第一篇:初一數(shù)學(xué)上冊知識點
榮升教育----------初中數(shù)學(xué)一對一輔導(dǎo)中心
初一數(shù)學(xué)(上)應(yīng)知應(yīng)會的知識點
代數(shù)初步知識
1.代數(shù)式:用運算符號“+ - ×÷??”連接數(shù)及表示數(shù)的字母的式子稱為代數(shù)式(字母所取得數(shù)應(yīng)保證它所在的式子有意義,其次字母所取得數(shù)還應(yīng)使實際生活或生產(chǎn)有意義;單獨一個數(shù)或一個字母也是代數(shù)式)
2.列代數(shù)式的幾個注意事項:
(1)數(shù)與字母相乘,或字母與字母相乘通常使用“· ” 乘,或省略不寫;
(2)數(shù)與數(shù)相乘,仍應(yīng)使用“×”乘,不用“· ”乘,也不能省略乘號;
(3)數(shù)與字母相乘時,一般在結(jié)果中把數(shù)寫在字母前面,如a×5應(yīng)寫成5a;
(4)帶分?jǐn)?shù)與字母相乘時,要把帶分?jǐn)?shù)改成假分?jǐn)?shù)形式,如a×11
2應(yīng)寫成a; 2
33(5)在代數(shù)式中出現(xiàn)除法運算時,一般用分?jǐn)?shù)線將被除式和除式聯(lián)系,如3÷a寫成的形式; a
(6)a與b的差寫作a-b,要注意字母順序;若只說兩數(shù)的差,當(dāng)分別設(shè)兩數(shù)為a、b時,則應(yīng)分類,寫做
a-b和b-a.3.幾個重要的代數(shù)式:(m、n表示整數(shù))
(1)a與b的平方差是:a2-b2;a與b差的平方是:(a-b)2;
(2)若a、b、c是正整數(shù),則兩位整數(shù)是: 10a+b,則三位整數(shù)是:100a+10b+c;
(3)若m、n是整數(shù),則被5除商m余n的數(shù)是: 5m+n;偶數(shù)是:2n,奇數(shù)是:2n+1;三個連續(xù)整數(shù)
是:n-
1、n、n+1;
(4)若b>0,則正數(shù)是:a2+b,負(fù)數(shù)是:-a2-b,非負(fù)數(shù)是: a2,非正數(shù)是:-a2.有理數(shù)
1.有理數(shù):
(1)凡能寫成q
p(p,q為整數(shù)且p?0)形式的數(shù),都是有理數(shù).正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)
統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正
榮升教育----------初中數(shù)學(xué)一對一輔導(dǎo)中心
數(shù);?不是有理數(shù);
?
?正有理數(shù)?
(2)有理數(shù)的分類:① 有理數(shù)?零
?
?負(fù)有理數(shù)?
?正整數(shù)?
?正分?jǐn)?shù)?負(fù)整數(shù)?
?負(fù)分?jǐn)?shù)
?
?整數(shù)?
② 有理數(shù)?
?
?分?jǐn)?shù)?
?正整數(shù)??零?負(fù)整數(shù)??正分?jǐn)?shù)?
?負(fù)分?jǐn)?shù)
(3)注意:有理數(shù)中,1、0、-1是三個特殊的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性;
(4)自然數(shù)? 0和正整數(shù);a>0 ? a是正數(shù);a<0 ? a是負(fù)數(shù);
a≥0 ? a是正數(shù)或0 ? a是非負(fù)數(shù);a≤ 0 ? a是負(fù)數(shù)或0 ? a是非正數(shù).2.?dāng)?shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線.3.相反數(shù):
(1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;(2)注意: a-b+c的相反數(shù)是-a+b-c;a-b的相反數(shù)是b-a;a+b的相反數(shù)是-a-b;(3)相反數(shù)的和為0 ? a+b=0 ? a、b互為相反數(shù).4.絕對值:
(1)正數(shù)的絕對值是其本身,0的絕對值是0,負(fù)數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;
(a?0)?a
(a?0)??a
(2)絕對值可表示為:a??0(a?0)或a?? ;絕對值的問題經(jīng)常分類討論;
?a(a?0)????a(a?0)
aa
aa
(3)
?1?a?0;
??1?a?0;
ab
ab
(4)|a|是重要的非負(fù)數(shù),即|a|≥0;注意:|a|·|b|=|a·b|,?
