第一篇:中考幾何證明題復(fù)習(xí)
中考復(fù)習(xí)
(二)中考復(fù)習(xí):幾何證明題
說(shuō)明一:在直角三角形中,或是題中出現(xiàn)多個(gè)直角時(shí),要證明兩個(gè)角相等,涉及到的知識(shí)點(diǎn):
同角(或等角)的余角相等。
例1:已知:如圖,在△ABC中,∠ACB=90,CD?AB于點(diǎn)D,點(diǎn)E 在AC上,CE=BC,過(guò)E點(diǎn)作AC的垂
線,交CD的延長(zhǎng)線于點(diǎn)F.求證:AB=FC
?
說(shuō)明二:(1)一般情形,題中有多個(gè)問(wèn)題時(shí),第二問(wèn)都與第一問(wèn)有直接的關(guān)系,利用第一問(wèn)的結(jié)論解題。(2)判別菱形的方法:例:如圖,在平行四邊形ABCD中,AE
(1)求證:△ABE∽△ADF;(2)若AG
例3:如圖,設(shè)在矩形ABCD中,點(diǎn)O為矩形對(duì)角線的交點(diǎn),∠BAD的平分線AE交BC于點(diǎn)E,交OB于點(diǎn)F,已知AD=3, AB
⑴求證:△AOB為等邊三角形;⑵求BF的長(zhǎng).A
?AH
?BC
A
E
于E,AF
?CD
于F,BD與AE、AF分別相交于G、H.
B
D,求證:四邊形ABCD是菱形.
D
B
E
C
說(shuō)明:在解梯形的題中,一般需要作輔助線。
例4:如圖,在梯形ABCD中,AD∥BC,BD⊥DC,∠C=60°,AD=4,BC=6,求AB的長(zhǎng)。
說(shuō)明:證明正方形的方法:例:如圖,已知:在四邊形ABFC中,∠ACB=90°,BC的垂直平分線EF交BC于點(diǎn)D,交AB于點(diǎn)E,且CF=AE。(1)試探究,四邊形BECF是什么特殊的四邊形;
(2)當(dāng)?A的大小滿足什么條件時(shí),四邊形BECF是正方形? 請(qǐng)回答并證明你的結(jié)論.例:如圖,在梯形ABCD中,AD∥BC,BC=4,點(diǎn)M是AD的中點(diǎn),△MBC是等邊三角形.(1)求證:梯形ABCD是等腰梯形;
(2)動(dòng)點(diǎn)P、Q分別在線段BC和MC上運(yùn)動(dòng),且∠MPQ?60?保持不變.設(shè)PC?x,MQ?y,求
y與x的函數(shù)關(guān)系式;
C
(3)在(2)中當(dāng)y取最小值時(shí),判斷△PQC的形狀,并說(shuō)明理由.
A
M
D
60°
B
P
C
圓中計(jì)算與相關(guān)證明
說(shuō)明:關(guān)于圓的計(jì)算,若出現(xiàn)直徑,要聯(lián)想到:直徑所對(duì)的圓周角是直角;
若出現(xiàn)切線,要連接圓心和切點(diǎn),就出現(xiàn)直角;
如弦長(zhǎng),聯(lián)想到垂徑定理(垂直,平分弦,構(gòu)建直角三角形)
例:如圖,AB是半圓O上的直徑,E是 ⌒BC的中點(diǎn),OE交弦BC于點(diǎn)D,過(guò)點(diǎn)C作⊙O切線交OE的延長(zhǎng)線于
點(diǎn)F.已知BC=8,DE=2.⑴求⊙O的半徑;⑵求CF的長(zhǎng);⑶求tan∠BAD 的值。
說(shuō)明:證明圓的切線的辦法:(1)連半徑,證垂直;(2)作垂直,證半徑。例:如圖,點(diǎn)D在⊙O的直徑AB的延長(zhǎng)線上,點(diǎn)C在⊙O上,AC?CD,?D?30°,(1)求證:CD是⊙O的切線;(2)若⊙O的半徑為3,求弧BC的長(zhǎng).(結(jié)果保留π)
例:如圖,在Rt△ABC中∠ABC=90°,斜邊AC的垂直平分線交BC與D點(diǎn),交AC與E點(diǎn),連接BE。(1)若BE是△DEC的外接圓的切線,求∠C的大???(2)當(dāng)AB=1,BC=
2,求△DEC外接圓的半徑。
A
B
O B
如圖,⊙O的直徑AB=4,C、D為圓周上兩點(diǎn),且四邊形OBCD是菱形,過(guò)點(diǎn)D的直線EF∥AC,交BA、BC的延長(zhǎng)線于點(diǎn)E、F.
