第一篇:幾何證明題練習(xí)
幾何證明題練習(xí)
1.如圖1,Rt△ABC中AB = AC,點(diǎn)D、E是線段AC上兩動(dòng)點(diǎn),且AD = EC,AM⊥BD,垂足為M,AM的延長(zhǎng)線交BC于點(diǎn)N,直線BD與直線NE相交于點(diǎn)F。試判斷△DEF的形狀,并加以證明。
說(shuō)明:⑴如果你經(jīng)歷反復(fù)探索,沒(méi)有找到解決問(wèn)題的方法,請(qǐng)你把探索過(guò)程中的某種思路寫出來(lái)(要求至少寫3步);⑵在你經(jīng)歷說(shuō)明⑴的過(guò)程之后,可以從下列①、②中選取一個(gè)補(bǔ)充或更換已知條件,完成你的證明。
注意:選取①完成證明得10分;選?、谕瓿勺C明得5分。
①畫出將△BAD沿BA方向平移BA長(zhǎng),然后順時(shí)針旋轉(zhuǎn)90°后圖形; ②點(diǎn)K在線段BD上,且四邊形AKNC為等腰梯形(AC∥KN,如圖2)。
附加題:如圖3,若點(diǎn)D、E是直線AC上兩動(dòng)點(diǎn),其他條件不變,試判斷△DEF的形狀,并說(shuō)明理由。
E
A
AM
AMD
D
F
E
F
A
F
K
C
AD
D
F
A
EEC
圖 16
C
N
B
圖 1
5B
MF
MF
圖 17
D
C
圖 17
圖 16圖 15
2.(1)如圖13-1,操作:把正方形CGEF的對(duì)角線 CE放在正方形ABCD的邊BC的延長(zhǎng)線上(CG>BC),取線段AE的中點(diǎn)M。
探究:線段MD、MF的關(guān)系,并加以證明。說(shuō)明:(1)如果你經(jīng)歷反復(fù)探索,沒(méi)有找到解決問(wèn)題 A 的方法,請(qǐng)你把探索過(guò)程中的某種思路寫出來(lái)(要求 至少寫3步);(2)在你經(jīng)歷說(shuō)明(1)的過(guò)程之后,可以從下列①、②、③中選取一個(gè)補(bǔ)充或更換已知條件,完成你的證明。
注意:選?、偻瓿勺C明得10分;選?、谕瓿勺C明得 7分;選?、弁瓿勺C明得5分。
① DM的延長(zhǎng)線交CE于點(diǎn)N,且AD=NE; A ② 將正方形CGEF繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)45°(如圖13-2),其他條件不變;③在②的條件下且CF=2AD。(2):將正方形CGEF繞點(diǎn)C旋轉(zhuǎn)任意角度后
(如圖13-
3),其他條件不變。探究:線段MD、MF的關(guān)系,并加以證明。
D
F
E
圖
13-2 D
圖13-
33.如圖1,在等腰梯形ABCD中,AD∥BC,E是AB的中點(diǎn),過(guò)點(diǎn)E作EF∥BC交CD于點(diǎn)F.AB?4,BC?6,∠B?60?.(1)求點(diǎn)E到BC的距離;(2)點(diǎn)P為線段EF上的一個(gè)動(dòng)點(diǎn),過(guò)P作PM?EF交BC于點(diǎn)M,過(guò)M作MN∥AB交折線ADC于點(diǎn)N,連結(jié)PN,設(shè)EP?x.MN的形狀是否發(fā)生改變?若不變,①當(dāng)點(diǎn)N在線段AD上時(shí)(如圖2),△P求出△PMN的周長(zhǎng);若改變,請(qǐng)說(shuō)明理由;
②當(dāng)點(diǎn)N在線段DC上時(shí)(如圖3),是否存在點(diǎn)P,使△PMN為等腰三角形?若存在,請(qǐng)求出所有滿足要求的x的值;若不存在,請(qǐng)說(shuō)明理由.N
A A A D D D B
圖1 A B
D F C
B
F C
B
M
圖
2F C B
N
F
C
M 圖3 D F C
(第3題)A
圖5(備用)圖4(備用)
4.如圖4,△P1OA1,△P2A1A2,△P3A2A3……△PnAn-1An都是等腰直角三角形,點(diǎn)P1、P2、P3……
Pn都在函數(shù)y?
