一些折疊問(wèn)題、還有求幾個(gè)線段之和最短問(wèn)題)。
誤區(qū)提醒
(1)把軸對(duì)稱與軸對(duì)稱圖形的概念、中心對(duì)稱與中心對(duì)稱圖形的概念混淆;(2)把軸對(duì)稱與全等混淆;(3)找軸對(duì)稱圖形的對(duì)稱軸不全、不準(zhǔn);(4)在解有關(guān)等腰三角形問(wèn)題時(shí),沒(méi)有進(jìn)行分類討論,造成漏解。
第二篇:軸對(duì)稱知識(shí)點(diǎn)總結(jié)
軸對(duì)稱與軸對(duì)稱圖形 一、知識(shí)點(diǎn):
1. 什么叫軸對(duì)稱:
如果把一個(gè)圖形沿著某一條直線折疊后,能夠與另一個(gè)圖形重合,那么這兩個(gè)圖形關(guān)于這條直線成軸對(duì)稱,這條直線叫做對(duì)稱軸,兩個(gè)圖形中的對(duì)應(yīng)點(diǎn)叫做對(duì)稱點(diǎn)。
2. 什么叫軸對(duì)稱圖形:
如果把一個(gè)圖形沿著一條直線折疊,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì)稱圖形,這條直線叫做對(duì)稱軸。
3.軸對(duì)稱與軸對(duì)稱圖形的區(qū)別與聯(lián)系:
區(qū)別:
①軸對(duì)稱是指兩個(gè)圖形沿某直線對(duì)折能夠完全重合,而軸對(duì)稱圖形是指一個(gè)圖形的兩個(gè)部分沿某直線對(duì)折能完全重合。
②軸對(duì)稱是反映兩個(gè)圖形的特殊位置、大小關(guān)系;
軸對(duì)稱圖形是反映一個(gè)圖形的特性。
聯(lián)系:
①兩部分都完全重合,都有對(duì)稱軸,都有對(duì)稱點(diǎn)。
②如果把成軸對(duì)稱的兩個(gè)圖形看成是一個(gè)整體,這個(gè)整體就是一個(gè)軸對(duì)稱圖形;
如果把一個(gè)軸對(duì)稱圖形的兩旁的部分看成兩個(gè)圖形,這兩個(gè)部分圖形就成軸對(duì)稱。
常見的軸對(duì)稱圖形有:圓、正方形、長(zhǎng)方形、菱形、等腰梯形、等腰三角形、等邊三角形、角、線段、相交的兩條直線等。
l A B 4.線段的垂直平分線:
垂直并且平分一條線段的直線,叫做這條線段的垂直平分線。
(也稱線段的中垂線)5.軸對(duì)稱的性質(zhì):
⑴成軸對(duì)稱的兩個(gè)圖形全等。
⑵如果兩個(gè)圖形成軸對(duì)稱,那么對(duì)稱軸是對(duì)稱點(diǎn)連線的垂直平分線。
6.怎樣畫軸對(duì)稱圖形:
畫軸對(duì)稱圖形時(shí),應(yīng)先確定對(duì)稱軸,再找出對(duì)稱點(diǎn)。
二、舉例:
例1:判斷題:
① 角是軸對(duì)稱圖形,對(duì)稱軸是角的平分線;
()②等腰三角形至少有1條對(duì)稱軸,至多有3條對(duì)稱軸;
()③關(guān)于某直線對(duì)稱的兩個(gè)三角形一定是全等三角形;
()④兩圖形關(guān)于某直線對(duì)稱,對(duì)稱點(diǎn)一定在直線的兩旁。
()例2:下圖曾被哈佛大學(xué)選為入學(xué)考試的試題.請(qǐng)?jiān)谙铝幸唤M圖形符號(hào)中找出它們所蘊(yùn)含的內(nèi)在規(guī)律,然后把圖形空白處填上恰當(dāng)?shù)膱D形.例3:如圖,由小正方形組成的L形圖中,請(qǐng)你用三種方法分別在下圖中添畫一個(gè)小正方形使它成為一個(gè)軸對(duì)稱圖形:
方法1 方法2 方法3 例4:如圖,已知:ΔABC和直線l,請(qǐng)作出ΔABC關(guān)于直線l的對(duì)稱三角形。
l B A C l B A C l B A C C A D B 例5:如圖,DA、CB是平面鏡前同一發(fā)光點(diǎn)S發(fā)出的經(jīng)平面鏡反射后的反射光線,請(qǐng)通過(guò)畫圖確定發(fā)光點(diǎn)S的位置,并將光路圖補(bǔ)充完整。
例6:如圖,四邊形ABCD是長(zhǎng)方形彈子球臺(tái)面,有黑白兩球分別位于E、F兩點(diǎn)位置上,試問(wèn)怎樣撞擊黑球E,才能使黑球先碰撞臺(tái)邊AB反彈后再擊中白球F? 例7:如圖,要在河邊修建一個(gè)水泵站,向張莊A、李莊B送水。修在河邊什么地方,可使使用的水管最短? · · A B a 例8:如圖,OA、OB是兩條相交的公路,點(diǎn)P是一個(gè)郵電所,現(xiàn)想在OA、OB上各設(shè)立一個(gè)投遞點(diǎn),要想使郵電員每次投遞路程最近,問(wèn)投遞點(diǎn)應(yīng)設(shè)立在何處? · P B O A 線段、角的軸對(duì)稱性 l A B M 一、知識(shí)點(diǎn):
1.線段的軸對(duì)稱性:
① 線段是軸對(duì)稱圖形,對(duì)稱軸有兩條;
一條是線段所在的直線,另一條是這條線段的垂直平分線。
②線段的垂直平分線上的點(diǎn)到線段兩端的距離相等。
③到線段兩端距離相等的點(diǎn),在這條線段的垂直平分線上。
結(jié)論:線段的垂直平分線是到線段兩端距離相等的點(diǎn)的集合 2.角的軸對(duì)稱性:
①角是軸對(duì)稱圖形,對(duì)稱軸是角平分線所在的直線。
②角平分線上的點(diǎn)到角的兩邊距離相等。
③到角的兩邊距離相等的點(diǎn),在這個(gè)角的平分線上。
結(jié)論:角的平分線是到角的兩邊距離相等的點(diǎn)的集合 二、舉例:
例1:已知ABC中,AB=AC=10,DE垂直平分AB,交AC于E,已知BEC的周長(zhǎng)是16。求ABC的周長(zhǎng).· C B O A · D 例2:如圖,已知∠AOB及點(diǎn)C、D,求作一點(diǎn)P,使PC=PD,并且使點(diǎn)P到OA、OB的距離相等。
l · · A B 例3:如圖,已知直線及其兩側(cè)兩點(diǎn)A、B。
(1)在直線上求一點(diǎn)P,使PA=PB;
(2)在直線上求一點(diǎn)Q,使平分∠AQB。
例4:如圖,直線a、b、c表示三條相互交叉的公路,現(xiàn)要建一個(gè)貨物中轉(zhuǎn)站,要求它到三條公路的距離相等,可供選擇的地址有幾處?如何選? O D C B A E 例5:已知:如圖,在ΔABC中,O是∠B、∠C外角的平分線的交點(diǎn),那么點(diǎn)O在∠A的平分線上嗎?為什么? O D C B A 1 2 3 4 例6:如圖,已知:AD和BC相交于O,∠1=∠2,∠3=∠4。試判斷AD和BC的關(guān)系,并說(shuō)明理由。
例7:已知:如圖,△ABC中,BC邊中垂線ED交BC于E,交BA延長(zhǎng)線于D,過(guò)C作CF⊥BD于F,交DE于G,DF=BC,試說(shuō)明∠FCB=∠B 例8:已知:在∠ABC中,D是∠ABC平分線上一點(diǎn),E、F分別在AB、AC上,且DE=DF。
試判斷∠BED與∠BFD的關(guān)系,并說(shuō)明理由.2、已知:在ΔABC中,D是BC上一點(diǎn),DE⊥BA于E,DF⊥AC于F,且DE=DF.。試判斷線段AD與EF有何關(guān)系?并說(shuō)明理由。
3、如圖,已知:在△ABC中,∠BAC=90°,BD平分∠ABC,DE⊥BC于E。試說(shuō)明BD垂直平分AE 等腰三角形的軸對(duì)稱性 一、知識(shí)點(diǎn):
3. 等腰三角形的性質(zhì):
①等腰三角形是軸對(duì)稱圖形,頂角平分線所在直線是它的對(duì)稱軸;
②等腰三角形的兩個(gè)底角相等;
(簡(jiǎn)稱“等邊對(duì)等角”)③等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合。(簡(jiǎn)稱“三線合一”)4. 等腰三角形的判定:
①如果一個(gè)三角形有2個(gè)角相等,那么這2個(gè)角所對(duì)的邊也相等;
(簡(jiǎn)稱“等角對(duì)等邊”)②直角三角形斜邊上的中線等于斜邊上的一半。
3.等邊三角形:
① 等邊三角形的定義:
三邊相等的三角形叫做等邊三角形或正三角形。
② 等邊三角形的性質(zhì):