(1)求證:EF是⊙O的切線;(2)求DE的長(zhǎng).
說(shuō)明:出現(xiàn)三角函數(shù)值,必須在直角三角形中,或作垂直或找出相等的角,該角在直角三角形中。如圖,等腰三角形ABC中,AC=BC=6,AB=8.以BC為直徑作⊙O交AB于點(diǎn)D,交AC于點(diǎn)G,DF⊥AC,垂足為F,交CB的延長(zhǎng)線于點(diǎn)E.(1)求證:直線EF是⊙O的切線;(2)求sin∠E的值.
如圖,AB是⊙O的直徑,BD是⊙O的弦,延長(zhǎng)BD到點(diǎn)C,使DC=BD,連接AC,過(guò)D作DE⊥AC,垂足為E.
(1)求證:AB=AC;(2)若⊙O的半徑為4,∠BAC=60o,求DE的長(zhǎng).
C
F
B
第二篇:中考幾何證明題集錦(精選)
幾何證明題集錦
1、如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD、等邊△ABE.已知∠BAC=30o,EF⊥AB,垂足為F,連結(jié)DF.
(1)試說(shuō)明AC=EF;(2)求證:四邊形ADFE是平行四邊形.(10分)
E2、已知,如圖,在正方形ABCD中,點(diǎn)E、F分別在AB上和AD的延
長(zhǎng)線上,且BE=DF,連接EF,G為EF的中點(diǎn).求證:⑴CE=CF;
⑵DG垂直平分AC.EB3、在△ABC中,AC=BC,?ACB?90?,點(diǎn)D為AC的中點(diǎn).(1)如圖1,E為線段DC上任意一點(diǎn),將線段DE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°得到線段DF,連結(jié)CF,過(guò)點(diǎn)F作FH于點(diǎn)H.判斷FH與FC的數(shù)量關(guān)系并加以證明.
(2)如圖2,若E為線段DC的延長(zhǎng)線上任意一點(diǎn),(1)中的其他條件不變,你在(1)中得出的結(jié)論是否發(fā)生改變,直接寫(xiě)出你的結(jié)論,不必證明.(12分)
A
A
?FC,交直線AB
F
DE
F
D
C
C
圖
1E
圖
2B
H4、如圖,四邊形ABCD是正方形,△ABE是等邊三角形,M為對(duì)角線BD(不含B點(diǎn))上任意一點(diǎn),將BM繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到BN,連接EN、AM、CM.⑴ 求證:△AMB≌△ENB;
⑵ ①當(dāng)M點(diǎn)在何處時(shí),AM+CM的值最?。虎诋?dāng)M點(diǎn)在何處時(shí),AM+BM+CM的值最小,并說(shuō)明理由; ⑶ 當(dāng)AM+BM+CM的最小值為分
BC
3?1時(shí),求正方形的邊長(zhǎng).(14
AD
第三篇:中考數(shù)學(xué)幾何證明題
中考數(shù)學(xué)幾何證明題
在?ABCD中,∠BAD的平分線交直線BC于點(diǎn)E,交直線DC于點(diǎn)F.(1)在圖1中證明CE=CF;
(2)若∠ABC=90°,G是EF的中點(diǎn)(如圖2),直接寫(xiě)出∠BDG的度數(shù);
第一個(gè)問(wèn)我會(huì),求第二個(gè)問(wèn)。需要過(guò)程,快呀!
