欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      2014高考數(shù)學(xué)備考學(xué)案(文科)能力提升第79課推理與證明

      時間:2019-05-13 08:40:54下載本文作者:會員上傳
      簡介:寫寫幫文庫小編為你整理了多篇相關(guān)的《2014高考數(shù)學(xué)備考學(xué)案(文科)能力提升第79課推理與證明》,但愿對你工作學(xué)習(xí)有幫助,當然你在寫寫幫文庫還可以找到更多《2014高考數(shù)學(xué)備考學(xué)案(文科)能力提升第79課推理與證明》。

      第一篇:2014高考數(shù)學(xué)備考學(xué)案(文科)能力提升第79課推理與證明

      第十四章 推理與證明

      第79課推理與證明

      1.(2012江西高考)觀察下列事實x?y?1的不同整數(shù)解(x,y)的個數(shù)為4,x?y?2的不同整數(shù)解(x,y)的個數(shù)為8,x?y?3的不同整數(shù)解(x,y)的個數(shù)為12,…,則x?y?20的不同整數(shù)解(x,y)的個數(shù)為()

      A.76B.80C.86D.92

      【答案】B

      【解析】個數(shù)為首項為4,公差為4的等差數(shù)列,∴an?4?4(n?1)?4n,a20?80,選B.

      2.(2011江西高考)觀察下列各式:則7?49,7?343,7?2401,…,則7

      A.01B.43C.07D.49

      【答案】B

      【解析】設(shè)f(n)?7(n?N,n?2),∵f?2??49,f?3??343,f?4??2401,f?5??16807

      ∴當n?4k?1,k?N時,7末兩位數(shù)字為07;

      當n?4k?2,k?N時,7末兩位數(shù)字為49;

      當n?4k?3,k?N時,7末兩位數(shù)字為43;

      當n?4k?4,k?N時,7末兩位數(shù)字為01;

      ∵2011?4?502?3,故選B.

      3.(2012房山一模)設(shè)函數(shù)f0(x)?1?x,f1(x)?|f0(x)?則方程f1(x)?

      【答案】4,222342011的末兩位數(shù)字為()n*n*n*n*n11(n?1,n?N),|,fn(x)?|fn?1(x)?n|,2211n有___個實數(shù)根,方程fn(x)?()有___個實數(shù)根.33n?1 2【解析】f1(x)?|1?x?11115|?|x2?|?,∴x2?或x2?,有4個解. 22366

      234∵可推出n?1,2,3???,根個數(shù)分別為2,2,2,∴通過類比得出fn(x)?()有2

      13nn?1個實數(shù)根.

      4.(2012湖北高考)回文數(shù)是指從左到右讀與從右到左讀都一樣的正整數(shù).如22,121,3443,94249等.顯然2位回文數(shù)有9個:11,22,33,…,99.3位回文數(shù)有90個:101,111,121,…,191,202,…,999.則

      (1)4位回文數(shù)有個;

      (2)2n?1(n?N)位回文數(shù)有

      【答案】90,9?10

      【解析】(1)4位回文數(shù)只用排列前面兩位數(shù)字,后面數(shù)字就可以確定,但是第一位不能為0,有9(1~9)種情況,第二位有10(0~9)種情況,∴4位回文數(shù)有9?10?90種.

      5.(2012湖北高考)傳說古希臘畢達哥拉斯學(xué)派的數(shù)學(xué)家經(jīng)常在沙灘上面畫點或用小石子表示數(shù).他們研究過如圖所示的三角形數(shù):

      131,3,6,10an},將可被5整除的三角形數(shù)按從小到大的順序組成一個新數(shù)列將三角形數(shù),…記為數(shù)列{106n*

      {bn},可以推測:

      (1)b2012是數(shù)列{an}中的第______項;

      (2)b2k?1? ______.(用k表示)

      【答案】(1)5030;(2)5k?5k?1?

      【解析】由以上規(guī)律可知三角形數(shù)1,3,6,10,…,的一個通項公式為an?

      寫出其若干項有:1,3,6,10,15,21,28,36,45,55,66,78,91,105,110,發(fā)現(xiàn)其中能被5整除的為10,15,45,55,105,110,故b1?a4,b2?a5,b3?a9,b4?a10,b5?a14,b6?a15. ∴可猜想:b2k?a5k?n(n?1),25k(5k?1)(k為正整數(shù)),2

      (5k?1)(5k?1?1)5k(5k?1),b2k?1?a5k?1??22

      故b2012?a2?1006?a5?1006?a5030,即b2012是數(shù)列{an}中的第5030項.

      【點評】本題考查歸納推理,猜想的能力.歸納推理題型重在猜想,不一定要證明,但猜想需要有一定的經(jīng)驗與能力,不能憑空猜想.來年需注意類比推理以及創(chuàng)新性問題的考查.