.5.有理數(shù)比大?。海?)正數(shù)的絕對值越大,這個數(shù)越大;(2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0?。唬?)正數(shù)
大于一切負(fù)數(shù);(4)兩個負(fù)數(shù)比大小,絕對值大的反而??;(5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù) > 0,小數(shù)-大數(shù) < 0.-2-
榮升教育----------初中數(shù)學(xué)一對一輔導(dǎo)中心
6.互為倒數(shù):乘積為1的兩個數(shù)互為倒數(shù);注意:0沒有倒數(shù);若 a≠0,那么a的倒數(shù)是;倒數(shù)是本身的a1
數(shù)是±1;若ab=1? a、b互為倒數(shù);若ab=-1? a、b互為負(fù)倒數(shù).7.有理數(shù)加法法則:
(1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;
(2)異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;(3)一個數(shù)與0相加,仍得這個數(shù).8.有理數(shù)加法的運算律:
(1)加法的交換律:a+b=b+a ;(2)加法的結(jié)合律:(a+b)+c=a+(b+c).9.有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a-b=a+(-b).10 有理數(shù)乘法法則:
(1)兩數(shù)相乘,同號為正,異號為負(fù),并把絕對值相乘;(2)任何數(shù)同零相乘都得零;
(3)幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負(fù)因式的個數(shù)決定.11 有理數(shù)乘法的運算律:
(1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.12.有理數(shù)除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù),即13.有理數(shù)乘方的法則:(1)正數(shù)的任何次冪都是正數(shù);
(2)負(fù)數(shù)的奇次冪是負(fù)數(shù);負(fù)數(shù)的偶次冪是正數(shù);注意:當(dāng)n為正奇數(shù)時:(-a)n=-an或(a-b)n=-(b-a)n , 當(dāng)
n為正偶數(shù)時:(-a)n =an或(a-b)n=(b-a)n.14.乘方的定義:
(1)求相同因式積的運算,叫做乘方;
(2)乘方中,相同的因式叫做底數(shù),相同因式的個數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;
a0
無意義.榮升教育----------初中數(shù)學(xué)一對一輔導(dǎo)中心
(3)a2是重要的非負(fù)數(shù),即a2≥0;若a2+|b|=0 ? a=0,b=0;
0.1?0.01?
?2
?1?1
(4)據(jù)規(guī)律2??底數(shù)的小數(shù)點移動一位,平方數(shù)的小數(shù)點移動二位.10?100??????????????
15.科學(xué)記數(shù)法:把一個大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫
科學(xué)記數(shù)法.16.近似數(shù)的精確位:一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位.17.有效數(shù)字:從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個近似數(shù)的有效數(shù)字.18.混合運算法則:先乘方,后乘除,最后加減;注意:怎樣算簡單,怎樣算準(zhǔn)確,是數(shù)學(xué)計算的最重要的原則.19.特殊值法:是用符合題目要求的數(shù)代入,并驗證題設(shè)成立而進(jìn)行猜想的一種方法,但不能用于證明.整式的加減
1.單項式:在代數(shù)式中,若只含有乘法(包括乘方)運算?;螂m含有除法運算,但除式中不含字母的一類代數(shù)式叫單項式.2.單項式的系數(shù)與次數(shù):單項式中不為零的數(shù)字因數(shù),叫單項式的數(shù)字系數(shù),簡稱單項式的系數(shù);系數(shù)不為零時,單項式中所有字母指數(shù)的和,叫單項式的次數(shù).3.多項式:幾個單項式的和叫多項式.4.多項式的項數(shù)與次數(shù):多項式中所含單項式的個數(shù)就是多項式的項數(shù),每個單項式叫多項式的項;多項式里,次數(shù)最高項的次數(shù)叫多項式的次數(shù);注意:(若a、b、c、p、q是常數(shù))ax2+bx+c和x2+px+q是常見的兩個二次三項式.5.整式:凡不含有除法運算,或雖含有除法運算但除式中不含字母的代數(shù)式叫整式.?單項式整式整式分類為:.?
多項式?
榮升教育----------初中數(shù)學(xué)一對一輔導(dǎo)中心
6.同類項:所含字母相同,并且相同字母的指數(shù)也相同的單項式是同類項.7.合并同類項法則:系數(shù)相加,字母與字母的指數(shù)不變.8.去(添)括號法則:去(添)括號時,若括號前邊是“+”號,括號里的各項都不變號;若括號前邊是“-”號,括號里的各項都要變號.9.整式的加減:整式的加減,實際上是在去括號的基礎(chǔ)上,把多項式的同類項合并.10.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數(shù)從小到大(或從大到?。┡帕衅饋?,叫做按這個字母的升冪排列(或降冪排列).注意:多項式計算的最后結(jié)果一般應(yīng)該進(jìn)行升冪(或降冪)排列.一元一次方程
1.等式與等量:用“=”號連接而成的式子叫等式.注意:“等量就能代入”!2.等式的性質(zhì):
等式性質(zhì)1:等式兩邊都加上(或減去)同一個數(shù)或同一個整式,所得結(jié)果仍是等式; 等式性質(zhì)2:等式兩邊都乘以(或除以)同一個不為零的數(shù),所得結(jié)果仍是等式.3.方程:含未知數(shù)的等式,叫方程.4.方程的解:使等式左右兩邊相等的未知數(shù)的值叫方程的解;注意:“方程的解就能代入”!5.移項:改變符號后,把方程的項從一邊移到另一邊叫移項.移項的依據(jù)是等式性質(zhì)1.6.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程.7.一元一次方程的標(biāo)準(zhǔn)形式: ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0).8.一元一次方程的最簡形式: ax=b(x是未知數(shù),a、b是已知數(shù),且a≠0).9.一元一次方程解法的一般步驟: 整理方程 ?? 去分母 ?? 去括號 ?? 移項 ?? 合并同類項 ?? 系數(shù)化為1 ??(檢驗方程的解).10.列一元一次方程解應(yīng)用題:
(1)讀題分析法:???? 多用于“和,差,倍,分問題”
仔細(xì)讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量
榮升教育----------初中數(shù)學(xué)一對一輔導(dǎo)中心的關(guān)系填入代數(shù)式,得到方程.(2)畫圖分析法: ???? 多用于“行程問題”
利用圖形分析數(shù)學(xué)問題是數(shù)形結(jié)合思想在數(shù)學(xué)中的體現(xiàn),仔細(xì)讀題,依照題意畫出有關(guān)圖形,使圖形各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ).11.列方程解應(yīng)用題的常用公式:
(1)行程問題:距離=速度·時間速度?