連接GC、BG
∵四邊形ABCD為平行四邊形,∠ABC=90°
∴四邊形ABCD為矩形
∵AF平分∠BAD
∴∠DAF=∠BAF=45°
∵∠DCB=90°,DF∥AB
∴∠DFA=45°,∠ECF=90°
∴△ECF為等腰Rt△
∵G為EF中點(diǎn)
∴EG=CG=FG
∵△ABE為等腰Rt△,AB=DC
∴BE=DC
∵∠CEF=∠GCF=45°→∠BEG=∠DCG=135°
∴△BEG≌△DCG
∴BG=DG
∵CG⊥EF→∠DGC+∠DGB=90°
又∵∠DGC=∠BGE
∴∠BGE+∠DGB=90°
∴△DGB為等腰Rt△
∴∠BDG=45°
分析已知、求證與圖形,探索證明的思路。
對(duì)于證明題,有三種思考方式:
(1)正向思維。對(duì)于一般簡(jiǎn)單的題目,我們正向思考,輕而易舉可以做出,這里就不詳細(xì)講述了。
(2)逆向思維。顧名思義,就是從相反的方向思考問(wèn)題。運(yùn)用逆向思維解題,能使學(xué)生從不同角度,不同方向思考問(wèn)題,探索解題方法,從而拓寬學(xué)生的解題思路。這種方法是推薦學(xué)生一定要掌握的。在初中數(shù)學(xué)中,逆向思維是非常重要的思維方式,在證明題中體現(xiàn)的更加明顯,數(shù)學(xué)這門學(xué)科知識(shí)點(diǎn)很少,關(guān)鍵是怎樣運(yùn)用,對(duì)于初中幾何證明題,最好用的方法就是用逆向思維法。如果你已經(jīng)上初三了,幾何學(xué)的不好,做題沒(méi)有思路,那你一定要注意了:從現(xiàn)在開(kāi)始,總結(jié)做題方法。同學(xué)們認(rèn)真讀完一道題的題干后,不知道從何入手,建議你從結(jié)論出發(fā)。例如:可以有這樣的思考過(guò)程:要證明某兩條邊相等,那么結(jié)合圖形可以看出,只要證出某兩個(gè)三角形相等即可;要證三角形全等,結(jié)合所給的條件,看還缺少什么條件需要證明,證明這個(gè)條件又需要怎樣做輔助線,這樣思考下去……這樣我們就找到了解題的思路,然后把過(guò)程正著寫(xiě)出來(lái)就可以了。這是非常好用的方法,同學(xué)們一定要試一試。
(3)正逆結(jié)合。對(duì)于從結(jié)論很難分析出思路的題目,同學(xué)們可以結(jié)合結(jié)論和已知條件認(rèn)真的分析,初中數(shù)學(xué)中,一般所給的已知條件都是解題過(guò)程中要用到的,所以可以從已知條件中尋找思路,比如給我們?nèi)切文尺呏悬c(diǎn),我們就要想到是否要連出中位線,或者是否要用到中點(diǎn)倍長(zhǎng)法。給我們梯形,我們就要想到是否要做高,或平移腰,或平移對(duì)角線,或補(bǔ)形等等。正逆結(jié)合,戰(zhàn)無(wú)不勝。
第四篇:2012中考幾何證明題集訓(xùn)
2012中考幾何證明題集訓(xùn)
1、如圖,AB是⊙O的直徑,CB是弦,OD⊥CB于E,(1)請(qǐng)寫(xiě)出兩個(gè)不同類型的正確結(jié)論;
(2)若CB=8,ED=2,求⊙O的半徑。
B
D2、如圖,AB是⊙O的直徑,BC是⊙O的切線,切點(diǎn)為點(diǎn)B,點(diǎn)D是⊙O上的一點(diǎn),且AD∥OC。求證:AD·BC=OB·BD
C
BA3、如圖,AB是⊙O的直徑,AD是弦,∠DAB=22.5°,延長(zhǎng)AB到點(diǎn)C,使得∠ACD=45°
(1)求證:CD是⊙O的切線;
(2)若AB=22,求BC的長(zhǎng)
交⊙O于D,連結(jié)AC A4、已知:如圖,以Rt△ABC的直角邊AB為直徑的半圓O,與斜邊AC交于D,E是BC邊上的中點(diǎn),連接DE,求證:DE與半圓O相切。
5、如圖,已知CD是△ABC中AB邊上的高,以CD為直徑的⊙O分別交CA、CB于點(diǎn)E、F,點(diǎn)G是AD的中點(diǎn).