      (2)由上面多組數(shù)據(jù)研究發(fā)現(xiàn),2n?1位回文數(shù)和2n?2位回文數(shù)的個數(shù)相同,∴可以算出2n?2位回文數(shù)的個數(shù).

      2n?2位回文數(shù)只用看前n?1位的排列情況,第一位不能為0,有9種情況,后面n項每項有10種情況,∴個數(shù)為9?10.

      n

      6.證明 :已知a?0,1?a??2.a

      【證明】

      1a??2,a

      12?a?? a

      ∵a?0,故只要證1222)?(a?,a

      即a?21121?4?(a?)?a?)?2,a2aa

      1112?4?a??a?)?4,22aaa

      即a?2從而只要證只要證4(a?

      即a?221?a?),a112)?2(a??2),22aa1?2,而該不等式顯然成立,a2

      故原不等式成立.

      第二篇:數(shù)學(xué)《推理與證明(文科)

      !

      文科數(shù)學(xué)《推理與證明》練習(xí)題

      2013-5-10

      1.歸納推理和類比推理的相似之處為()

      A、都是從一般到一般B、都是從一般到特殊C、都是從特殊到特殊D、都不一定正確

      2.命題“有些有理數(shù)是無限循環(huán)小數(shù),整數(shù)是有理數(shù),所以整數(shù)是無限循環(huán)小數(shù)”是假命題,推理錯誤的原因是使用了()

      A.歸納推理B.類比推理C. “三段論”,但大前提錯誤D.“三段論”,但小前提錯誤

      3.三角形的面積為S?1?a?b?c??r,a,b,c為三角形的邊長,r為三角形內(nèi)切圓的半徑,利用類比推理,2可得出四面體的體積為()

      111abcB、V?ShC、V??S1?S2?S3?S4?r(S1,S2,S3,S4分別為四面體的四33

      31個面的面積,r為四面體內(nèi)切球的半徑)D、V?(ab?bc?ac)h,(h為四面體的高)3A、V?

      4.當n?1,2,3,4,5,6時,比較2和n的大小并猜想()

      n2n2n2n2A.n?1時,2?nB.n?3時,2?nC.n?4時,2?nD.n?5時,2?n n

      25.已知數(shù)列?an?的前n項和為Sn,且a1?1,Sn?n2an n?N,試歸納猜想出Sn的表達式為()*

      A、2n2n?12n?12nB、C、D、n?1n?1n?1n?

      26.為確保信息安全,信息需加密傳輸,發(fā)送方由明文?密文(加密),接受方由密文?明文(解密),已知加密規(guī)則為:明文a,b,c,d對應(yīng)密文a?2b,2b?c,2c?3d,4d,例如,明文1,2,3,4對應(yīng)密文5,7,18,16.當接受方收到密文14,9,23,28時,則解密得到的明文為().

      A. 4,6,1,7B. 7,6,1,4C. 6,4,1,7D. 1,6,4,7

      7.有一段演繹推理是這樣的:“直線平行于平面,則平行于平面內(nèi)所有直線;已知直線b??平面?,直線a?平面?,直線b∥平面?,則直線b∥直線a”的結(jié)論顯然是錯誤的,這是因為?

      ()

      A.大前提錯誤B.小前提錯誤C.推理形式錯誤D.非以上錯誤

      8.下面使用類比推理恰當?shù)氖?①“若a·3=b·3,則a=b”類推出“若a·0=b·0,則a=b”

      ②“(a+b)c=ac+bc”類推出“a?bab=+” ccc

      a?bab=+(c≠0)” ccc

      nnn③“(a+b)c=ac+bc”類推出“nnn④“(ab)=ab”類推出“(a+b)=a+b”

      9.“?AC,BD是菱形ABCD的對角線,?AC,BD互相垂直且平分?!毖a充以上推理的大前提是。

      10.由①正方形的對角線相等;②平行四邊形的對角線相等;③正方形是平行四邊形,根據(jù) “三段論”推理出一個結(jié)論,則這個結(jié)論是。

      11.補充下列推理的三段論:

      (1)因為互為相反數(shù)的兩個數(shù)的和為0,又因為a與b互為相反數(shù)且所以b=8.(2)因為又因為e?2.71828?是無限不循環(huán)小數(shù),所以e是無理數(shù).