距離時間
時間?
距離速度;
工作量工效
(2)工程問題:工作量=工效·工時工效?
工作量工時
工時?
部分比率;
(3)比率問題:部分=全體·比率比率?
部分全體
全體?;
(4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;(5)商品價格問題:售價=定價·折·(6)周長、面積、體積問題:C
110,利潤=售價-成本,利潤率?
售價?成本
成本
?100%;
S圓=πR,C長方形=2(a+b),S長方形=ab,C圓=2πR,正方形
=4a,S正方形=a,S環(huán)形=π(R-r),V長方體=abc,V正方體=a,V圓柱=πRh,V
圓錐=πRh.
第二篇:初一上冊數(shù)學(xué)知識點最新
初一上冊數(shù)學(xué)知識點最新有哪些你知道嗎?教學(xué)中教師要鼓勵、引導(dǎo)學(xué)生在感性材料的基礎(chǔ)上,理解數(shù)學(xué)概念或通過數(shù)量關(guān)系,進(jìn)行簡單的判斷、推理,從而掌握最基礎(chǔ)的知識,一起來看看初一上冊數(shù)學(xué)知識點最新,歡迎查閱!
初一上冊數(shù)學(xué)知識點整理
一、:代數(shù)初步知識。
1.代數(shù)式:用運算符號“+-×÷……”連接數(shù)及表示數(shù)的字母的式子稱為代數(shù)式(字母所取得數(shù)應(yīng)保證它所在的式子有意義,其次字母所取得數(shù)還應(yīng)使實際生活或生產(chǎn)有意義;單獨一個數(shù)或一個字母也是代數(shù)式)
2.列代數(shù)式的幾個注意事項:
(1)數(shù)與字母相乘,或字母與字母相乘通常使用“?”乘,或省略不寫;
(2)數(shù)與數(shù)相乘,仍應(yīng)使用“×”乘,不用“?”乘,也不能省略乘號;
(3)數(shù)與字母相乘時,一般在結(jié)果中把數(shù)寫在字母前面,如a×5應(yīng)寫成5a;
(4)帶分?jǐn)?shù)與字母相乘時,要把帶分?jǐn)?shù)改成假分?jǐn)?shù)形式,如a×應(yīng)寫成a;
(5)在代數(shù)式中出現(xiàn)除法運算時,一般用分?jǐn)?shù)線將被除式和除式聯(lián)系,如3÷a寫成的形式;
(6)a與b的差寫作a-b,要注意字母順序;若只說兩數(shù)的差,當(dāng)分別設(shè)兩數(shù)為a、b時,則應(yīng)分類,寫做a-b和b-a.二、:幾個重要的代數(shù)式(m、n表示整數(shù))。
(1)a與b的平方差是:a2-b2;a與b差的平方是:(a-b)2;
(2)若a、b、c是正整數(shù),則兩位整數(shù)是:10a+b,則三位整數(shù)是:100a+10b+c;
(3)若m、n是整數(shù),則被5除商m余n的數(shù)是:5m+n;偶數(shù)是:2n,奇數(shù)是:2n+1;三個連續(xù)整數(shù)是:n-1、n、n+1;
(4)若b>0,則正數(shù)是:a2+b,負(fù)數(shù)是:-a2-b,非負(fù)數(shù)是:a2,非正數(shù)是:-a2.三、:有理數(shù)。
1.有理數(shù):
(1)凡能寫成形式的數(shù),都是有理數(shù).正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);π不是有理數(shù);
(2)有理數(shù)的分類:①②
(3)注意:有理數(shù)中,1、0、-1是三個特殊的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性;
(4)
2.數(shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線.3.相反數(shù):
(1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;
(2)注意:a-b+c的相反數(shù)是-a+b-c;a-b的相反數(shù)是b-a;a+b的相反數(shù)是-a-b;
(3)
4.絕對值:
(1)正數(shù)的絕對值是其本身,0的絕對值是0,負(fù)數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;
(2)絕對值可表示為:初一上冊知識點絕對值的問題經(jīng)常分類討論;
(3)
(4)|a|是重要的非負(fù)數(shù),即|a|≥0;注意:|a|?|b|=|a?b|,5.有理數(shù)比大小:(1)正數(shù)的絕對值越大,這個數(shù)越大;(2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0小;(3)正數(shù)大于一切負(fù)數(shù);(4)兩個負(fù)數(shù)比大小,絕對值大的反而小;(5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù)>0,小數(shù)-大數(shù)<0.四、:有理數(shù)法則及運算規(guī)律。