求證:GE是⊙O的切線。
6、已知:如圖△ABC內(nèi)接于⊙O,OH⊥AC于H,過(guò)A點(diǎn)的切線與OC的延長(zhǎng)線交于點(diǎn)D,∠B= 30°,.請(qǐng)求出:
(1)∠AOC的度數(shù);(2)劣弧AC的長(zhǎng)(結(jié)果保留π);(3)線段AD的長(zhǎng)(結(jié)果保留根號(hào)).7、如圖,在平面直角坐標(biāo)系中,⊙M與x軸交于A、B兩點(diǎn),AC是⊙M的直徑,過(guò)點(diǎn)C的直線交x軸于點(diǎn)D,連
接BC,已知點(diǎn)M的坐標(biāo)為(0),直線CD的函數(shù)解析式為y=+5. ⑴求點(diǎn)D的坐標(biāo)和BC的長(zhǎng);⑵求點(diǎn)C的坐標(biāo)和⊙M的半徑;⑶求證:CD是⊙M的切線.
8、如圖(1),AB是⊙O的直徑,AC是弦,直線EF和⊙O相切于點(diǎn)C,AD⊥EF,垂足為D。(1)求證:∠DAC=∠BAC;
(2)若把直線EF向上平行移動(dòng),如圖(2),EF交⊙O于G、C兩點(diǎn),若題中的其他條件不變,這是與∠DAC相等的角是哪一個(gè)?為什么?
D
(2)
(1)
9、(1)如圖1,已知矩形ABCD中,點(diǎn)E是BC上的一動(dòng)點(diǎn),過(guò)點(diǎn)E作EF⊥BD于點(diǎn)F,EG⊥AC于點(diǎn)G,CH⊥BD于
點(diǎn)H,試證明CH=EF+EG;(2)若點(diǎn)E在BC的延長(zhǎng)線上,如圖2,過(guò)點(diǎn)E作EF⊥BD于點(diǎn)F,EG⊥AC的延長(zhǎng)線于點(diǎn)G,CH
⊥BD于點(diǎn)H,則
EF、EG、CH三者之間具有怎樣的數(shù)量關(guān)系,直接寫(xiě)出你的猜想;
(3)如圖3,BD是正方形ABCD的對(duì)角線,L在BD上,且BL=BC, 連結(jié)CL,點(diǎn)E是CL上任一點(diǎn), EF⊥BD于點(diǎn)F,EG⊥BC于點(diǎn)G,猜想EF、EG、BD之間具有怎樣的數(shù)量關(guān)系,直接寫(xiě)出你的猜想;(4)觀察圖
1、圖
2、圖3的特性,請(qǐng)你根據(jù)這一特性構(gòu)造一個(gè)圖形,使它仍然具有EF、EG、CH這樣的線段,并滿足(1)或(2)的結(jié)論,寫(xiě)出相關(guān)題設(shè)的條件和結(jié)論.圖
1D
D圖
3C10、如圖,△ABC是等邊三角形,F(xiàn)是AC的中點(diǎn),D在線段BC上,連接DF,以DF為邊在DF的右側(cè)作等邊△DFE,ED的延長(zhǎng)線交AB于H,連接EC,則以下結(jié)論:①∠AHE+∠AFD=180°;②AF=B,C重合)運(yùn)動(dòng),其他條件不變時(shí)
1BC?ECDC
2BC;③當(dāng)D在線段BC上(不與
BHBD
是定值;④當(dāng)D在線段BC上(不與B,C重合)運(yùn)動(dòng),其他條件不變時(shí)
是定值;
A
(1)其中正確的是-------------------;(2)對(duì)于(1)中的結(jié)論加以說(shuō)明;
F
HB
G
D
E
C11、如圖12,在△ABC中,D為BC的中點(diǎn),點(diǎn)E、F分別在邊AC、AB上,并且∠ABE=∠ACF,BE、CF交于點(diǎn)O.過(guò)點(diǎn)O作OP⊥AC,OQ⊥AB,P、Q為垂足.求證:DP=DQ.