      12.在平面直角坐標系中,直線一般方程為Ax?By?C?0,圓心在(x0,y0)的圓的一般方程為(x?x0)2?(y?y0)2?r2;則類似的,在空間直角坐標系中,平面的一般方程為________________,球心在(x0,y0,z0)的球的一般方程為_______________________.13.在平面幾何里,有勾股定理:“設(shè)?ABC的兩邊AB、AC互相垂直,則AB?AC?BC?!蓖卣沟娇臻g,類比平面幾何的勾股定理,研究三棱錐的側(cè)面積與底面積間的關(guān)系,可以得妯的正確結(jié)論是:“設(shè)三棱錐A-BCD的三個側(cè)面ABC、ACD、ADB兩兩互相垂直,則”.14.從1=1,1?4??(1?2),1?4?9?1?2?3,1?4?9?16??(1?2?3?4)?,概括出第n個式子為.

      15.對函數(shù)f(n),n?N*,若滿足f(n)??222?n?100??n?3,試由f?10?4,f?10?3和??????ffn?5n?100?

      f?99?,f?98?,f?97?和f?96?的值,猜測f?2??f?31??16.若函數(shù)f(n)?k,其中n?N,k是??3.1415926535......的小數(shù)點后第n位數(shù)字,例

      如f(2)?4,則f{f.....f[f(7)]}(共2007個f)17.設(shè)平面內(nèi)有n條直線(n?3),其中有且僅有兩條直線互相平行,任意三條直線不過同一點.若用f(n)表示這n條直線交點的個數(shù),則f(4)=;當n>4時,f(n)=(用n表示).18.蜜蜂被認為是自然界中最杰出的建筑師,單個蜂巢可以近似地看作是一個正六邊

      形,如圖為一組蜂巢的截面圖.其中第一個圖有1個蜂巢,第二個圖有7個蜂巢,第三個圖有19個蜂巢,按此規(guī)律,以f(n)表示第n幅圖的蜂巢總數(shù).則

      f(4)=_____;f(n)=_____________.

      19.在等差數(shù)列?an?中,若a10?0,則有等式a1?a2?????an?a1?a2?????a19?n(n?19,n?N?)成立,類比上述性質(zhì),相應(yīng)地:在等比數(shù)列?bn?中,若b9?1,則有等式.:

      20.某同學(xué)在電腦上打下了一串黑白圓,如圖所示,○○○●●○○○●●○○○?,按這種規(guī)律往下排,那么第36個圓的顏色應(yīng)是.21.求垂直于直線2x?6y?1?0并且與曲線y?x?3x?5相切的直線方程

      32322.已知函數(shù)f(x)?ax?3(a?2)x2?6x?3 2

      (1)當a?2時,求函數(shù)f(x)極小值;

      (2)試討論曲線y?f(x)與x軸公共點的個數(shù)。

      《2.1合情推理與演繹推理》知識要點梳理

      知識點一:推理的概念根據(jù)一個或幾個已知事實(或假設(shè))得出一個判斷,這種思維方式叫做推理.從結(jié)構(gòu)上說,推理一般由兩部分組成,一部分是已知的事實(或假設(shè))叫做前提,一部分是由已知推出的判斷,叫做結(jié)論.

      知識點二:合情推理根據(jù)已有的事實和正確的結(jié)論(包括定義、公理、定理等)、實驗和實踐的結(jié)果、個人的經(jīng)驗和直覺等,經(jīng)過觀察、分析、比較、聯(lián)想、歸納、類比等推測出某些結(jié)果的推理過程。其中歸納推理和類比推理是最常見的合情推理。

      1.歸納推理

      (1)定義:由某類事物的部分對象具有某些特征,推出該類事物的全部對象都具有這些特征的推理,或者由個別事實概括出一般結(jié)論的推理,稱為歸納推理(簡稱歸納)。

      (2)一般模式:部分整體,個體一般

      (3)一般步驟:

      ①通過觀察個別情況發(fā)現(xiàn)某些相同性質(zhì);

      ②從已知的相同的性質(zhì)中猜想出一個明確表述的一般性命題;

      ③檢驗猜想.(4)歸納推理的結(jié)論可真可假

      2.類比推理

      (1)定義:由兩類對象具有某些類似特征和其中一類對象的某些已知特征,推出另一類對象也具有這些特征的推理稱為類比推理(簡稱類比).(2)一般模式:特殊特殊

      (3)類比的原則:可以從不同的角度選擇類比對象,但類比的原則是根據(jù)當前問題的需要,選擇恰當?shù)念惐葘ο?(4)一般步驟:

      ①找出兩類對象之間的相似性或一致性;

      ②用一類對象的已知特征去推測另一類對象的特征,得出一個明確的命題(猜想);

      ③檢驗猜想.(5)類比推理的結(jié)論可真可假

      知識點三:演繹推理

      (1)定義:從一般性的原理出發(fā),按照嚴格的邏輯法則,推出某個特殊情況下的結(jié)論的推理,叫做演繹推理.簡言之,演繹推理是由一般到特殊的推理.