等邊三角形是軸對(duì)稱圖形,并且有3條對(duì)稱軸;
等邊三角形的每個(gè)角都等于600。
③等邊三角形的判定:
3個(gè)角相等的三角形是等邊三角形;
有兩個(gè)角等于600的三角形是等邊三角形;
有一個(gè)角等于600的等腰三角形是等邊三角形。
4.三角形的分類:
斜三角形:三邊都不相等的三角形。
三角形 只有兩邊相等的三角形。
等腰三角形 等邊三角形 二、舉例:
例1、如圖,已知D、E兩點(diǎn)在線段BC上,AB=AC,AD=AE,試說(shuō)明BD=CE的理由? A B C E D 例2:如圖,已知:△ABC中,AB=AC,BD和CE分別是∠ABC和∠ACB的角平分線,且相交于O點(diǎn)。①試說(shuō)明△OBC是等腰三角形;
②連接OA,試判斷直線OA與線段BC的關(guān)系?并說(shuō)明理由。
A E D B C O O D C B A 1 2 3 4 例3:如圖,已知:AD和BC相交于O,∠1=∠2,∠3=∠4。試判斷AD和BC的關(guān)系,并說(shuō)明理由。
E D C B A 例4:如圖,已知:△ABC中,∠C=900,D、E是AB邊上的兩點(diǎn),且AD=AC,BD=BC。
求∠DCE的度數(shù)。
G F E D C B A · · 例5:如圖,已知:△ABC中,BD、CE分別是AC、AB邊上的高,G、F分別是BC、DE的中點(diǎn)。試探索FG與DE的關(guān)系。
A F E D B C M 例6:如圖,已知:△ABC中,∠C=900,AC=BC,M是AB的中點(diǎn),DE⊥BC于E,DF⊥AC于F。試判斷△MEF的形狀?并說(shuō)明理由。
E D C B A 例7:如圖,已知:△ABC為等邊三角形,延長(zhǎng)BC到D,延長(zhǎng)BA到E,AE=BD,連結(jié)EC、ED,試說(shuō)明CE=DE。
A F C E B D M P 例8:如圖,在等邊△ABC中,P為△ABC內(nèi)任意一點(diǎn),PD⊥BC于D,PE⊥AC于E,PF⊥AB于F,AM⊥BC于M,試猜想AM、PD、PE、PF之間的關(guān)系,并證明你的猜想. 等腰梯形的軸對(duì)稱性 一、知識(shí)點(diǎn):
5. 等腰梯形的定義:
①梯形的定義:一組對(duì)邊平行,另一組對(duì)邊不平行為梯形。
梯形中,平行的一組對(duì)邊稱為底,不平行的一組對(duì)邊稱為腰。
A D C B ②等腰梯形的定義:兩腰相等的梯形叫做等腰梯形。
6. 等腰梯形的性質(zhì):
①等腰梯形是軸對(duì)稱圖形,是兩底中點(diǎn)的連線所在的直線。
②等腰梯形同一底上兩底角相等。
③等腰梯形的對(duì)角線相等。
3.等腰梯形的判定:
③ 在同一底上的2個(gè)底角相等的梯形是等腰梯形。
④ 補(bǔ)充:對(duì)角線相等的梯形是等腰梯形。
二、舉例:
例1:填空:
1、等腰梯形的腰長(zhǎng)為12cm,上底長(zhǎng)為15cm,上底與腰的夾角為120°,則下底長(zhǎng)為 cm. 2、如果一個(gè)等腰梯形的二個(gè)內(nèi)角的和為 1000,那么此梯形的四個(gè)內(nèi)角的度數(shù)分別為 . 3、等腰梯形上底的長(zhǎng)與腰長(zhǎng)相等,而一條對(duì)角線與一腰垂直,則梯形上底角的度數(shù)是______;
4、已知等腰梯形的一個(gè)底角等于600,它的兩底分別為13cm和37cm,它的周長(zhǎng)為_______;
A D C B 5、如圖,在梯形ABCD中,AD∥BC,AB=CD,∠A=120°,對(duì)角線BD平分∠ABC,則 ∠BDC的度數(shù)是 ;
又若AD=5,則BC= . 6、如圖,在等腰梯形ABCD中,AD∥BC,AB = AD,BD = BC,則∠C= 0。
例2:如圖,等腰梯形ABCD中,AD∥BC,對(duì)角線AC、BD相交于點(diǎn)O.試說(shuō)明:AO=DO. 例3:如圖,梯形ABCD中,AD∥BC,AC=BD。試說(shuō)明:梯形ABCD是等腰梯形。
A D B C E 例4:如圖,在等腰梯形ABCD中,AD∥BC,AD=3cm,BC=7cm,E為CD的中點(diǎn),四邊形ABED的周長(zhǎng)比△BCE的周長(zhǎng)大2 cm,試求AB的長(zhǎng). 例5:如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,M為BC中點(diǎn),則:
(1)點(diǎn)M到兩腰AB、CD的距離相等嗎?請(qǐng)說(shuō)出你的理由。
(2)若連結(jié)AM、DM,那么△AMD是等腰三角形嗎?為什么?(3)又若N為AD的中點(diǎn),那么MN⊥AD一定成立.你能說(shuō)明為什么嗎? A D B C E F M A D E F C B 例6、如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,E為CD中點(diǎn),AE與BC的延長(zhǎng)線交于F.(1)判斷S△ABF和S梯形ABCD有何關(guān)系,并說(shuō)明理由.(2)判斷S△ABE和S梯形ABCD有何關(guān)系,并說(shuō)明理由.(3)上述結(jié)論對(duì)一般梯形是否成立?為什么? A D E C B 例7、如圖,在梯形ABCD中,AD∥BC,E為CD的中點(diǎn),AD+BC=AB.則:
(1)AE、BE分別平分∠DAB、∠ABC嗎?為什么?(2)AE⊥BE嗎?為什么? A P D Q B C 例8:在梯形ABCD中,∠B=900,AB=14cm,AD=18cm,BC=21cm,點(diǎn)P從點(diǎn)A開始沿AD邊向點(diǎn)D以1 cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)C開始沿CB向點(diǎn)B以2cm/s的速度移動(dòng),如果點(diǎn)P、Q分別從兩點(diǎn)同時(shí)出發(fā),多少秒后,梯形PBQD是等腰梯形? 中心對(duì)稱與中心對(duì)稱圖形 一、知識(shí)點(diǎn):
1、圖形的旋轉(zhuǎn):
在平面內(nèi),將一個(gè)圖形繞一個(gè)定點(diǎn)旋轉(zhuǎn)一定的角度,這樣的圖形運(yùn)動(dòng)稱為圖形的旋轉(zhuǎn),這個(gè)定點(diǎn)稱為旋轉(zhuǎn)中心,旋轉(zhuǎn)的角度稱為旋轉(zhuǎn)角。旋轉(zhuǎn)前、后的圖形全等。對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等。每一對(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角彼此相等。
2、中心對(duì)稱:
把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果它能夠與另一個(gè)圖形重合,那么稱這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱。也稱這兩個(gè)圖形成中心對(duì)稱,這個(gè)點(diǎn)叫做對(duì)稱中心,兩個(gè)圖形中的對(duì)應(yīng)點(diǎn)叫做對(duì)稱點(diǎn)。
注意:①中心對(duì)稱是旋轉(zhuǎn)的一種特例,因此,成中心對(duì)稱的兩個(gè)圖形具有旋轉(zhuǎn)圖形的一切性質(zhì)。
②成中心對(duì)稱的2個(gè)圖形,對(duì)稱點(diǎn)的連線都經(jīng)過(guò)對(duì)稱中心,并且被對(duì)稱中心平分。
3、中心對(duì)稱圖形:
把一個(gè)平面圖形繞著某一點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠和原來(lái)的圖形互相重合,那么這個(gè)圖形叫做中心對(duì)稱圖形。這個(gè)點(diǎn)就是它的對(duì)稱中心。
中心對(duì)稱圖形上的每一對(duì)對(duì)應(yīng)點(diǎn)所連成的線段都被對(duì)稱中心平分。
4、中心對(duì)稱與中心對(duì)稱圖形之間的關(guān)系:
區(qū)別:(1)中心對(duì)稱是指兩個(gè)圖形的關(guān)系,中心對(duì)稱圖形是指具有某種性質(zhì)的圖形。(2)成中心對(duì)稱的兩個(gè)圖形的對(duì)稱點(diǎn)分別在兩個(gè)圖形上,中心對(duì)稱圖形的對(duì)稱點(diǎn)在一個(gè)圖形上。
聯(lián)系:若把中心對(duì)稱圖形的兩部分看成兩個(gè)圖形,則它們成中心對(duì)稱;
若把中心對(duì)稱的兩個(gè)圖形看成一個(gè)整體,則成為中心對(duì)稱圖形.5、對(duì)比軸對(duì)稱圖形與中心對(duì)稱圖形:
軸對(duì)稱圖形 中心對(duì)稱圖形 有一條對(duì)稱軸——直線 有一個(gè)對(duì)稱中心——點(diǎn) 沿對(duì)稱軸對(duì)折 繞對(duì)稱中心旋轉(zhuǎn)180O 對(duì)折后與原圖形重合 旋轉(zhuǎn)后與原圖形重合 二、舉例:
例1:如圖,將點(diǎn)陣中的圖形繞點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)900,畫出旋轉(zhuǎn)后的圖形.· 例2:畫出將ΔABC繞點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)120°后的對(duì)應(yīng)三角形。
·O C B A P′ P C B A 例3:如圖,已知ΔABC是直角三角形,BC為斜邊。若AP=3,將ΔABP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)后,能與ΔACP′重合,求PP′的長(zhǎng)。
例4:如圖AC=BD,∠A=∠B,點(diǎn)E、F在AB上,且DE∥CF,試說(shuō)明此圖是中心對(duì)稱圖形的理由。
例5:已知:如圖,在△ABC中,∠BAC=1200,以BC為邊向形外作等邊三角形△BCD,把△ABD繞著點(diǎn)D按順時(shí)針?lè)较蛐D(zhuǎn)600后得到△ECD,若AB=3,AC=2,求∠BAD的度數(shù)與AD的長(zhǎng).例6:如圖,直線l1⊥l2,垂足為O,點(diǎn)A1與點(diǎn)A關(guān)于直線l1對(duì)稱,點(diǎn)A2與點(diǎn)A關(guān)于直線l2對(duì)稱。點(diǎn)A1與點(diǎn)A2有怎樣的對(duì)稱關(guān)系?你能說(shuō)明理由嗎? 單純的課本內(nèi)容,并不能滿足學(xué)生的需要,通過(guò)補(bǔ)充,達(dá)到內(nèi)容的完善 教育之通病是教用腦的人不用手,不教用手的人用腦,所以一無(wú)所能。教育革命的對(duì)策是手腦聯(lián)盟,結(jié)果是手與腦的力量都可以大到不可思議。
第三篇:初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)過(guò)兩點(diǎn)有且只有一條直線兩點(diǎn)之間線段最短同角或等角的補(bǔ)角相等同角或等角的余角相等過(guò)一點(diǎn)有且只有一條直線和已知直線垂直直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短平行公理 經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行如果兩條直線都和第三條直線平行,這兩條直線也互相平行同位角相等,兩直線平行內(nèi)錯(cuò)角相等,兩直線平行同旁內(nèi)角互補(bǔ),兩直線平行
12兩直線平行,同位角相等兩直線平行,內(nèi)錯(cuò)角相等兩直線平行,同旁內(nèi)角互補(bǔ)定理 三角形兩邊的和大于第三邊推論 三角形兩邊的差小于第三邊三角形內(nèi)角和定理 三角形三個(gè)內(nèi)角的和等于180°推論1 直角三角形的兩個(gè)銳角互余推論2 三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和推論3 三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等
22邊角邊公理(SAS)有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等23 角邊角公理(ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等24 推論(AAS)有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等邊邊邊公理(SSS)有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等斜邊、直角邊公理(HL)有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等27 定理1 在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等定理2 到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合等腰三角形的性質(zhì)定理 等腰三角形的兩個(gè)底角相等(即等邊對(duì)等角)31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊
等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33 推論3 等邊三角形的各角都相等,并且每一個(gè)角都等于60°
等腰三角形的判定定理 如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)
第四篇:初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
一、基本知識(shí)
㈠、數(shù)與代數(shù)A、數(shù)與式:
1、有理數(shù)
有理數(shù):①整數(shù)→正整數(shù)/0/負(fù)整數(shù)
②分?jǐn)?shù)→正分?jǐn)?shù)/負(fù)分?jǐn)?shù)
數(shù)軸:①畫一條水平直線,在直線上取一點(diǎn)表示0(原點(diǎn)),選取某一長(zhǎng)度作為單位長(zhǎng)度,規(guī)定直線上向右的方向?yàn)檎较?,就得到?shù)軸。②任何一個(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。③如果兩個(gè)數(shù)只有符號(hào)不同,那么我們稱其中一個(gè)數(shù)為另外一個(gè)數(shù)的相反數(shù),也稱這兩個(gè)數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個(gè)點(diǎn),位于原點(diǎn)的兩側(cè),并且與原點(diǎn)距離相等。④數(shù)軸上兩個(gè)點(diǎn)表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。
絕對(duì)值:①在數(shù)軸上,一個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離叫做該數(shù)的絕對(duì)值。②正數(shù)的絕對(duì)值是他的本身、負(fù)數(shù)的絕對(duì)值是他的相反數(shù)、0的絕對(duì)值是0。兩個(gè)負(fù)數(shù)比較大小,絕對(duì)值大的反而小。
有理數(shù)的運(yùn)算:
加法:①同號(hào)相加,取相同的符號(hào),把絕對(duì)值相加。②異號(hào)相加,絕對(duì)值相等時(shí)和為0;絕對(duì)值不等時(shí),取絕對(duì)值較大的數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值。③一個(gè)數(shù)與0相加不變。
減法:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。