12、如圖。,BD是△ABC的內(nèi)角平分線,CE是△ABC的外角平分線,過(guò)點(diǎn)A作AF⊥BD,AG⊥CE,垂足分別為F、G。
探究:線段FG的長(zhǎng)與△ABC三邊的關(guān)系,并加以證明。
說(shuō)明:⑴如果你經(jīng)歷反復(fù)探索,沒(méi)有找到解決問(wèn)題的方法,請(qǐng)你把探索過(guò)程中的某種思路寫(xiě)出來(lái)(要求至少寫(xiě)
3步);⑵在你經(jīng)歷說(shuō)明⑴的過(guò)程之后,可以從下列①、②中選取一個(gè)補(bǔ)充或更換已知條件,完成你的證明。
注意:選?、偻瓿勺C明得10分;選?、谕瓿勺C明得7分。
①可畫(huà)出將△ADF沿BD折疊后的圖形;
②將CE變?yōu)椤鰽BC的內(nèi)角平分線。(如圖2)
附加題:探究BD、CE滿足什么條件時(shí),線段FG的長(zhǎng)與△ABC的周長(zhǎng)存在一定的數(shù)量關(guān)系,并給出證明。
13、設(shè)點(diǎn)E是平行四邊形ABCD的邊AB的中點(diǎn),F(xiàn)是BC邊上一點(diǎn),線段DE和AF相交于點(diǎn)P,點(diǎn)Q在線段DE上,且AQ∥PC.(1)證明:PC=2AQ.
(2)當(dāng)點(diǎn)F為BC的中點(diǎn)時(shí),試比較△PFC和梯形APCQ面積的大小關(guān)系,并對(duì)你的結(jié)論加以證明.
14、已知△ABC中,AB=AC=3,∠BAC=90°,點(diǎn)D為BC上一點(diǎn),把一個(gè)足夠大的直角三角板的直角頂點(diǎn)放在D處.
(1)如圖①,若BD=CD,將三角板繞點(diǎn)D逆時(shí)針旋轉(zhuǎn),兩條直角邊分別交AB、AC于點(diǎn)E、點(diǎn)F,求出重疊部分AEDF的面積(直接寫(xiě)出結(jié)果).(2)如圖②,若BD=CD,將三角板繞點(diǎn)D逆時(shí)針旋轉(zhuǎn),使一條直角邊交AB于點(diǎn)E、另一條直角邊交AB的延長(zhǎng)線于點(diǎn)F,設(shè)AE=x,重疊部分的面積為y,求出y與x的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍.(3)若BD=2CD,將三角板繞點(diǎn)D逆時(shí)針旋轉(zhuǎn),使一條直角邊交AC于點(diǎn)F、另一條直角邊交射線AB于點(diǎn)E.設(shè)CF=x(x>1),重疊部分的面積為y,求出y與x的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍.