      (2)一般模式:“三段論”是演繹推理的一般模式,常用的一種格式

      ① 大前提——已知的一般原理;

      ② 小前提——所研究的特殊情況;

      ③ 結(jié)論——根據(jù)一般原理,對特殊情況作出的結(jié)論.(3)用集合的觀點理解“三段論”若集合的所有元素都具有性質(zhì),是的子集,那么中所有元素都具有性質(zhì)

      (4)演繹推理的結(jié)論一定正確

      演繹推理是一個必然性的推理,因而只要大前提、小前提及推理形式正確,那么結(jié)論一定是正確的,它是完全可靠的推理。

      合情推理與演繹推理(文科)答案

      1——7.D C C D A C A8.③

      9.菱形對角線互相垂直且平分。10.②③?①。11.(1)a=-8;(2)無限不循環(huán)小數(shù)都是無理數(shù)

      12.Ax?By?Cz?D?0;(x?x0)2?(y?y0)2?(z?z0)2?r2;

      13.S?BCD?S?ABC?S?ACD?S?ABD;

      14.122222?22?32?42???(?1)n?1?n2??(1?2?3???n);

      18.【解題思路】找出f(n)?f(n?1)的關(guān)系式 15.97,98;16.1;17.5; n+1)(n-2);

      [解析]f(1)?1,f(2)?1?6,f(3)?1?6?12,?f(4)?1?6?12?18?37

      ?f(n)?1?6?12?18???6(n?1)?3n2?3n?1

      【名師指引】處理“遞推型”問題的方法之一是尋找相鄰兩組數(shù)據(jù)的關(guān)系.19.【解析】:在等差數(shù)列?an?中,由a10?0,得a1?a19?a2?a18???an?a20?n

      ?an?1?a19?n?2a10?0

      所以a1?a2???an???a19?0即a1?a2???an??a19?a18???an?1

      又?a1??a19,a2??a18,?a19?n??an?1

      ?a1?a2???an??a19?a18???an?1?a1?a2???a19?n

      若a9?0,同理可得a1?a2??an?a1?a2???a17?n

      相應(yīng)地等比數(shù)列?bn?中,則可得:b1b2?bn?b1b2?b17?nn?17,n?N*

      【點評】已知性質(zhì)成立的理由是應(yīng)用了“等距和”性質(zhì),故類比等比數(shù)列中,相應(yīng)的“等距積”性質(zhì),即可求解。

      20.白色

      21.解:設(shè)切點為P(a,b),函數(shù)y?x3?3x2?5的導(dǎo)數(shù)為y'?3x2?6x

      切線的斜率k?y'|x?a?3a2?6a??3,得a??1,代入到y(tǒng)?x?3x?5

      得b??3,即P(?1,?3),y?3??3(x?1),3x?y?6?0??32

      22.解:(1)a2f'(x)?3ax2?3(a?2)x?6?3a(x?)(x?1),f(x)極小值為f(1)?? 2a

      2(2)①若a?0,則f(x)??3(x?1),?f(x)的圖像與x軸只有一個交點;

      ②若a?0,?f(x)極大值為f(1)??a2?0,?f(x)的極小值為f()?0,2a

      ?f(x)的圖像與x軸有三個交點;

      ③若0?a?2,f(x)的圖像與x軸只有一個交點;

      '2④若a?2,則f(x)?6(x?1)?0,?f(x)的圖像與x軸只有一個交點;

      ⑤若a?2,由(1)知f(x)的極大值為f()??4(點; 2a1323?)??0,?f(x)的圖像與x軸只有一個交a44

      綜上知,若a?0,f(x)的圖像與x軸只有一個交點;若a?0,f(x)的圖像與x軸有三個交點。

      第三篇:文科推理與證明

      文科推理與證明(一)合情推理與演繹推理

      1.了解合情 推理的含義,能利用歸納和類比等進行簡單的推理,了解合情推理在數(shù)學(xué)發(fā)現(xiàn)中的作用。

      2.了解演繹推理的重要性,掌握演繹推理的基本模式,并能運用它們進行一些簡單推理。3.了解合情推理和演繹推理之間的聯(lián)系和差異。(二)直接證明與間接證明

      1.了解直接證明的兩種基本方法:分析法和綜合法;了解分析法和綜合法的思考過程、特點。2.了解間接證明的一種基本方法──反證法;了解反證 法的思考過程、特點。(三)數(shù)學(xué)歸納法

      了解數(shù)學(xué)歸納法的原理,能用數(shù)學(xué)歸納法證明一些簡單的數(shù)學(xué)命題.1.推理與證明的內(nèi)容是高考的新增內(nèi)容,主要以選擇填空的形式出現(xiàn)。2.推理與證明與數(shù)列、幾何、等有關(guān)內(nèi)容綜合在一起的綜合試題多。第1課時 合情推理與演繹推理