(x > 0)的圖象上,斜邊OA1、A1A2、A2A3……An-1An都在x軸上。x
⑴求A1、A2點(diǎn)的坐標(biāo);
⑵猜想An點(diǎn)的坐標(biāo)(直接寫出結(jié)果即可)
圖 1
55.如圖5-1,以△ABC的邊AB、AC為直角邊向外作等腰直角△ABE和△ACD,M是BC的中點(diǎn),請(qǐng)你探究線段DE與AM之間的關(guān)系。
說(shuō)明:⑴如果你經(jīng)歷反復(fù)探索,沒(méi)有找到解決問(wèn)題的方法,請(qǐng)你把探索過(guò)程中的某種思路寫出來(lái)(要求至少寫
3步);⑵在你經(jīng)歷說(shuō)明⑴的過(guò)程之后,可以從下列①、②中選取一個(gè)補(bǔ)充或更換已知條件,完成你的證明。
注意:選?、偻瓿勺C明得10分;選?、谕瓿勺C明得5分。①畫出將△ACM繞某一點(diǎn)順時(shí)針旋轉(zhuǎn)180°后的圖形; ②∠BAC = 90°(如圖17)
附加題:如圖5-3,若以△ABC的邊AB、AC為直角邊,向內(nèi)作等腰直角△ABE和△ACD,其它條件不變,試探究線段DE與AM之間的關(guān)系。
E
E
AM圖 17
C
D
圖 18
EC
D
A
D
M圖 16
6.O點(diǎn)是△ABC所在平面內(nèi)一動(dòng)點(diǎn),連結(jié)OB、OC,并將AB、OB、OC、AC的中點(diǎn)D、E、F、G依次連結(jié),如果DEFG能構(gòu)成四邊形.
(1)如圖,當(dāng)O點(diǎn)在△ABC內(nèi)時(shí),求證四邊形DEFG是平行四邊形.(2)當(dāng)O點(diǎn)移動(dòng)到△ABC外時(shí),(1)的結(jié)論是否成立?畫出圖形并說(shuō)明理由.(3)若四邊形DEFG為矩形,O點(diǎn)所在位置應(yīng)滿足什么條件?試說(shuō)明理由.
A
B
7.如圖,已知三角形ABD為⊙O內(nèi)接正三角形,C為弧BD上任意一點(diǎn),已知AC=a,求S四邊形ABCD。
D到直線l的距B、C、8.如圖,已知平行四邊形ABCD及四邊形外一直線l,四個(gè)頂點(diǎn)A、離分別為a、b、c、d.
(1)觀察圖形,猜想得出a、b、c、d滿足怎樣的關(guān)系式?證明你的結(jié)論.(2)現(xiàn)將l向上平移,你得到的結(jié)論還一定成立嗎?請(qǐng)分情況寫出你的結(jié)論.
9.10.已知:在Rt△ABC中,AB=BC,在Rt△ADE中,AD=DE,連結(jié)EC,取EC的中點(diǎn)M,連結(jié)DM和BM.
(1)若點(diǎn)D在邊AC上,點(diǎn)E在邊AB上且與點(diǎn)B不重合,如圖①,探索BM、DM的關(guān)系并給予證明;
(2)如果將圖①中的△ADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)小于45°的角,如圖②,那么(1)中的結(jié)論是否仍成立?如果不成立,請(qǐng)舉出反例;如果成立,請(qǐng)給予證明.
B
A
D C
A
圖②
C
圖①
11.如圖(1)在Rt△ABC中,∠BAC=90°,AB = AC,點(diǎn)D、E分別為線段BC上兩動(dòng)點(diǎn),若∠DAE=45°.(1)猜想BD、DE、EC三條線段之間存在的數(shù)量關(guān)系式,并對(duì)你的猜想給予證明;(2)當(dāng)動(dòng)點(diǎn)E在線段BC上,動(dòng)點(diǎn)D運(yùn)動(dòng)在線段CB延長(zhǎng)線上時(shí),如圖(2),其它條件不變,(1)中探究的結(jié)論是否發(fā)生改變?請(qǐng)說(shuō)明你的猜想并給予證明.?ABC?60?,12.(北京市石景山中考模擬試題)(1)如圖1,四邊形ABCD中,AB?CB,?ADC?120?,請(qǐng)你 猜想線段DA、DC之和與線段BD的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)如圖2,四邊形ABCD中,AB?BC,?ABC?60?,若點(diǎn)P為四邊形ABCD內(nèi)一點(diǎn),且?APD?120?,請(qǐng)你猜想線段PA、PD、PC之和與線段BD的數(shù)量關(guān)系,并證明你的結(jié)論.