15、如圖,△ABC中,∠BAC=90°,AD⊥BC,E為CB延長(zhǎng)線上一點(diǎn),且∠EAB=∠BAD,設(shè)DC=kBD,試探究EC與EA的數(shù)量關(guān)系。
16、如圖,△ABC中,∠BAC=90°,AD⊥BC,DE⊥AB,DF⊥AC,若AB=kAC,試探究BE與CF的數(shù)量關(guān)系。
17、如圖,在△ABC和△PQD中,AC=kBC,DP=kDQ,∠C=∠PDQ,D、E分別是AB、AC的中點(diǎn),點(diǎn)P在直線BC上,連接EQ交PC于點(diǎn)H。猜想線段EH與AC的數(shù)量關(guān)系,并證明你的猜想,若證明有困難,則可選k=1證明之。
18、在△ABC中,O是AC上一點(diǎn),P、Q分別是AB、BC上一點(diǎn),∠B=45°,∠POQ=135°,BC=kAB,OC=mAO。試說(shuō)明OP與OQ是數(shù)量關(guān)系,選擇條件:(1)m=1,(2)m=k=1。
19、如圖,∠BAC=90°,AD⊥BC,DE⊥AB, AB=kAC,探究BE與AE是數(shù)量關(guān)系。
(1)如圖1所示,在四邊形ABCD中,AC=BD,AC與BD相交于點(diǎn)O,E、F分別是AD、BC的中點(diǎn),聯(lián)結(jié)EF,分別交AC、BD于點(diǎn)M、N,試判斷△OMN的形狀,并加以證明;
(2)如圖2,在四邊形ABCD中,若AB?CD,E、F分別是AD、BC的中點(diǎn),聯(lián)結(jié)FE并延長(zhǎng),分別與BA、CD的延長(zhǎng)線交于點(diǎn)M、N,請(qǐng)?jiān)趫D2中畫(huà)圖并觀察,圖中是否有相等的角,若有,請(qǐng)直接寫(xiě)出結(jié)論:;
(3)如圖3,在△ABC中,AC?AB,點(diǎn)D在AC上,AB?CD,E、F分別是AD、BC的中點(diǎn),聯(lián)結(jié)FE并延長(zhǎng),與BA的延長(zhǎng)線交于點(diǎn)M,若?FEC?45?,判斷點(diǎn)M與以AD為直徑的圓的位置關(guān)系,并簡(jiǎn)要說(shuō)明理由.B
F
C
B
F
A
ME
D圖 1圖2圖3
第五篇:中考數(shù)學(xué)經(jīng)典幾何證明題
2011年中考數(shù)學(xué)經(jīng)典幾何證明題
(一)1.(1)如圖1所示,在四邊形ABCD中,AC=BD,AC與BD相交于點(diǎn)O,E、F分別是AD、BC的中點(diǎn),聯(lián)結(jié)EF,分別交AC、BD于點(diǎn)M、N,試判斷△OMN的形狀,并加以證明;
(2)如圖2,在四邊形ABCD中,若AB?CD,E、F分別是AD、BC的中點(diǎn),聯(lián)結(jié)FE并延長(zhǎng),分別與BA、CD的延長(zhǎng)線交于點(diǎn)M、N,請(qǐng)?jiān)趫D2中畫(huà)圖并觀察,圖中是否有相等的角,若有,請(qǐng)直接寫(xiě)出結(jié)論:;
(3)如圖3,在△ABC中,AC?AB,點(diǎn)D在AC上,AB?CD,E、F分別是AD、BC的中點(diǎn),聯(lián)結(jié)FE并延長(zhǎng),與BA的延長(zhǎng)線交于點(diǎn)M,若?FEC?45?,判斷點(diǎn)M與以AD為直徑的圓的位置關(guān)系,并簡(jiǎn)要說(shuō)明理由.B
A
ME
DB
(4)觀察圖
1、圖
2、圖3的特性,請(qǐng)你根據(jù)這一特性構(gòu)造一個(gè)圖形,使它仍然具有EF、EG、CH這樣的線
段,并滿足(1)或(2)的結(jié)論,寫(xiě)出相關(guān)題設(shè)的條件和結(jié)論.3.如圖,△ABC是等邊三角形,F(xiàn)是AC的中點(diǎn),D在線段BC上,連接DF,以DF為邊在DF的右側(cè)作等邊△DFE,ED的延長(zhǎng)線交AB于H,連接EC,則以下結(jié)論:①∠AHE+∠AFD=180°;②AF=在線段BC上(不與B,C重合)運(yùn)動(dòng),其他條件不變時(shí)
BC;③當(dāng)D
2BH
是定值;④當(dāng)D在線段BC上(不與B,C重合)BD
BC?EC
運(yùn)動(dòng),其他條件不變時(shí)是定值;
DC
(1)其中正確的是-------------------;(2)對(duì)于(1)中的結(jié)論加以說(shuō)明;
F
C
F
圖 1圖2圖
32.(1)如圖1,已知矩形ABCD中,點(diǎn)E是BC上的一動(dòng)點(diǎn),過(guò)點(diǎn)E作EF⊥BD于點(diǎn)F,EG⊥AC于點(diǎn)G,CH⊥BD
于點(diǎn)H,試證明CH=EF+EG;
圖
1D
DC
(2)若點(diǎn)E在BC的延長(zhǎng)線上,如圖2,過(guò)點(diǎn)E作EF⊥BD于點(diǎn)F,EG⊥AC的延長(zhǎng)線于點(diǎn)G,CH⊥BD于點(diǎn)H,則EF、EG、CH三者之間具有怎樣的數(shù)量關(guān)系,直接寫(xiě)出你的猜想;
(3)如圖3,BD是正方形ABCD的對(duì)角線,L在BD上,且BL=BC, 連結(jié)CL,點(diǎn)E是CL上任一點(diǎn), EF⊥BD于
點(diǎn)F,EG⊥BC于點(diǎn)G,猜想EF、EG、BD之間具有怎樣的數(shù)量關(guān)系,直接寫(xiě)出你的猜想;
F
H
BCD
E
4.在△ABC中,AC=BC,?ACB?90?,點(diǎn)D為AC的中點(diǎn).