(1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;
(2)異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;
(3)一個數(shù)與0相加,仍得這個數(shù).2.有理數(shù)加法的運算律:
(1)加法的交換律:a+b=b+a;(2)加法的結(jié)合律:(a+b)+c=a+(b+c).3.有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a-b=a+(-b).4.有理數(shù)乘法法則:
(1)兩數(shù)相乘,同號為正,異號為負(fù),并把絕對值相乘;
(2)任何數(shù)同零相乘都得零;
(3)幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負(fù)因式的個數(shù)決定.5.有理數(shù)乘法的運算律:
(1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac.6.有理數(shù)除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù),.7.有理數(shù)乘方的法則:
(1)正數(shù)的任何次冪都是正數(shù);
五、:乘方的定義。
(1)求相同因式積的運算,叫做乘方;
(2)乘方中,相同的因式叫做底數(shù),相同因式的個數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;
(3)
(4)據(jù)規(guī)律底數(shù)的小數(shù)點移動一位,平方數(shù)的小數(shù)點移動二位.2.3.近似數(shù)的精確位:一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位.4.有效數(shù)字:從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個近似數(shù)的有效數(shù)字.5.混合運算法則:先乘方,后乘除,最后加減;注意:怎樣算簡單,怎樣算準(zhǔn)確,是數(shù)學(xué)計算的最重要的原則.6.特殊值法:是用符合題目要求的數(shù)代入,并驗證題設(shè)成立而進(jìn)行猜想的一種方法,但不能用于證明.六、:整式的加減。
1.單項式:在代數(shù)式中,若只含有乘法(包括乘方)運算。
或雖含有除法運算,但除式中不含字母的一類代數(shù)式叫單項式.2.單項式的系數(shù)與次數(shù):單項式中不為零的數(shù)字因數(shù),叫單項式的數(shù)字系數(shù),簡稱單項式的系數(shù);系數(shù)不為零時,單項式中所有字母指數(shù)的和,叫單項式的次數(shù).3.多項式:幾個單項式的和叫多項式.4.多項式的項數(shù)與次數(shù):多項式中所含單項式的個數(shù)就是多項式的項數(shù),每個單項式叫多項式的項;多項式里,次數(shù)項的次數(shù)叫多項式的次數(shù);注意:(若a、b、c、p、q是常數(shù))是常見的兩個二次三項式.5.整式:單項式和多項式統(tǒng)稱為整式.七、:整式分類為。
1.同類項:所含字母相同,并且相同字母的指數(shù)也相同的單項式是同類項.2.合并同類項法則:系數(shù)相加,字母與字母的指數(shù)不變.3.去(添)括號法則:去(添)括號時,若括號前邊是“+”號,括號里的各項都不變號;若括號前邊是“-”號,括號里的各項都要變號.4.整式的加減:整式的加減,實際上是在去括號的基礎(chǔ)上,把多項式的同類項合并.5.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數(shù)從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列).注意:多項式計算的最后結(jié)果一般應(yīng)該進(jìn)行升冪(或降冪)排列.八、:一元一次方程
1.等式與等量:用“=”號連接而成的式子叫等式.注意:“等量就能代入”!
2.等式的性質(zhì):
等式性質(zhì)1:等式兩邊都加上(或減去)同一個數(shù)或同一個整式,所得結(jié)果仍是等式;
等式性質(zhì)2:等式兩邊都乘以(或除以)同一個不為零的數(shù),所得結(jié)果仍是等式.3.方程:含未知數(shù)的等式,叫方程.4.方程的解:使等式左右兩邊相等的未知數(shù)的值叫方程的解;注意:“方程的解就能代入”!