乘法:①兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),絕對(duì)值相乘。②任何數(shù)與0相乘得0。③乘積為1的兩個(gè)有理數(shù)互為倒數(shù)。
除法:①除以一個(gè)數(shù)等于乘以一個(gè)數(shù)的倒數(shù)。②0不能作除數(shù)。
乘方:求N個(gè)相同因數(shù)A的積的運(yùn)算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)。
混合順序:先算乘法,再算乘除,最后算加減,有括號(hào)要先算括號(hào)里的。
2、實(shí)數(shù)
無(wú)理數(shù):無(wú)限不循環(huán)小數(shù)叫無(wú)理數(shù)
平方根:①如果一個(gè)正數(shù)X的平方等于A,那么這個(gè)正數(shù)X就叫做A的算術(shù)平方根。②如果一個(gè)數(shù)X的平方等于A,那么這個(gè)數(shù)X就叫做A的平方根。③一個(gè)正數(shù)有2個(gè)平方根/0的平方根為0/負(fù)數(shù)沒(méi)有平方根。④求一個(gè)數(shù)A的平方根運(yùn)算,叫做開平方,其中A叫做被開方數(shù)。
立方根:①如果一個(gè)數(shù)X的立方等于A,那么這個(gè)數(shù)X就叫做A的立方根。②正數(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。③求一個(gè)數(shù)A的立方根的運(yùn)算叫開立方,其中A叫做被開方數(shù)。
實(shí)數(shù):①實(shí)數(shù)分有理數(shù)和無(wú)理數(shù)。②在實(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對(duì)值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對(duì)值的意義完全一樣。③每一個(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。
3、代數(shù)式
代數(shù)式:?jiǎn)为?dú)一個(gè)數(shù)或者一個(gè)字母也是代數(shù)式。
合并同類項(xiàng):①所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng),叫做同類項(xiàng)。②把同類項(xiàng)合并成一項(xiàng)就叫做合并同類項(xiàng)。③在合并同類項(xiàng)時(shí),我們把同類項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變。
4、整式與分式
整式:①數(shù)與字母的乘積的代數(shù)式叫單項(xiàng)式,幾個(gè)單項(xiàng)式的和叫多項(xiàng)式,單項(xiàng)式和多項(xiàng)式統(tǒng)稱整式。②一個(gè)單項(xiàng)式中,所有字母的指數(shù)和叫做這個(gè)單項(xiàng)式的次數(shù)。③一個(gè)多項(xiàng)式中,次數(shù)最高的項(xiàng)的次數(shù)叫做這個(gè)多項(xiàng)式的次數(shù)。
整式運(yùn)算:加減運(yùn)算時(shí),如果遇到括號(hào)先去括號(hào),再合并同類項(xiàng)。
第五篇:初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
一、基本知識(shí)
一、數(shù)與代數(shù)A、數(shù)與式:
1、有理數(shù)有理數(shù):①整數(shù)→正整數(shù)/0/負(fù)整數(shù)②分?jǐn)?shù)→正分?jǐn)?shù)/負(fù)分?jǐn)?shù)
數(shù)軸:①畫一條水平直線,在直線上取一點(diǎn)表示0(原點(diǎn)),選取某一長(zhǎng)度作為單位長(zhǎng)度,規(guī)定直線上向右的方向?yàn)檎较?,就得到?shù)軸。②任何一個(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。③如果兩個(gè)數(shù)只有符號(hào)不同,那么我們稱其中一個(gè)數(shù)為另外一個(gè)數(shù)的相反數(shù),也稱這兩個(gè)數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個(gè)點(diǎn),位于原點(diǎn)的兩側(cè),并且與原點(diǎn)距離相等。④數(shù)軸上兩個(gè)點(diǎn)表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。
絕對(duì)值:①在數(shù)軸上,一個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離叫做該數(shù)的絕對(duì)值。②正數(shù)的絕對(duì)值是他的本身、負(fù)數(shù)的絕對(duì)值是他的相反數(shù)、0的絕對(duì)值是0。兩個(gè)負(fù)數(shù)比較大小,絕對(duì)值大的反而小。
有理數(shù)的運(yùn)算:
加法:①同號(hào)相加,取相同的符號(hào),把絕對(duì)值相加。②異號(hào)相加,絕對(duì)值相等時(shí)和為0;絕對(duì)值不等時(shí),取絕對(duì)值較大的數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值。③一個(gè)數(shù)與0相加不變。
減法:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。
乘法:①兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),絕對(duì)值相乘。②任何數(shù)與0相乘得0。③乘積為1的兩個(gè)有理數(shù)互為倒數(shù)。
除法:①除以一個(gè)數(shù)等于乘以一個(gè)數(shù)的倒數(shù)。②0不能作除數(shù)。乘方:求N個(gè)相同因數(shù)A的積的運(yùn)算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)。
混合順序:先算乘法,再算乘除,最后算加減,有括號(hào)要先算括號(hào)里的。
2、實(shí)數(shù)
無(wú)理數(shù):無(wú)限不循環(huán)小數(shù)叫無(wú)理數(shù)
平方根:①如果一個(gè)正數(shù)X的平方等于A,那么這個(gè)正數(shù)X就叫做A的算術(shù)平方根。②如果一個(gè)數(shù)X的平方等于A,那么這個(gè)數(shù)X就叫做A的平方根。③一個(gè)正數(shù)有2個(gè)平方根/0的平方根為0/負(fù)數(shù)沒(méi)有平方根。④求一個(gè)數(shù)A的平方根運(yùn)算,叫做開平方,其中A叫做被開方數(shù)。
立方根:①如果一個(gè)數(shù)X的立方等于A,那么這個(gè)數(shù)X就叫做A的立方根。②正數(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。③求一個(gè)數(shù)A的立方根的運(yùn)算叫開立方,其中A叫做被開方數(shù)。
實(shí)數(shù):①實(shí)數(shù)分有理數(shù)和無(wú)理數(shù)。②在實(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對(duì)值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對(duì)值的意義完全一樣。③每一個(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。
3、代數(shù)式