      1.推理一般包括合情推理和演繹推理;2.合情推理包括 和;歸納推理:從個別事實中推演出 ,這樣的推理通常稱為歸納推理;歸納推理的思維過程是:、、.類比 推理:根據(jù)兩個(或兩類)對象之間在某些方面的相似或相同,推演出它們在其它方面也 或 ,這樣的推理稱為類比推理,類比推理的思維過程是:、、.3.演繹推理:演繹推理是 ,按照嚴格的邏輯法則得到的 推理過程;三段論常用格式為:①M是P,② ,③S是P;其中①是 ,它提供了一個個一般性原理;②是 ,它指出了一個個特殊對象;③是 ,它根據(jù)一般原理,對特殊情況作出的判斷.4.合情推理是根據(jù)已有的事實和正確的結(jié)論(包括定義、公理、定理等)、實驗和實踐的結(jié)果,以及個人的經(jīng)驗和直覺等推測某些結(jié)果的推理過程,歸納和類比是合情推理常用的思維方法;在解決問題的過程中,合情推理具有猜測和發(fā)現(xiàn)結(jié)論、探索和提供思路的作用,有得于創(chuàng)新意識的培養(yǎng)。演繹推理是根據(jù)已有的事實和正確的結(jié)論,按照嚴格的邏輯法則得到的新結(jié)論的推理過程.《新課標》高三數(shù)學(xué)第一輪復(fù)習(xí)單元講座 —邏輯、推理與證明、復(fù)數(shù)、框圖 一.課標要求: 1.常用邏輯用語(1)命題及其關(guān)系

      ① 了解命題的逆命題、否命題與逆否命題;② 理解必要條件、充分條件與充要條件的意義,會分析四種命題的相互關(guān)系;(2)簡單的邏輯聯(lián)結(jié)詞

      通過數(shù)學(xué)實例,了解“或”、“且”、“非”邏輯聯(lián)結(jié)詞的含義。(3)全稱量詞與存在量詞

      ① 通過生活和數(shù)學(xué)中的豐富實例,理解全稱量詞與存在量詞的意義;② 能正確地對含有一個量詞的命題進行否定。2.推理與證明

      (1)合情推理與演繹推理

      ①結(jié)合已學(xué)過的數(shù)學(xué)實例和生活中的實例,了解合情推理的含義,能利用歸納和類比等進行簡單的推理,體會并認識合情推理在數(shù)學(xué)發(fā)現(xiàn)中的作用;②結(jié)合已學(xué)過的數(shù)學(xué)實例和生活中的實例,體會演繹推理的重要性,掌握演繹推理的基本模式,并能運用它們進行一些簡單推理;③通過具體實例,了解合情推理和演繹推理之間的聯(lián)系和差異。(2)直接證明與間接證明 ①結(jié)合已經(jīng)學(xué)過的數(shù)學(xué)實例,了解直接證明的兩種基本方法:分析法和綜合法;了解分析法和綜合法的思考過程、特點;②結(jié)合已經(jīng)學(xué)過的數(shù)學(xué)實例,了解間接證明的一種基本方法--反證法;了解反證法的思考過程、特點;(3)數(shù)學(xué)歸納法

      了解數(shù)學(xué)歸納法的原理,能用數(shù)學(xué)歸納法證明一些簡單的數(shù)學(xué)命題;(4)數(shù)學(xué)文化

      ①通過對實例的介紹(如歐幾里德《幾何原本》、馬克思《資本論》、杰弗遜《獨立宣言》、牛頓三定律),體會公理化思想;②介紹計算機在自動推理領(lǐng)域和數(shù)學(xué)證明中的作用;3.數(shù)系的擴充與復(fù)數(shù)的引入

      (1)在問題情境中了解數(shù)系的擴充過程,體會實際需求與數(shù)學(xué)內(nèi)部的矛盾(數(shù)的運算規(guī)則、方程理論)在數(shù)系擴充過程中的作用,感受人類理性思維的作用以及數(shù)與現(xiàn)實世界的聯(lián)系;(2)理解復(fù)數(shù)的基本概念以及復(fù)數(shù)相等的充要條件;(3)了解復(fù)數(shù)的代數(shù)表示法及其幾何意義;(4)能進行復(fù)數(shù)代數(shù)形式的四則運算,了解復(fù)數(shù)代數(shù)形式的加減運算的幾何意義。4.框圖(1)流程圖

      ①通過具體實例,進一步認識程序框圖;②通過具體實例,了解工序流程圖(即統(tǒng)籌圖);③能繪制簡單實際問題的流程圖,體會流程圖在解決實際問題中的作用;(2)結(jié)構(gòu)圖