第12題圖1 圖2 13.如圖,將一三角板放在邊長(zhǎng)為1的正方形ABCD上,并使它的直角頂點(diǎn)P在對(duì)角線AC上滑動(dòng),直角的一邊始終經(jīng)過(guò)點(diǎn)B,另一邊與射線DC
相交于Q.探究:設(shè)A、P兩點(diǎn)間的距離為x.(1)當(dāng)點(diǎn)Q在邊CD上時(shí),線段PQ與PB之間有怎樣的 數(shù)量關(guān)系?試證明你的猜想;
(2)當(dāng)點(diǎn)Q在邊CD上時(shí),設(shè)四邊形PBCQ的面積為y,求y與x之間的函數(shù)關(guān)系,并寫出函數(shù)自變量x的 取值范圍;
(3)當(dāng)點(diǎn)P在線段AC上滑動(dòng)時(shí),△PCQ是否可能成為等腰三角形?如果可能,指出所
有能使△PCQ成為等腰三角形的點(diǎn)Q的位置.并求出相應(yīng)的x值,如果不可能,試說(shuō)明理由..B
QC
A
P
D
第二篇:初一幾何證明題練習(xí)
初一下學(xué)期幾何證明題練習(xí)
1、如圖,∠B=∠C,AB∥EF,試說(shuō)明:∠BGF=∠C。(6
解:∵ ∠B=∠C
∴ AB∥CD()又∵ AB∥EF()
D
∴
∥)∴ ∠BGF=∠C()
2、如圖,在△ABC中,CD⊥AB于D,F(xiàn)G⊥AB于G,ED//BC,試說(shuō)明
∠1=∠2,以下是證明過(guò)程,請(qǐng)?zhí)羁眨海?分)解:∵CD⊥AB,F(xiàn)G⊥AB
∴∠CDB=∠=90°(垂直定義)
∴_____//_____(∴∠2=∠3(又∵DE//BC
∴∠1=∠2()
3、已知:如圖,∠1+∠2=180°,∴∠=∠3(試判斷AB、CD有何位置關(guān)系?并說(shuō)明理由。(8分)
4、如圖,AD是∠EAC的平分線,AD∥BC,∠B = 30°,你能算出∠EAD、∠
DAC、∠C的度數(shù)嗎?(7分)
A
EDC5、如圖,已知EF∥AD,∠1=∠2,∠BAC=70 o,求∠AGD。
解:∵EF∥AD(已知)
∴∠2=(又∵∠1=∠2(已知)∴∠1=∠3(等量替換)∴AB∥(o))
∴∠BAC+=180(o)
∵∠BAC=70(已知)∴∠AGD=°
6、如圖,已知∠BED=∠B+∠D,試說(shuō)明AB與CD的位置關(guān)系。
解:AB∥CD,理由如下:
過(guò)點(diǎn)E作∠BEF=∠B ∴AB∥EF()
∵∠BED=∠B+∠D(已知)且∠BED=∠BEF+∠FED ∴∠FED=∠D ∴CD∥EF(∴AB∥CD(7、如圖,AD是∠EAC的平分線,AD∥BC,∠B=30 o,求∠EAD、∠DAC、∠C的度數(shù)。(6分)
8、如圖,EB∥DC,∠C=∠E,請(qǐng)你說(shuō)出∠A=∠ADE的理由。(6分)))
9、已知,如圖,∠1=∠ABC=∠ADC,∠3=∠5,∠2=∠4,∠ABC+∠BCD=180°.將下列推理過(guò)程補(bǔ)充完整:(1)∵∠1=∠ABC(已知),∴AD∥______
(2)∵∠3=∠5(已知),∴AB∥______,(_______________________________)(3)∵∠ABC+∠BCD=180°(已知),∴_______∥________,(________________________________)
10、已知,如圖14,∠1=∠ABC=∠ADC,∠3=∠5,∠2=∠4,∠ABC+∠BCD=180°。(1)∵∠1=∠ABC(已知)
∴AD∥()(2)∵∠3=∠5(已知)
∴AB∥()(3)∵∠2=∠4(已知)
∴∥()(4)∵∠1=∠ADC(已知)
∴∥()(5)∵∠ABC+∠BCD=180°(已知)
∴∥()
11、如圖15,(1)∵∠(已知)
∴AC∥ED()