(1)如圖1,E為線段DC上任意一點(diǎn),將線段DE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°得到線段DF,連結(jié)CF,過(guò)點(diǎn)F作FH?FC,交直線AB于點(diǎn)H.判斷FH與FC的數(shù)量關(guān)系并加以證明.(2)如圖2,若E為線段DC的延長(zhǎng)線上任意一點(diǎn),(1)中的其他條件不變,你在(1)中得出的結(jié)論是否發(fā)生改變,直接寫(xiě)出你的結(jié)論,不必證明.
A
A
F
D F
D
E
C B
C
圖
1E
圖
2H
5.如圖12,在△ABC中,D為BC的中點(diǎn),點(diǎn)E、F分別在邊AC、AB上,并且∠ABE=∠ACF,BE、CF交于點(diǎn)O.過(guò)點(diǎn)O作OP⊥AC,OQ⊥AB,P、Q為垂足.求證:DP=DQ.
證明.
8.設(shè)點(diǎn)E是平行四邊形ABCD的邊AB的中點(diǎn),F(xiàn)是BC邊上一點(diǎn),線段DE和AF相交于點(diǎn)P,點(diǎn)Q在線段DE
上,且AQ∥PC.(1)證明:PC=2AQ.
(2)當(dāng)點(diǎn)F為BC的中點(diǎn)時(shí),試比較△PFC和梯形APCQ面積的大小關(guān)系,并對(duì)你的結(jié)論加以證明.
6.如圖。,BD是△ABC的內(nèi)角平分線,CE是△ABC的外角平分線,過(guò)點(diǎn)A作AF⊥BD,AG⊥CE,垂足分別為F、G。
探究:線段FG的長(zhǎng)與△ABC三邊的關(guān)系,并加以證明。
說(shuō)明:⑴如果你經(jīng)歷反復(fù)探索,沒(méi)有找到解決問(wèn)題的方法,請(qǐng)你把探索過(guò)程中的某種思路寫(xiě)出來(lái)(要求至少寫(xiě)3步);⑵在你經(jīng)歷說(shuō)明⑴的過(guò)程之后,可以從下列①、②中選取一個(gè)補(bǔ)充或更換已知條件,完成你的證明。注意:選?、偻瓿勺C明得10分;選?、谕瓿勺C明得7分。①可畫(huà)出將△ADF沿BD折疊后的圖形; ②將CE變?yōu)椤鰽BC的內(nèi)角平分線。(如圖2)
附加題:探究BD、CE滿足什么條件時(shí),線段FG的長(zhǎng)與△ABC的周長(zhǎng)存在一定的數(shù)量關(guān)系,并給出證明。
9.兩塊等腰直角三角板△ABC和△DEC如圖擺放,其中∠ACB =∠DCE = 90°,F(xiàn)是DE的中點(diǎn),H是AE的中點(diǎn),G是BD的中點(diǎn).