代數(shù)式:?jiǎn)为?dú)一個(gè)數(shù)或者一個(gè)字母也是代數(shù)式。
合并同類項(xiàng):①所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng),叫做同類項(xiàng)。②把同類項(xiàng)合并成一項(xiàng)就叫做合并同類項(xiàng)。③在合并同類項(xiàng)時(shí),我們把同類項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變。
4、整式與分式 整式:①數(shù)與字母的乘積的代數(shù)式叫單項(xiàng)式,幾個(gè)單項(xiàng)式的和叫多項(xiàng)式,單項(xiàng)式和多項(xiàng)式統(tǒng)稱整式。②一個(gè)單項(xiàng)式中,所有字母的指數(shù)和叫做這個(gè)單項(xiàng)式的次數(shù)。③一個(gè)多項(xiàng)式中,次數(shù)最高的項(xiàng)的次數(shù)叫做這個(gè)多項(xiàng)式的次數(shù)。
整式運(yùn)算:加減運(yùn)算時(shí),如果遇到括號(hào)先去括號(hào),再合并同類項(xiàng)。冪的運(yùn)算:AN+AM=A(M+N)
(AM)N=AMN
(A/B)N=AN/BN
除法一樣。
整式的乘法:①單項(xiàng)式與單項(xiàng)式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。②單項(xiàng)式與多項(xiàng)式相乘,就是根據(jù)分配律用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。③多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另外一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。
公式兩條:平方差公式/完全平方公式
整式的除法:①單項(xiàng)式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對(duì)于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個(gè)因式。②多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)分別除以單項(xiàng)式,再把所得的商相加。
分解因式:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項(xiàng)式分解因式。
方法:提公因式法、運(yùn)用公式法、分組分解法、十字相乘法。
分式:①整式A除以整式B,如果除式B中含有分母,那么這個(gè)就是分式,對(duì)于任何一個(gè)分式,分母不為0。②分式的分子與分母同乘以或除以同一個(gè)不等于0的整式,分式的值不變。分式的運(yùn)算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。除法:除以一個(gè)分式等于乘以這個(gè)分式的倒數(shù)。
加減法:①同分母分式相加減,分母不變,把分子相加減。②異分母的分式先通分,化為同分母的分式,再加減。
分式方程:①分母中含有未知數(shù)的方程叫分式方程。②使方程的分母為0的解稱為原方程的增根。
B、方程與不等式
1、方程與方程組
一元一次方程:①在一個(gè)方程中,只含有一個(gè)未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。②等式兩邊同時(shí)加上或減去或乘以或除以(不為0)一個(gè)代數(shù)式,所得結(jié)果仍是等式。
解一元一次方程的步驟:去分母,移項(xiàng),合并同類項(xiàng),未知數(shù)系數(shù)化為1。
二元一次方程:含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程。
二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。適合一個(gè)二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程的一個(gè)解。
二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程的解。解二元一次方程組的方法:代入消元法/加減消元法。
一元二次方程:只有一個(gè)未知數(shù),并且未知數(shù)的項(xiàng)的最高系數(shù)為2的方程 1)一元二次方程的二次函數(shù)的關(guān)系 大家已經(jīng)學(xué)過(guò)二次函數(shù)(即拋物線)了,對(duì)他也有很深的了解,好像解法,在圖象中表示等等,其實(shí)一元二次方程也可以用二次函數(shù)來(lái)表示,其實(shí)一元二次方程也是二次函數(shù)的一個(gè)特殊情況,就是當(dāng)Y的0的時(shí)候就構(gòu)成了一元二次方程了。那如果在平面直角坐標(biāo)系中表示出來(lái),一元二次方程就是二次函數(shù)中,圖象與X軸的交點(diǎn)。也就是該方程的解了
2)一元二次方程的解法
大家知道,二次函數(shù)有頂點(diǎn)式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因?yàn)樵谏厦嬉呀?jīng)說(shuō)過(guò)了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個(gè)解法,利用他可以求出所有的一元一次方程的解
(1)配方法
利用配方,使方程變?yōu)橥耆椒焦剑谟弥苯娱_平方法去求出解(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時(shí)候也一樣,利用這點(diǎn),把方程化為幾個(gè)乘積的形式去解
(3)公式法
這方法也可以是在解一元二次方程的萬(wàn)能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a 3)解一元二次方程的步驟:(1)配方法的步驟:
先把常數(shù)項(xiàng)移到方程的右邊,再把二次項(xiàng)的系數(shù)化為1,再同時(shí)加上1次項(xiàng)的系數(shù)的一半的平方,最后配成完全平方公式
(2)分解因式法的步驟: 把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式
(3)公式法
就把一元二次方程的各系數(shù)分別代入,這里二次項(xiàng)的系數(shù)為a,一次項(xiàng)的系數(shù)為b,常數(shù)項(xiàng)的系數(shù)為c 4)韋達(dá)定理
利用韋達(dá)定理去了解,韋達(dá)定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a 也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達(dá)定理,可以求出一元二次方程中的各系數(shù),在題目中很常用
5)一元一次方程根的情況
利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diao ta”,而△=b2-4ac,這里可以分為3種情況:
I當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根; II當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根;
III當(dāng)△<0時(shí),一元二次方程沒(méi)有實(shí)數(shù)根(在這里,學(xué)到高中就會(huì)知道,這里有2個(gè)虛數(shù)根)
2、不等式與不等式組