(2)∵∠2=(已知)∴AC∥ED()(3)∵∠A+=180°(已知)∴AB∥FD()(4)∵AB∥(已知)∴∠2+∠AED=180°()
(5)∵AC∥(已知)∴∠C=∠1()B
A 圖1
C
DD 圖1
5F
B
C12、(4分)已知:如圖15,AB⊥BC于B,CD⊥BC于C,∠1=∠2。求證:BE∥CF。
證明:∵AB⊥BC,CD⊥BC(已知)
∴∠1+∠3=90o,∠2+∠4=90o()∴∠1與∠3互余,∠2與∠4互余
又∵∠1=∠2()
∵∠3=∠4()∴BE∥CF()
13、(9分)已知:如圖16,AB∥CD,∠1=∠2,求證:∠B=∠D。
圖1
5證明:∵∠1=∠2(已知)
∴)∴∠BAD+∠B=)又∵AB∥CD(已知)
∴180o()∴∠B=∠D()
圖1614、在空格內(nèi)填上推理的理由
(1)如圖,已知AB//DE,∠B=∠E,求證:BC//EF。
證明:? AB//DE()
B
E
O
C F
∴ ∠B=()
又?∠B=∠E()
∴=(等量代換)
∴//()
(2)已知,如圖,∠1=120°,∠2=120°,求證:AB//CD。
證明:?∠1=120°,∠2=120°()∴∠1=∠2()
又?=()
∴∠1=∠3()
∴AB//CD()(3)已知,如圖,AB//CD,BC//AD,∠3=∠4。求證:∠1=∠
2證明:?AB//CD()
A3 C
D
A
B
∴=()
又? BC//AD()
∴=()
又?∠3=∠4()
∴∠1=∠2()
15、(1)如圖12,根據(jù)圖形填空:直線a、b被直線c所截(即直線c與直線a、b都相交),已知a∥b,若
∠1=120°,則∠2的度數(shù)=__________,若∠1=3∠2,則∠1的度數(shù)=___________;如圖13中,已知a∥b,且∠1+2∠2=1500,則∠1+∠2=_________0
c a
c
A
a
C
B G
E
圖1
4F D
(2)如圖14
2b
b
圖1
3圖12
∵∠B=∠______;∴AB∥CD(________________________); ∵∠DGF=______;∴CD∥EF(________________________); ∵AB∥EF;∴∠B+______=180°(________________________);(3)已知:如圖15,AB⊥BC,BC⊥CD且∠1=∠2,求證:BE∥CF。證明:∵AB⊥BC,BC⊥CD(已知)∴==90°()∵∠1=∠2(已知)∴BE∥CF()
(4)已知:如圖16,AC⊥BC,垂足為C,∠BCD是∠B的余角。求證:∠ACD=∠B。證明:∵AC⊥BC(已知)∴∠ACB=90°()∴∠BCD是∠DCA的余角
∵∠BCD是∠B的余角(已知)∴∠ACD=∠B()(5)已知,如圖17,BCE、AFE是直線,AB∥CD,∠1=∠2,∠3=∠4。求證:AD∥BE。
證明:∵AB∥CD(已知)∴∠4=∠()∵∠3=∠4(已知)∴∠3=()
∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF()=∴∠3=()∴AD∥BE()
16、已知,如圖,∠1=∠2,∠A=∠F。求證:∠C=∠D。證明:∵∠1=∠2(已知)
∠1=∠3()
∴∠2=∠()∴BD∥)∴∠4=∠C()又∵∠A=
∴AC∥)∴=∠D()∴∠C=∠D()
17、已知,如圖,∠1=∠2,CF⊥AB,DE⊥AB,求證:FG∥BC。
證明:∵CF⊥AB,DE⊥AB(已知)
∴∠BED=900,∠BFC=900()∴=()∴ED∥()∴=∠BCF()又∵∠1=∠2(已知)
∴∠2=()
∴FG∥BC()
圖15
E C D
D
圖16
A
D 4
C
圖17
E
18.如圖,已知AB//CD,AE//CF,求證:?BAE??DCF。
19.如圖,AB//CD,AE平分?BAD,CD與AE相交于F,?CFE??E。求證:
CBE
A
FD
AD//BC。
?