(1)如圖1,若點(diǎn)D、E分別在AC、BC的延長(zhǎng)線上,通過(guò)觀察和測(cè)量,猜想FH和FG的數(shù)量關(guān)系為_(kāi)______和位置關(guān)系為_(kāi)_____;
(2)如圖2,若將三角板△DEC繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)至ACE在一條直線上時(shí),其余條件均不變,則(1)中的猜想是否還成立,若成立,請(qǐng)證明,不成立請(qǐng)說(shuō)明理由;
(2)如圖3,將圖1中的△DEC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一個(gè)銳角,得到圖3,(1)中的猜想還成立嗎?直接寫(xiě)出結(jié)論,不用證明.CH
G
A圖3 圖1 圖
27.在四邊形ABCD中,對(duì)角線AC平分∠DAB.
(1)如圖①,當(dāng)∠DAB=120°,∠B=∠D=90°時(shí),求證:AB+AD=AC.
(2)如圖②,當(dāng)∠DAB=120°,∠B與∠D互補(bǔ)時(shí),線段AB、AD、AC有怎樣的數(shù)量關(guān)系?寫(xiě)出你的猜想,并給予證明.
(3)如圖③,當(dāng)∠DAB=90°,∠B與∠D互補(bǔ)時(shí),線段AB、AD、AC有怎樣的數(shù)量關(guān)系?寫(xiě)出你的猜想,并給予
10.已知△ABC中,AB=AC=3,∠BAC=90°,點(diǎn)D為BC上一點(diǎn),把一個(gè)足夠大的直角三角板的直角頂點(diǎn)放
在D處.
(1)如圖①,若BD=CD,將三角板繞點(diǎn)D逆時(shí)針旋轉(zhuǎn),兩條直角邊分別交AB、AC于點(diǎn)E、點(diǎn)F,求出重疊部分AEDF的面積(直接寫(xiě)出結(jié)果).
(2)如圖②,若BD=CD,將三角板繞點(diǎn)D逆時(shí)針旋轉(zhuǎn),使一條直角邊交AB于點(diǎn)E、另一條直角邊交AB的延長(zhǎng)線于點(diǎn)F,設(shè)AE=x,重疊部分的面積為y,求出y與x的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍.(3)若BD=2CD,將三角板繞點(diǎn)D逆時(shí)針旋轉(zhuǎn),使一條直角邊交AC于點(diǎn)F、另一條直角邊交射線AB于點(diǎn)E.設(shè)CF=x(x>1),重疊部分的面積為y,求出y與x的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍.
2、如圖,△ABC中,∠BAC=90°,AD⊥BC,DE⊥AB,DF⊥AC,若AB=kAC,試探究BE與CF的數(shù)量關(guān)系。
3、如圖,在△ABC和△PQD中,AC=kBC,DP=kDQ,∠C=∠PDQ,D、E分別是AB、AC的中點(diǎn),點(diǎn)P在直線BC上,連接EQ交PC于點(diǎn)H。猜想線段EH與AC的數(shù)量關(guān)系,并證明你的猜想,若證明有困難,則可選k=1證明之。
4、在△ABC中,O是AC上一點(diǎn),P、Q分別是AB、BC上一點(diǎn),∠B=45°,∠POQ=135°,BC=kAB,OC=mAO。試說(shuō)明OP與OQ是數(shù)量關(guān)系,選擇條件:(1)m=1,(2)m=k=1。
2011年中考幾何經(jīng)典證明題
(二)1、如圖,△ABC中,∠BAC=90°,AD⊥BC,E為CB延長(zhǎng)線上一點(diǎn),且∠EAB=∠BAD,設(shè)DC=kBD,試探究EC與EA的數(shù)量關(guān)系。
5、如圖,△ABC中,AD是BC邊上的中線,∠CAD=∠B,AC=kAB,E在AD延長(zhǎng)線上,∠CED=∠ADB,探究AE與AD的關(guān)系。
6、如圖,∠BAC=90°,AD⊥BC,DE⊥AB, AB=kAC,探究BE與AE是數(shù)量關(guān)系。