5.移項:改變符號后,把方程的項從一邊移到另一邊叫移項.移項的依據(jù)是等式性質(zhì)1.6.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程.7.一元一次方程的標(biāo)準(zhǔn)形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0).8.一元一次方程的最簡形式:ax=b(x是未知數(shù),a、b是已知數(shù),且a≠0).9.一元一次方程解法的一般步驟:整理方程……去分母……去括號……移項……合并同類項……系數(shù)化為1……(檢驗方程的解).九、:列一元一次方程解應(yīng)用題。
(1)讀題分析法:…………多用于“和,差,倍,分問題”
仔細(xì)讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程.(2)畫圖分析法:…………多用于“行程問題”
利用圖形分析數(shù)學(xué)問題是數(shù)形結(jié)合思想在數(shù)學(xué)中的體現(xiàn),仔細(xì)讀題,依照題意畫出有關(guān)圖形,使圖形各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ).十、:.列方程解應(yīng)用題的常用公式。
初一上期數(shù)學(xué)知識點總結(jié)
第一章有理數(shù)
(一)正負(fù)數(shù)1.正數(shù):大于0的數(shù)。2.負(fù)數(shù):小于0的數(shù)。
3.0即不是正數(shù)也不是負(fù)數(shù)。
4.正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。
(二)有理數(shù)1.有理數(shù):由整數(shù)和分?jǐn)?shù)組成的數(shù)。包括:正整數(shù)、0、負(fù)整數(shù),正分?jǐn)?shù)、負(fù)分?jǐn)?shù)??梢詫懗蓛蓚€整之比的形式。(無理數(shù)是不能寫成兩個整數(shù)之比的形式,它寫成小數(shù)形式,小數(shù)點后的數(shù)字是無限不循環(huán)的。如:π)2.整數(shù):正整數(shù)、0、負(fù)整數(shù),統(tǒng)稱整數(shù)。3.分?jǐn)?shù):正分?jǐn)?shù)、負(fù)分?jǐn)?shù)。
(三)數(shù)軸1.數(shù)軸:用直線上的點表示數(shù),這條直線叫做數(shù)軸。(畫一條直線,在直線上任取一點表示數(shù)0,這個零點叫做原點,規(guī)定直線上從原點向右或向上為正方向;選取適當(dāng)?shù)拈L度為單位長度,以便在數(shù)軸上取點。)2.數(shù)軸的三要素:原點、正方向、單位長度。3.相反數(shù):只有符號不同的兩個數(shù)叫做互為相反數(shù)。0的相反數(shù)還是0。4.絕對值:正數(shù)的絕對值是它本身,負(fù)數(shù)的絕對值是它的相反數(shù);0的絕對值是0,兩個負(fù)數(shù),絕對值大的反而小。
(四)有理數(shù)的加減法
1.先定符號,再算絕對值。2.加法運算法則:同號相加,到相同符號,并把絕對值相加。異號相加,取絕對值大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值?;橄喾磾?shù)的兩個數(shù)相加得0。一個數(shù)同0相加減,仍得這個數(shù)。3.加法交換律:a+b=b+a兩個數(shù)相加,交換加數(shù)的位置,和不變。4.加法結(jié)合律:(a+b)+c=a+(b+c)三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。
5.a-b=a+(-b)減去一個數(shù),等于加這個數(shù)的相反數(shù)。
(五)有理數(shù)乘法(先定積的符號,再定積的大小)
1.同號得正,異號得負(fù),并把絕對值相乘。任何數(shù)同0相乘,都得0。
2.乘積是1的兩個數(shù)互為倒數(shù)。3.乘法交換律:ab=ba
4.乘法結(jié)合律:(ab)c=a(bc)5.乘法分配律:a(b+c)=ab+ac
(六)有理數(shù)除法
1.先將除法化成乘法,然后定符號,最后求結(jié)果。
2.除以一個不等于0的數(shù),等于乘這個數(shù)的倒數(shù)。
3.兩數(shù)相除,同號得正,異號得負(fù),并把絕對值相除,0除以任何一個不等于0的數(shù),都得0。
(七)乘方
1.求n個相同因數(shù)的積的運算,叫做乘方。寫作an。(乘方的結(jié)果叫冪,a叫底數(shù),n叫指數(shù))
2.負(fù)數(shù)的奇數(shù)次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù);0的任何正整數(shù)次冪都是0。
3.同底數(shù)冪相乘,底不變,指數(shù)相加。
4.同底數(shù)冪相除,底不變,指數(shù)相減。
(八)有理數(shù)的加減乘除混合運算法則
1.先乘方,再乘除,最后加減。
2.同級運算,從左到右進(jìn)行。
3.如有括號,先做括號內(nèi)的運算,按小括號、中括號、大括號依次進(jìn)行。
(九)科學(xué)記數(shù)法、近似數(shù)、有效數(shù)字。
第二章整式
(一)整式1.整式:單項式和多項式的統(tǒng)稱叫整式。2.單項式:數(shù)與字母的乘積組成的式子叫單項式。單獨的一個數(shù)或一個字母也是單項式。3.系數(shù):一個單項式中,數(shù)字因數(shù)叫做這個單項式的系數(shù)。4.次數(shù):一個單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。5.多項式:幾個單項式的和叫做多項式。6.項:組成多項式的每個單項式叫做多項式的項。7.常數(shù)項:不含字母的項叫做常數(shù)項。8.多項式的次數(shù):多項式中,次數(shù)最高的項的次數(shù)叫做這個多項式的次數(shù)。9.同類項:多項式中,所含字母相同,并且相同字母的指數(shù)也相同的項叫做同類項。10.合并同類項:把多項式中的同類項合并成一項,叫做合并同類項。