CM20.如圖,已知AB//CD,?B?40,CN是?BCE的平分線,CM?CN,求?B
A
D
F
B
C
E的度數(shù)。
A
B
N
M
C
D
E
第三篇:幾何證明題
幾何證明題
1.在三角形ABC中,BD,CE是邊AC,AB上的中點(diǎn),BD與CE相交于點(diǎn)O,BO與OD的長(zhǎng)度有什么關(guān)系?BC邊上的中線是否一定過(guò)點(diǎn)O?為什么?
答題要求:請(qǐng)寫出詳細(xì)的證明過(guò)程,越詳細(xì)越好.ED平行且等于1/2BC
取MN為BO,OC中點(diǎn)
則MN平行且等于1/2BC
得到ED平行且等于MN,則EDNM是平行四邊形
則OD=OM,又M為BO中點(diǎn),顯然BO=2OD
一定過(guò)
假設(shè)BC中線不經(jīng)過(guò)O點(diǎn),而與BD交與O'
同理可證AO'=2O'G
再可由平行四邊形定理得到O與O'重合所以必過(guò)O點(diǎn)
2.在直角梯形ABCD中,角B=角C=90度,AB=BC,M為BC邊上一點(diǎn)。且角DMC=45度
求證:AD=AM
(1)幾何證明題,首先畫圖
哎沒(méi)圖不好說(shuō)啊
就空說(shuō)吧你在紙上畫圖
先看已知條件,從已知條件得出直觀的結(jié)論.因?yàn)镸是BC邊上一點(diǎn),在三角形DMC中,角DMC=45度,角MCD=角C=90度,可以知道角MDC=45度,則三角形DMC是個(gè)等腰直角三角形,MC=CD.又AB=BC,M是BC邊上一點(diǎn),MC長(zhǎng)度小于BC,所以知道這個(gè)直角梯形是以CD為上底,AB為下底,圖形先畫對(duì)
接下來(lái)求證
要證AD=AM,從已知條件中得知,MC=CD,則作一條輔助線就可得證
連接AC
∵AB=BC,角B=90度∴三角形ABC是個(gè)等腰直角三角形
∴角BCA=45度
∴角DCA=角BCD-角BCA=45度=角BCA
所以三角形AMC≌三角形ADC(MC=CD,角DCA=角BCA,AC=AC——邊角邊)
所以AD=AM得證
(2)
延長(zhǎng)CD至F點(diǎn)~CF=AB連接AF~~因AB=BC~SO~ABCF是正方形~剩下的就容易了~只要證AFD~和ABM~是一樣的3角形就OK了~~哎~快10年沒(méi)碰幾何了~那些專業(yè)點(diǎn)的詞我都忘了~這題應(yīng)該是這樣吧~不知道有沒(méi)錯(cuò)
回答者:fenixkingyu-試用期一級(jí)2007-8-719:23
上樓的有兩處錯(cuò)誤:
1.描述錯(cuò)誤,ABCF不是四邊形,ABFC才是.2.按照條件并不能證明ABFC是正方形.注意:要證明四邊形是正方形,必須證明2個(gè)問(wèn)題:
1.該四邊形是矩形;2.該四邊形是菱形。
(3)
把圖畫出來(lái)就好解了。我是按自己畫的圖解的,樓主畫梯形下面是BA,上面是CD,然后在按我的文字添加輔助線就行了,度那個(gè)圓圈打不出來(lái),我就沒(méi)寫了。
證明:連接MD,AM,連接AC并交MD于E
因?yàn)榻荄MC=45,角C=90
所以三角形MCD為等邊直角三角形,既角CDM=45
又角B=90AB=BC
所以角CAB=45
由梯形上下兩邊平行,則內(nèi)對(duì)角相加為180度
因角CAB角DMB=45+45=90
所以角EDA角DAE=90
既AC垂直于MD
在等腰直角三角形CDM中則有ME=ED,且AC垂直于MD
所以AE是三角形AMD的中垂線
既AD=AM(等腰三角形的法則)。
第四篇:幾何證明題
幾何證明題集(七年級(jí)下冊(cè))