不等式:①用符號(hào)〉,=,〈號(hào)連接的式子叫不等式。②不等式的兩邊都加上或減去同一個(gè)整式,不等號(hào)的方向不變。③不等式的兩邊都乘以或者除以一個(gè)正數(shù),不等號(hào)方向不變。④不等式的兩邊都乘以或除以同一個(gè)負(fù)數(shù),不等號(hào)方向相反。不等式的解集:①能使不等式成立的未知數(shù)的值,叫做不等式的解。②一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。③求不等式解集的過(guò)程叫做解不等式。
一元一次不等式:左右兩邊都是整式,只含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)是1的不等式叫一元一次不等式。
一元一次不等式組:①關(guān)于同一個(gè)未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成了一元一次不等式組。②一元一次不等式組中各個(gè)不等式的解集的公共部分,叫做這個(gè)一元一次不等式組的解集。③求不等式組解集的過(guò)程,叫做解不等式組。
一元一次不等式的符號(hào)方向:
在一元一次不等式中,不像等式那樣,等號(hào)是不變的,他是隨著你加或乘的運(yùn)算改變。
在不等式中,如果加上同一個(gè)數(shù)(或加上一個(gè)正數(shù)),不等式符號(hào)不改向;例如:A>B,A+C>B+C 在不等式中,如果減去同一個(gè)數(shù)(或加上一個(gè)負(fù)數(shù)),不等式符號(hào)不改向;例如:A>B,A-C>B-C 在不等式中,如果乘以同一個(gè)正數(shù),不等號(hào)不改向;例如:A>B,A*C>B*C(C>0)
在不等式中,如果乘以同一個(gè)負(fù)數(shù),不等號(hào)改向;例如:A>B,A*C
所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘以的數(shù)就不等為0,否則不等式不成立;
3、函數(shù)
變量:因變量,自變量。
在用圖象表示變量之間的關(guān)系時(shí),通常用水平方向的數(shù)軸上的點(diǎn)自變量,用豎直方向的數(shù)軸上的點(diǎn)表示因變量。
一次函數(shù):①若兩個(gè)變量X,Y間的關(guān)系式可以表示成Y=KX+B(B為常數(shù),K不等于0)的形式,則稱Y是X的一次函數(shù)。②當(dāng)B=0時(shí),稱Y是X的正比例函數(shù)。
一次函數(shù)的圖象:①把一個(gè)函數(shù)的自變量X與對(duì)應(yīng)的因變量Y的值分別作為點(diǎn)的橫坐標(biāo)與縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對(duì)應(yīng)點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數(shù)的圖象。②正比例函數(shù)Y=KX的圖象是經(jīng)過(guò)原點(diǎn)的一條直線。③在一次函數(shù)中,當(dāng)K〈0,B〈O,則經(jīng)234象限;當(dāng)K〈0,B〉0時(shí),則經(jīng)124象限;當(dāng)K〉0,B〈0時(shí),則經(jīng)134象限;當(dāng)K〉0,B〉0時(shí),則經(jīng)123象限。④當(dāng)K〉0時(shí),Y的值隨X值的增大而增大,當(dāng)X〈0時(shí),Y的值隨X值的增大而減少。
二空間與圖形 A、圖形的認(rèn)識(shí)
1、點(diǎn),線,面
點(diǎn),線,面:①圖形是由點(diǎn),線,面構(gòu)成的。②面與面相交得線,線與線相交得點(diǎn)。③點(diǎn)動(dòng)成線,線動(dòng)成面,面動(dòng)成體。
展開與折疊:①在棱柱中,任何相鄰的兩個(gè)面的交線叫做棱,側(cè)棱是相鄰兩個(gè)側(cè)面的交線,棱柱的所有側(cè)棱長(zhǎng)相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長(zhǎng)方體。②N棱柱就是底面圖形有N條邊的棱柱。截一個(gè)幾何體:用一個(gè)平面去截一個(gè)圖形,截出的面叫做截面。視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
弧、扇形:①由一條弧和經(jīng)過(guò)這條弧的端點(diǎn)的兩條半徑所組成的圖形叫扇形。②圓可以分割成若干個(gè)扇形。
2、角
線:①線段有兩個(gè)端點(diǎn)。②將線段向一個(gè)方向無(wú)限延長(zhǎng)就形成了射線。射線只有一個(gè)端點(diǎn)。③將線段的兩端無(wú)限延長(zhǎng)就形成了直線。直線沒(méi)有端點(diǎn)。④經(jīng)過(guò)兩點(diǎn)有且只有一條直線。
比較長(zhǎng)短:①兩點(diǎn)之間的所有連線中,線段最短。②兩點(diǎn)之間線段的長(zhǎng)度,叫做這兩點(diǎn)之間的距離。
角的度量與表示:①角由兩條具有公共端點(diǎn)的射線組成,兩條射線的公共端點(diǎn)是這個(gè)角的頂點(diǎn)。②一度的1/60是一分,一分的1/60是一秒。
角的比較:①角也可以看成是由一條射線繞著他的端點(diǎn)旋轉(zhuǎn)而成的。②一條射線繞著他的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時(shí),所成的角叫做平角。始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時(shí),所成的角叫做周角。③從一個(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線。
平行:①同一平面內(nèi),不相交的兩條直線叫做平行線。②經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行。③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。垂直:①如果兩條直線相交成直角,那么這兩條直線互相垂直。②互相垂直的兩條直線的交點(diǎn)叫做垂足。③平面內(nèi),過(guò)一點(diǎn)有且只有一條直線與已知直線垂直。
垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無(wú)限延長(zhǎng)有關(guān),再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時(shí)候,確定了2點(diǎn)后(關(guān)于畫法,后面會(huì)講)一定要把線段穿出2點(diǎn)。
垂直平分線定理:
性質(zhì)定理:在垂直平分線上的點(diǎn)到該線段兩端點(diǎn)的距離相等; 判定定理:到線段2端點(diǎn)距離相等的點(diǎn)在這線段的垂直平分線上 角平分線:把一個(gè)角平分的射線叫該角的角平分線。
定義中有幾個(gè)要點(diǎn)要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時(shí),在題目中會(huì)出現(xiàn)直線,這是角平分線的對(duì)稱軸才會(huì)用直線的,這也涉及到軌跡的問(wèn)題,一個(gè)角個(gè)角平分線就是到角兩邊距離相等的點(diǎn)
性質(zhì)定理:角平分線上的點(diǎn)到該角兩邊的距離相等 判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線上 正方形:一組鄰邊相等的矩形是正方形
性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì) 判定:
1、對(duì)角線相等的菱形
2、鄰邊相等的矩形
二、基本定理
1、過(guò)兩點(diǎn)有且只有一條直線
2、兩點(diǎn)之間線段最短
3、同角或等角的補(bǔ)角相等
4、同角或等角的余角相等
5、過(guò)一點(diǎn)有且只有一條直線和已知直線垂直