(二)整式加減整式加減運算時,如果遇到括號先去括號,再合并同類項。1.去括號:一般地,幾個整式相加減,如果有括號就先去括號,然后再合并同類項。如果括號外的因數(shù)是正數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相同。如果括號外的因數(shù)是負(fù)數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相反。2.合并同類項:把多項式中的同類項合并成一項,叫做合并同類項。合并同類項后,所得項的系數(shù)是合并前各同類項的系數(shù)的和,且字母部分不變。
初一上冊數(shù)學(xué)知識點總結(jié)
有理數(shù)及其運算板塊:
1、整數(shù)包含正整數(shù)和負(fù)整數(shù),分?jǐn)?shù)包含正分?jǐn)?shù)和負(fù)分?jǐn)?shù)。
正整數(shù)和正分?jǐn)?shù)通稱為正數(shù),負(fù)整數(shù)和負(fù)分?jǐn)?shù)通稱為負(fù)數(shù)。
2、正整數(shù)、0、負(fù)整數(shù)、正分?jǐn)?shù)、負(fù)分?jǐn)?shù)這樣的數(shù)稱為有理數(shù)。
3、絕對值:數(shù)軸上一個數(shù)所對應(yīng)的點與原點的距離叫做該數(shù)的絕對值,用“||”表示。
整式板塊:
1、單項式:由數(shù)與字母的乘積組成的式子叫做單項式。
2、單項式的次數(shù):一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù)。
3、整式:單項式與多項式統(tǒng)稱整式。
4、同類項:字母相同,并且相同字母的指數(shù)也相同的項叫做同類項。
一元一次方程。
1、含有未知數(shù)的等式叫做方程,使方程左右兩邊的.值都相等的未知數(shù)的值叫做方程的解。
2、移項:把等式一邊的某項變號后移到另一邊,叫做移項等。
其實,七年級上冊數(shù)學(xué)知識點總結(jié)還包括很多,但是我想,萬變不離其宗。
大家平時要注意整理與積累。配合多加練習(xí)。一些知識要點及時記錄在筆記本上,一些錯題也要及時整理、復(fù)習(xí)。一個個知識點去通過。我相信只要做個有心人,就可以在數(shù)學(xué)考試中取得高分。
第三篇:初一數(shù)學(xué)上冊知識點
初一數(shù)學(xué)上冊知識點:整式的加減
本文為大家介紹的是初一數(shù)學(xué)上冊知識點,是有關(guān)整式的加減法的,希望同學(xué)們熟記這些公式并能靈活的運用。
1.單項式:在代數(shù)式中,若只含有乘法(包括乘方)運算?;螂m含有除法運算,但除式中不含字母的一類代數(shù)式叫單項式.2.單項式的系數(shù)與次數(shù):單項式中不為零的數(shù)字因數(shù),叫單項式的數(shù)字系數(shù),簡稱單項式的系數(shù);系數(shù)不為零時,單項式中所有字母指數(shù)的和,叫單項式的次數(shù).3.多項式:幾個單項式的和叫多項式.4.多項式的項數(shù)與次數(shù):多項式中所含單項式的個數(shù)就是多項式的項數(shù),每個單項式叫多項式的項;多項式里,次數(shù)最高項的次數(shù)叫多項式的次數(shù);注意:(若a、b、c、p、q是常數(shù))ax2+bx+c和x2+px+q是常見的兩個二次三項式.5.整式:凡不含有除法運算,或雖含有除法運算但除式中不含字母的代數(shù)式叫整式.整式分類為:.6.同類項:所含字母相同,并且相同字母的指數(shù)也相同的單項式是同類項.7.合并同類項法則:系數(shù)相加,字母與字母的指數(shù)不變.8.去(添)括號法則:去(添)括號時,若括號前邊是“+”號,括號里的各項都不變號;若括號前邊是“-”號,括號里的各項都要變號.9.整式的加減:整式的加減,實際上是在去括號的基礎(chǔ)上,把多項式的同類項合并.10.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數(shù)從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列).注意:多項式計算的最后結(jié)果一般應(yīng)該進(jìn)行升冪(或降冪)排列.
第四篇:初一數(shù)學(xué)上冊知識點總結(jié)
初一數(shù)學(xué)(上)知識點
代數(shù)初步知識
1.代數(shù)式:用運算符號+
-
×
÷
連接數(shù)及字母的式子稱為代數(shù)式(單獨一個數(shù)或一個字
母也是代數(shù)式)
2.幾個重要的代數(shù)式:(m、n
表示整數(shù))
(1)a
與
b的平方差是:
a
2-b2;
a
與
b
差的平方是:(a-b)
2;
(2)若
a、b、c
是正整數(shù),則兩位整數(shù)是:
10a+b,則三位整數(shù)是:100a+10b+c;
(3)若
m、n
是整數(shù),則被
除商
m
余
n的數(shù)是:
5m+n
;偶數(shù)是:2n,奇數(shù)是:
2n+1;三個連續(xù)整數(shù)是:
n-1、n、n+1;
有理數(shù)
1.有理數(shù):
(1)凡能寫成qp
(p,q為整數(shù)且p
1
0)
形式的數(shù),都是有理數(shù).正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正
分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù).注意:0
即不是正數(shù),也不是負(fù)數(shù);-a
不
一定是負(fù)數(shù),+a
也不一定是正數(shù);p不是有理數(shù);
ì
ì正整數(shù)
?正分?jǐn)?shù)
ì
?
ì正整數(shù)
?正有理數(shù)í
?
整數(shù)í零
?
?
(2)有理數(shù)的分類:
①
②
??負(fù)整數(shù)
ì正分?jǐn)?shù)
有理數(shù)í零
有理數(shù)í
?
?
?
?
ì負(fù)整數(shù)
?負(fù)分?jǐn)?shù)
?負(fù)有理數(shù)í
?分?jǐn)?shù)í
?負(fù)分?jǐn)?shù)
(3)注意:有理數(shù)中,1、0、-1
是三個特殊的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性;
(4)自然數(shù)?