姓名:_________班級(jí):_______
一、互補(bǔ)”。
E
D
二、證明下列各題:
1、如圖,已知∠1=∠2,∠3=∠D,求證:DB//EC.E D
3ACB2、如圖,已知AD//BC,∠1=∠B,求證:AB//DE.AD BCE3、如圖,已知∠1+∠2=1800,求證:∠3=∠4.EC
A1 O
4B
D F4、如圖,已知DF//AC,∠C=∠D,求證:∠AMB=∠ENF.E DF
N
M
AC B5、如圖,在三角形ABC中,D、E、F分別為AB、AC、BC上的點(diǎn)且DE//BC、EF//AB,求證:∠ADE=∠EFC.C
EF
AB D6、如圖,已知EC、FD與直A線AB交于C、D兩點(diǎn)且∠1=∠2,1求證:CE//DF.CE
FD
2B7、如圖,已知∠ABC=∠ADC,BF和DE分別是∠ABC和∠ADC的平分線,AB//CD,求證:DE//BF.FDC
A E8、如圖,已知AC//DE,DC//EF,CD平分∠BCA,求證:EF平分∠BED.B
F
ED
AC9、如圖,AB⊥BF,CD⊥BF, ∠A=∠C,求證: ∠AEB=∠F.CFBDE10、如圖,AD⊥BC,EF⊥BC,∠1=∠2,求證:DG//AB.A
EGBCDF11、在三角形ABC中,AD⊥BC于D,G是AC上任一點(diǎn),GE⊥BC于E,GE的延長(zhǎng)線與BA的延長(zhǎng)線交于F,∠BAD=∠CAD,求證:∠AGF=∠F.F
A
G
BCDE12、如圖,∠1=∠2,∠3=∠4,∠B=∠5,求證:CE//DF.F
E 4G1AD 5 2B13、如圖,AB//CD,求證:∠BCD=∠B+∠D.A
CBED14、如上圖,已知∠BCD=∠B+∠D,求證:AB//CD.15、如圖,AB//CD,求證:∠BCD=∠B-∠D.BA
ED
C16、如上圖,已知∠BCD=∠B-∠D,求證:AB//CD.17、如圖,AB//CD,求證:∠B+∠D+∠BED=3600.BA
E
DC18、如上圖,已知∠B+∠D+∠BED=3600,求證:AB//CD.
第五篇:初二(下)幾何證明題練習(xí)(一)
初二(下)幾何證明題練習(xí)
(一)1.正方形ABCD中,∠EAF=45°(1)探究BP、PQ、DQ關(guān)系;(2)探究DE、BP、AB關(guān)系;
(3)連接AC,探究AC、CM、CN的關(guān)系;(4)若EH∥BC,探究 EH、BF、DE的關(guān)系。
2.正方形ABCD,CF平分∠BCD外角,AE⊥EF。
(1)當(dāng)點(diǎn)E在BC上,探究則AE與EF的數(shù)量關(guān)系。
(2)當(dāng)點(diǎn)E在BC的延長(zhǎng)線上時(shí),(1)中的結(jié)論是否成立?說(shuō)明理由;
(3)若把“正方形ABCD”改為“梯形ABCD中,∠D=∠BCD=90°,AD=CF= 1BC”,其它條件不變,探究AB,F(xiàn)C,EC間的數(shù)量關(guān)系。
3.正方形ABCD,∠FAE=90°,(1)若點(diǎn)E在線段BC上,探究CE,CF,AC間的數(shù)量關(guān)系。
(2)當(dāng)點(diǎn)E在線段BC的延長(zhǎng)線上,(1)中的結(jié)論是否成立?說(shuō)明理由:
4.直角梯形ABCD,AD=AB,∠A=∠D=90°,F(xiàn)G⊥BE,MN∥AD,(1)若點(diǎn)E在線段AD上,探究AE,MF,NG之間的數(shù)量關(guān)系
(2)當(dāng)點(diǎn)E在線段AD的延長(zhǎng)線上,(1)中的結(jié)論是否成立?說(shuō)明理由;
D
F
B B