6、直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短
7、平行公理 經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內(nèi)錯(cuò)角相等,兩直線平行
11、同旁內(nèi)角互補(bǔ),兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內(nèi)錯(cuò)角相等
14、兩直線平行,同旁內(nèi)角互補(bǔ)
15、定理 三角形兩邊的和大于第三邊
16、推論 三角形兩邊的差小于第三邊
17、三角形內(nèi)角和定理 三角形三個(gè)內(nèi)角的和等于180°
18、推論1 直角三角形的兩個(gè)銳角互余
19、推論2 三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和 20、推論3 三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角
21、全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等
22、邊角邊公理(SAS)有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等
23、角邊角公理(ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的 兩個(gè)三角形全等
24、推論(AAS)有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等
25、邊邊邊公理(SSS)有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等
26、斜邊、直角邊公理(HL)有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等
27、定理1 在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等
28、定理2 到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合
30、等腰三角形的性質(zhì)定理 等腰三角形的兩個(gè)底角相等(即等邊對(duì)等角)
31、推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊
32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33、推論3 等邊三角形的各角都相等,并且每一個(gè)角都等于60°
34、等腰三角形的判定定理 如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)
35、推論1 三個(gè)角都相等的三角形是等邊三角形
36、推論 2 有一個(gè)角等于60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半
38、直角三角形斜邊上的中線等于斜邊上的一半
39、定理 線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等 40、逆定理 和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合
42、定理1 關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形
43、定理 2 如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線
44、定理3 兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上
45、逆定理 如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱
46、勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理 如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形
48、定理 四邊形的內(nèi)角和等于360°
49、四邊形的外角和等于360°
50、多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n-2)×180°
51、推論 任意多邊的外角和等于360°
52、平行四邊形性質(zhì)定理1平行四邊形的對(duì)角相等
53、平行四邊形性質(zhì)定理2平行四邊形的對(duì)邊相等
54、推論 夾在兩條平行線間的平行線段相等
55、平行四邊形性質(zhì)定理3平行四邊形的對(duì)角線互相平分
56、平行四邊形判定定理1 兩組對(duì)角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2 兩組對(duì)邊分別相等的四邊 形是平行四邊形
58、平行四邊形判定定理3 對(duì)角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4 一組對(duì)邊平行相等的四邊形是平行四邊形 60、矩形性質(zhì)定理1 矩形的四個(gè)角都是直角 61、矩形性質(zhì)定理2 矩形的對(duì)角線相等
62、矩形判定定理1 有三個(gè)角是直角的四邊形是矩形 63、矩形判定定理2 對(duì)角線相等的平行四邊形是矩形 64、菱形性質(zhì)定理1 菱形的四條邊都相等
65、菱形性質(zhì)定理2 菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角
66、菱形面積=對(duì)角線乘積的一半,即S=(a×b)÷2 67、菱形判定定理1 四邊都相等的四邊形是菱形 68、菱形判定定理2 對(duì)角線互相垂直的平行四邊形是菱形 69、正方形性質(zhì)定理1 正方形的四個(gè)角都是直角,四條邊都相等
70、正方形性質(zhì)定理2正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角
71、定理1 關(guān)于中心對(duì)稱的兩個(gè)圖形是全等的
72、定理2 關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過(guò)對(duì)稱中心,并且被對(duì)稱中心平分
73、逆定理 如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱
74、等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個(gè)角相等 75、等腰梯形的兩條對(duì)角線相等
76、等腰梯形判定定理 在同一底上的兩個(gè)角相等的梯 形是等腰梯形 77、對(duì)角線相等的梯形是等腰梯形 78、平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
79、推論1 經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰 80、推論2
經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊 81、三角形中位線定理
三角形的中位線平行于第三邊,并且等于它的一半 82、梯形中位線定理
梯形的中位線平行于兩底,并且等于兩底和的一半 L=(a+b)÷2
S=L×h 83、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc
如果 ad=bc ,那么a:b=c:d 84、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d 85、(3)等比性質(zhì):如果a/b=c/d=…=m/n(b+d+…+n≠0), 那么(a+c+…+m)/(b+d+…+n)=a/b 86、平行線分線段成比例定理 三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例