0
和正整數(shù);a>0
?
a
是正數(shù);a<0
?
a
是負(fù)數(shù);
a≥0
?
a
是正數(shù)或
0
?
a
是非負(fù)數(shù);a≤
0
?
a
是負(fù)數(shù)或
0
?
a
是非正數(shù).2.?dāng)?shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線.3.相反數(shù):
(1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是
0;
(2)注意:
a-b+c的相反數(shù)是-a+b-c;a-b的相反數(shù)是
b-a;a+b的相反數(shù)是-a-b;
(3)相反數(shù)的和為
0
?
a+b=0
?
a、b
互為相反數(shù).4.絕對值:
(1)正數(shù)的絕對值是其本身,0的絕對值是
0,負(fù)數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;
ìa
(a
0)
?
ìa
(a
3
0)
?
(2)
絕對值可表示為:
a
=
í0
(a
=
0)
或
a
=
a
(a
0)
;絕對值的問題經(jīng)常分類討論;
í
?-
a
(a
0)
?
a
a
(3)
=1?
a
0;
=
-1?
a
0;
a
a
a
(4)
|a|是重要的非負(fù)數(shù),即|a|≥0;注意:|a|·|b|=|a·b|,=
a
.b
b
5.有理數(shù)比大小:(1)正數(shù)的絕對值越大,這個數(shù)越大;(2)正數(shù)永遠(yuǎn)比
0
大,負(fù)數(shù)永
遠(yuǎn)比
0
?。唬?)正數(shù)大于一切負(fù)數(shù);(4)兩個負(fù)數(shù)比大小,絕對值大的反而??;(5)
數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù)
>
0,小數(shù)-大數(shù)
<
0.1
6.互為倒數(shù):乘積為
1的兩個數(shù)互為倒數(shù);注意:0
沒有倒數(shù);若
a≠0,那么
a的倒數(shù)是;
a
倒數(shù)是本身的數(shù)是±1;若
ab=1?
a、b
互為倒數(shù);若
ab=-1?
a、b
互為負(fù)倒數(shù).7.有理數(shù)加法法則:
(1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;
(2)異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;
(3)一個數(shù)與
0
相加,仍得這個數(shù).8.有理數(shù)加法的運算律:
(1)加法的交換律:a+b=b+a
;(2)加法的結(jié)合律:(a+b)+c=a+(b+c).9.有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù);即
a-b=a+(-b).10
有理數(shù)乘法法則:
(1)兩數(shù)相乘,同號為正,異號為負(fù),并把絕對值相乘;
(2)任何數(shù)同零相乘都得零;
(3)幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負(fù)因式的個
數(shù)決定.11
有理數(shù)乘法的運算律:
(1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac
.a
12.有理數(shù)除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù),即
無意義.0
13.有理數(shù)乘方的法則:
(1)正數(shù)的任何次冪都是正數(shù);
(2)負(fù)數(shù)的奇次冪是負(fù)數(shù);負(fù)數(shù)的偶次冪是正數(shù);注意:當(dāng)
n
為正奇數(shù)時:
(-a)
-b)
=-(b-a),當(dāng)
n
為正偶數(shù)時:
(-a)
=a
或
(a-b)
=(b-a)
14.乘方的定義:
(1)求相同因式積的運算,叫做乘方;
(2)乘方中,相同的因式叫做底數(shù),相同因式的個數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;
(3)a
是重要的非負(fù)數(shù),即
a
≥0;若
a
+|b|=0
?
a=0,b=0;的形式,其中
a
是整數(shù)數(shù)位只有一位的n
=-a
n
或(a
n
n
n
n
n
n
.2
15.科學(xué)記數(shù)法:把一個大于
10的數(shù)記成a×10
n
數(shù),這種記數(shù)法叫科學(xué)記數(shù)法.16.近似數(shù)的精確位:一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位.17.有效數(shù)字:從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個近似
數(shù)的有效數(shù)字.18.混合運算法則:先乘方,后乘除,最后加減;注意:怎樣算簡單,怎樣算準(zhǔn)確,是數(shù)學(xué)
計算的最重要的原則.19.特殊值法:是用符合題目要求的數(shù)代入,并驗證題設(shè)成立而進(jìn)行猜想的一種方法,但不能
用于證明.整式的加減
1.單項式:在代數(shù)式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中
不含字母的一類代數(shù)式叫單項式.2.單項式的系數(shù)與次數(shù):單項式中不為零的數(shù)字因數(shù),叫單項式的數(shù)字系數(shù),簡稱單項式的系數(shù);系數(shù)不為零時,單項式中所有字母指數(shù)的和,叫單項式的次數(shù).3.多項式:幾個單項式的和叫多項式.4.多項式的項數(shù)與次數(shù):多項式中所含單項式的個數(shù)就是多項式的項數(shù),每個單項式叫多
項式的項;多項式里,次數(shù)最高項的次數(shù)叫多項式的次數(shù);注意:(若
a、b、c、p、q
是常數(shù))ax
+bx+c
和
x
+px+q
是常見的兩個二次三項式.2
5.整式:凡不含有除法運算,或雖含有除法運算但除式中不含字母的代數(shù)式叫整式.ì
單項式
整式分類為:整式
.í
?