      ①通過實例,了解結(jié)構(gòu)圖;運用結(jié)構(gòu)圖梳理已學(xué)過的知識、整理收集到的資料信息;②結(jié)合作出的結(jié)構(gòu)圖與他人進行交流,體會結(jié)構(gòu)圖在揭示事物聯(lián)系中的作用。二.命題走向 常用邏輯用語

      本部分內(nèi)容主要是常用的邏輯用語,包括命題與量詞,基本邏輯聯(lián)結(jié)詞以及充分條件、必要條件與命題的四種形式。

      預(yù)測08年高考對本部分內(nèi)容的考查形式如下:考查的形式以填空題為主,考察的重點是條件和復(fù)合命題真值的判斷。

      第四篇:文科推理與證明

      文科推理與證明

      (一)合情推理與演繹推理

      1.了解合情推理的含義,能利用歸納和類比等進行簡單的推理,了解合情推理在數(shù)學(xué)發(fā)現(xiàn)中的作用。

      2.了解演繹推理的重要性,掌握演繹推理的基本模式,并能運用它們進行一些簡單推理。

      3.了解合情推理和演繹推理之間的聯(lián)系和差異。

      (二)直接證明與間接證明

      1.了解直接證明的兩種基本方法:分析法和綜合法;了解分析法和綜合法的思考過程、特點。

      2.了解間接證明的一種基本方法──反證法;了解反證法的思考過程、特點。

      (三)數(shù)學(xué)歸納法

      了解數(shù)學(xué)歸納法的原理,能用數(shù)學(xué)歸納法證明一些簡單的數(shù)學(xué)命題.1.推理與證明的內(nèi)容是高考的新增內(nèi)容,主要以選擇填空的形式出現(xiàn)。

      2.推理與證明與數(shù)列、幾何、等有關(guān)內(nèi)容綜合在一起的綜合試題多。

      第1課時合情推理與演繹推理

      1.推理一般包括合情推理和演繹推理;

      2.合情推理包括和;

      歸納推理:從個別事實中推演出,這樣的推理通常稱為歸納推理;歸納推理的思維過程是:、、.類比推理:根據(jù)兩個(或兩類)對象之間在某些方面的相似或相同,推演出它們在其它方面也或,這樣的推理稱為類比推理,類比推理的思維過程是:、、.3.演繹推理:演繹推理是,按照嚴格的邏輯法則得到的推理過程;三段論常用格式為:①M是p,②,③S是p;其中①是,它提供了一個個一般性原理;②是,它指出了一個個特殊對象;③是,它根據(jù)一般原理,對特殊情況作出的判斷.4.合情推理是根據(jù)已有的事實和正確的結(jié)論(包括定義、公理、定理等)、實驗和實踐的結(jié)果,以及個人的經(jīng)驗和直覺等推測某些結(jié)果的推理過程,歸納和類比是合情推理常用的思維方法;在解決問題的過程中,合情推理具有猜測和發(fā)現(xiàn)結(jié)論、探索和提供思路的作用,有得于創(chuàng)新意識的培養(yǎng)。演繹推理是根據(jù)已有的事實和正確的結(jié)論,按照嚴格的邏輯法則得到的新結(jié)論的推理過程.《新課標》高三數(shù)學(xué)第一輪復(fù)習(xí)單元講座

      —邏輯、推理與證明、復(fù)數(shù)、框圖

      一.課標要求:

      1.常用邏輯用語

      (1)命題及其關(guān)系

      ①了解命題的逆命題、否命題與逆否命題;②理解必要條件、充分條件與充要條件的意義,會分析四種命題的相互關(guān)系;

      (2)簡單的邏輯聯(lián)結(jié)詞

      通過數(shù)學(xué)實例,了解“或”、“且”、“非”邏輯聯(lián)結(jié)詞的含義。

      (3)全稱量詞與存在量詞

      ①通過生活和數(shù)學(xué)中的豐富實例,理解全稱量詞與存在量詞的意義;

      ②能正確地對含有一個量詞的命題進行否定。

      2.推理與證明

      (1)合情推理與演繹推理

      ①結(jié)合已學(xué)過的數(shù)學(xué)實例和生活中的實例,了解合情推理的含義,能利用歸納和類比等進行簡單的推理,體會并認識合情推理在數(shù)學(xué)發(fā)現(xiàn)中的作用;

      ②結(jié)合已學(xué)過的數(shù)學(xué)實例和生活中的實例,體會演繹推理的重要性,掌握演繹推理的基本模式,并能運用它們進行一些簡單推理;