87、推論
平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線段成比例
88、定理
如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊
89、平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例
90、定理
平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似 91、相似三角形判定定理1 兩角對(duì)應(yīng)相等,兩三角形相似(ASA)92、直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似 93、判定定理2 兩邊對(duì)應(yīng)成比例且夾角相等,兩三角形相似(SAS)94、判定定理3 三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)
95、定理
如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似
96、性質(zhì)定理1 相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比
97、性質(zhì)定理2 相似三角形周長(zhǎng)的比等于相似比 98、性質(zhì)定理3 相似三角形面積的比等于相似比的平方
99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值
100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值
101、圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合
102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合 103、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合 104、同圓或等圓的半徑相等
105、到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓
106、和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線 107、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線
108、到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線
109、定理 不在同一直線上的三點(diǎn)確定一個(gè)圓。
110、垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧 111、推論1 ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧 ②弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧
③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧 112、推論2 圓的兩條平行弦所夾的弧相等 113、圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形
114、定理 在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等
115、推論 在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等
116、定理 一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半
117、推論1 同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等
118、推論2 半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑
119、推論3 如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形 120、定理
圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角
121、①直線L和⊙O相交
d<r ②直線L和⊙O相切
d=r ③直線L和⊙O相離
d>r 122、切線的判定定理 經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線
123、切線的性質(zhì)定理 圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑 124、推論1 經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn) 125、推論2 經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心
126、切線長(zhǎng)定理 從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等圓心和這一點(diǎn)的連線平分兩條切線的夾角
127、圓的外切四邊形的兩組對(duì)邊的和相等
128、弦切角定理 弦切角等于它所夾的弧對(duì)的圓周角
129、推論 如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等 130、相交弦定理 圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等 131、推論 如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)
132、切割線定理 從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)
133、推論 從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條 割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等 134、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上
135、①兩圓外離
d>R+r
②兩圓外切
d=R+r③兩圓相交
R-r<d<R+r(R>r)④兩圓內(nèi)切
d=R-r(R>r)⑤兩圓內(nèi)含
d<R-r(R>r)136、定理 相交兩圓的連心線垂直平分兩圓的公共弦 137、定理 把圓分成n(n≥3):
⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形
⑵經(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
138、定理
任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓
139、正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n 140、定理 正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形
141、正n邊形的面積Sn=pnrn/2
p表示正n邊形的周長(zhǎng) 142、正三角形面積√3a/4
a表示邊長(zhǎng)
143、如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4 144、弧長(zhǎng)計(jì)算公式:L=n兀R/180 145、扇形面積公式:S扇形=n兀R^2/360=LR/2 146、內(nèi)公切線長(zhǎng)= d-(R-r)外公切線長(zhǎng)= d-(R+r)