      ③通過具體實例,了解合情推理和演繹推理之間的聯(lián)系和差異。

      (2)直接證明與間接證明

      ①結(jié)合已經(jīng)學(xué)過的數(shù)學(xué)實例,了解直接證明的兩種基本方法:分析法和綜合法;了解分析法和綜合法的思考過程、特點;

      ②結(jié)合已經(jīng)學(xué)過的數(shù)學(xué)實例,了解間接證明的一種基本方法--反證法;了解反證法的思考過程、特點;

      (3)數(shù)學(xué)歸納法

      了解數(shù)學(xué)歸納法的原理,能用數(shù)學(xué)歸納法證明一些簡單的數(shù)學(xué)命題;

      (4)數(shù)學(xué)文化

      ①通過對實例的介紹(如歐幾里德《幾何原本》、馬克思《資本論》、杰弗遜《獨立宣言》、牛頓三定律),體會公理化思想;

      ②介紹計算機在自動推理領(lǐng)域和數(shù)學(xué)證明中的作用;

      3.數(shù)系的擴充與復(fù)數(shù)的引入

      (1)在問題情境中了解數(shù)系的擴充過程,體會實際需求與數(shù)學(xué)內(nèi)部的矛盾(數(shù)的運算規(guī)則、方程理論)在數(shù)系擴充過程中的作用,感受人類理性思維的作用以及數(shù)與現(xiàn)實世界的聯(lián)系;

      (2)理解復(fù)數(shù)的基本概念以及復(fù)數(shù)相等的充要條件;

      (3)了解復(fù)數(shù)的代數(shù)表示法及其幾何意義;

      (4)能進行復(fù)數(shù)代數(shù)形式的四則運算,了解復(fù)數(shù)代數(shù)形式的加減運算的幾何意義。

      4.框圖

      (1)流程圖

      ①通過具體實例,進一步認識程序框圖;

      ②通過具體實例,了解工序流程圖(即統(tǒng)籌圖);

      ③能繪制簡單實際問題的流程圖,體會流程圖在解決實際問題中的作用;

      (2)結(jié)構(gòu)圖

      ①通過實例,了解結(jié)構(gòu)圖;運用結(jié)構(gòu)圖梳理已學(xué)過的知識、整理收集到的資料信息;

      ②結(jié)合作出的結(jié)構(gòu)圖與他人進行交流,體會結(jié)構(gòu)圖在揭示事物聯(lián)系中的作用。

      二.命題走向

      常用邏輯用語

      本部分內(nèi)容主要是常用的邏輯用語,包括命題與量詞,基本邏輯聯(lián)結(jié)詞以及充分條件、必要條件與命題的四種形式。

      預(yù)測08年高考對本部分內(nèi)容的考查形式如下:考查的形式以填空題為主,考察的重點是條件和復(fù)合命題真值的判斷。

      推理證明

      本部分內(nèi)容主要包括:合情推理和演繹推理、直接證明與間接證明、數(shù)學(xué)歸納法(理科)等內(nèi)容,其中推理中的合情推理、演繹推理幾乎涉及數(shù)學(xué)的方方面面的知識,代表研究性命題的發(fā)展趨勢

      第五篇:高考數(shù)學(xué)推理與證明

      高考數(shù)學(xué)推理與證明

      1.(08江蘇10)將全體正整數(shù)排成一個三角形數(shù)陣:35 68 9 10

      。。。

      按照以上排列的規(guī)律,第n行(n?3)從左向右的第3個數(shù)為▲.n2?n?6【答案】 2

      【解析】本小題考查歸納推理和等差數(shù)列求和公式.前n-1 行共有正整數(shù)1+2+…+(n

      n2?nn2?n-1)個,即個,因此第n 行第3 個數(shù)是全體正整數(shù)中第+3個,即為22

      n2?n?6. 2

      2.(09江蘇8)在平面上,若兩個正三角形的邊長的比為1:2,則它們的面積比為1:4,類似地,在空間內(nèi),若兩個正四面體的棱長的比為1:2,則它們的體積比為▲.【解析】 考查類比的方法。體積比為1:8

      3.(09福建15)五位同學(xué)圍成一圈依序循環(huán)報數(shù),規(guī)定:

      ①第一位同學(xué)首次報出的數(shù)為1,第二位同學(xué)首次報出的數(shù)也為1,之后每位同學(xué)所報出的數(shù)都是前兩位同學(xué)所報出的數(shù)之和;

      ②若報出的數(shù)為3的倍數(shù),則報該數(shù)的同學(xué)需拍手一次

      已知甲同學(xué)第一個報數(shù),當五位同學(xué)依序循環(huán)報到第100個數(shù)時,甲同學(xué)拍手的總次數(shù)為________.【答案】:5

      解析:由題意可設(shè)第n次報數(shù),第n?1次報數(shù),第n?2次報數(shù)分別為an,an?1,an?2,所以有an?an?1?an?2,又a1?1,a2?1,由此可得在報到第100個數(shù)時,甲同學(xué)拍手5次。

      4.(09上海)8.已知三個球的半徑R1,R2,R3滿足R1?2R2?3R3,則它們的表面積S1,S2,S3,滿足的等量關(guān)系是___________.?

      【解析】S1?4?R1S1?22

      S2?2R2S3?2R3,即R1=R1,S1

      2,R2=S2

      2,R3=S3

      2,由R1?

      2R2?3R3?

      5.(09浙江)15.觀察下列等式:

      1C5?C55?23?2,159C9?C9?C9?27?23,15913C13?C13?C13?C13?211?25,1593C1C1?7?C1?7C?171C717?27?125,1

      ………

      由以上等式推測到一個一般的結(jié)論:

      1594n?1對于n?N,C4n?1?C4n?1?C4n?1???C4n?1?*

      答案:24n?1???1?22n?1?!窘馕觥窟@是一種需類比推理方法破解的問題,結(jié)論由二項構(gòu)成,n

      第二項前有??1?n,二項指數(shù)分別為24n?1,22n?1,因此對于n?N

      n*,1594n?124n?1???1?22n?1 C4n?1?C4n?1?C4n?1???C4n?1?

      下載2014高考數(shù)學(xué)備考學(xué)案(文科)能力提升第79課推理與證明word格式文檔
      下載2014高考數(shù)學(xué)備考學(xué)案(文科)能力提升第79課推理與證明.doc
      將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
      點此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔相關(guān)法律責任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進行舉報,并提供相關(guān)證據(jù),工作人員會在5個工作日內(nèi)聯(lián)系你,一經(jīng)查實,本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        高考文科數(shù)學(xué)試題分類—推理與證明

        高中數(shù)學(xué)高考文科試題解析分類匯編:推理和證明1.【高考全國文12】正方形ABCD的邊長為1,點E在邊AB上,點F在邊BC上,1AE?BF?。動點P從E出發(fā)沿直線向F運動,每當碰到正方形的邊時反彈,反......

        2018年高考文科數(shù)學(xué)分類:專題七不等式、推理與證明

        《2018年高考文科數(shù)學(xué)分類匯編》 第七篇:不等式、推理與證明 一、選擇題 1.【2018北京卷8】設(shè)集合A?{(x,y)|x?y?1,ax?y?4,x?ay?2},則 A對任意實數(shù)a,(2,1)?A B對任意實數(shù)a,(2,1)?A D當且僅......

        高二文科數(shù)學(xué)合情推理與證明訓(xùn)練

        高二文科數(shù)學(xué)選修1-2《推理與證明》訓(xùn)練1. 下列表述正確的是().①歸納推理是由部分到整體的推理;②歸納推理是由一般到一般的推理;③演繹推理是由一般到特殊的推理;④類比推理是......

        高二文科期中數(shù)學(xué)復(fù)習(xí)題(推理與證明)

        高二文科期中考試復(fù)習(xí)題二:推理與證明班級_____姓名_________1、下列說法中正確的是(A)合情推理就是正確的推理(B) 歸納推理是從一般到特殊的推理過程(C) 合情推理就是歸納推......

        高二文科數(shù)學(xué)推理與證明周練

        高二文科數(shù)學(xué)第八周周練(3.30)姓名:得分:一、 選擇題(在每小題給出的四個選項中,只有一項是符合題目要求的;請將答案直接填入后面表格內(nèi).)1、復(fù)數(shù)z=-1+2i,則 z 的虛部為()A.1B.-1C.2D.-22......

        高二文科數(shù)學(xué)期末復(fù)習(xí)---推理與證明

        2008年高二文科數(shù)學(xué)期末復(fù)習(xí)教學(xué)案高二文科數(shù)學(xué)期末復(fù)習(xí)---推理與證明一.1.二.1. 觀察下列數(shù):1,3,2,6,5,15,14,x,y,z,122,?中x,y,z的值依次是 (A)42,41,123;(B) 13,39,12......

        2012年高考真題文科數(shù)學(xué)15:推理與證明(精選5篇)

        2012高考試題分類匯編:推理和證明1.【2012高考全國文12】正方形ABCD的邊長為1,點E在邊AB上,點F在邊BC上,1AE?BF?。動點P從E出發(fā)沿直線向F運動,每當碰到正方形的邊時反彈,反彈時反射3......

        高二文科推理與證明練習(xí)題

        推理與證明文科練習(xí)增城市華僑中學(xué)陳敏星一、選擇題(每小題3分,共30分)1.有個小偷 在警察面前作了如下辯解:是我的錄象機,我就一定能把它打開??矗野阉箝_了。所以它是我的錄象......