多項式
6.同類項:所含字母相同,并且相同字母的指數(shù)也相同的單項式是同類項.7.合并同類項法則:系數(shù)相加,字母與字母的指數(shù)不變.8.去(添)括號法則:去(添)括號時,若括號前邊是“+”號,括號里的各項都不變號;
若括號前邊是“-”號,括號里的各項都要變號.9.整式的加減:整式的加減,實際上是在去括號的基礎(chǔ)上,把多項式的同類項合并.10.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數(shù)從小到大(或從大到
?。┡帕衅饋?,叫做按這個字母的升冪排列(或降冪排列).注意:多項式計算的最后結(jié)果一
般應(yīng)該進(jìn)行升冪(或降冪)排列.一元一次方程
1.等式的性質(zhì):
等式性質(zhì)
1:等式兩邊都加上(或減去)同一個數(shù)或同一個整式,所得結(jié)果仍是等式;
等式性質(zhì)
2:等式兩邊都乘以(或除以)同一個不為零的數(shù),所得結(jié)果仍是等式.2.方程:含未知數(shù)的等式,叫方程.3.方程的解:使等式左右兩邊相等的未知數(shù)的值叫方程的解;注意:“方程的解就能代入”!
4.一元一次方程:只含有一個未知數(shù),且未知數(shù)的次數(shù)是
1,并且含未知數(shù)項的系數(shù)不是
零的整式方程是一元一次方程.7.一元一次方程的標(biāo)準(zhǔn)形式:
ax+b=0(x
是未知數(shù),a、b
是已知數(shù),且
a≠0).8.一元一次方程的最簡形式:
ax=b(x
是未知數(shù),a、b
是已知數(shù),且
a≠0).9.一元一次方程一般步驟:整理方程
。去分母
…去括號
…移項
…
合并同類項
…
系數(shù)化
為
…
(檢驗方程的解).10.列方程解應(yīng)用題的常用公式:
周長、面積、體積問題:C
=2πR,S
=πR
2,C
長方形=2(a+b),S
長方形=ab,C
正方形=4a,圓
圓
S
正方形=a
2,S
環(huán)形=π(R
-r
2),V
長方體=abc,V
正方體=a
3,V
圓柱=πR
h,V
圓錐=
πR
h.3
相交線與平行線
一、知識網(wǎng)絡(luò)結(jié)構(gòu)
二、知識要點
1、在同一平面內(nèi),兩條直線的位置關(guān)系有
兩
種:
相交
和
平行,垂直
是相交的一種
特殊情況。
2、在同一平面內(nèi),不相交的兩條直線叫
平行線
。如果兩條直線只有
一個
公共點,稱這
兩條直線相交;如果兩條直線
沒有
公共點,稱這兩條直線平行。
3、兩條直線相交所構(gòu)成的四個角中,有
公共頂點
且有
一條公共邊的兩個角是
鄰補角。鄰補角的性質(zhì):
鄰補角互補
。如圖
所示,與
互為鄰補角,與
互為鄰補角。
+
=
180°;
+
=
180°;
+
=
180°;
+
=
180°。
4、兩條直線相交所構(gòu)成的四個角中,一個角的兩邊分別是另一個角的兩邊的反向延長線,這樣的兩個角互為
對頂角
。對頂角的性質(zhì):對頂角相等。如圖
所示,與
互為對頂角。
=
;
=。
5、兩條直線相交所成的角中,如果有一個是
直角或
90°時,稱這兩條直線互相垂直,其中一條叫做另一條的垂線。如圖
所示,當(dāng)
=
90°時,⊥。
垂線的性質(zhì):
性質(zhì)
1:過一點有且只有一條直線與已知直線垂直。
性質(zhì)
2:連接直線外一點與直線上各點的所有線段中,垂線段最短。
性質(zhì)
3:如圖
所示,當(dāng)
a
⊥
b
時,=
=
=
=
90°。
點到直線的距離:直線外一點到這條直線的垂線段的長度叫點到直線的距離。
6、同位角、內(nèi)錯角、同旁內(nèi)角基本特征:
①在兩條直線(被截線)的同一方,都在第三條直線(截線)的同一側(cè),這樣的兩個角叫
同位角
。圖
中,共有
對同位角:
與
是同位角;
與
是同位角;
與
是同位角;
與
是同位角。
②在兩條直線(被截線)
之間,并且在第三條直線(截線)的兩側(cè),這樣的兩個角叫
內(nèi)錯
角
。圖
中,共有
對內(nèi)錯角:
與
是內(nèi)錯角;
與
是內(nèi)錯角。
③在兩條直線(被截線)的之間,都在第三條直線(截線)的同一旁,這樣的兩個角叫
同旁
內(nèi)角
。圖
中,共有
對同旁內(nèi)角:
與
是同旁內(nèi)角;
與
是同旁內(nèi)角。
7、平行公理:經(jīng)過直線外一點有且只有一條直線與已知直線平行。
平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。
平行線的性質(zhì):
性質(zhì)
1:兩直線平行,同位角相等。如圖
所示,如果
a∥b,則
=
;
=
;
=
;
=。
性質(zhì)
2:兩直線平行,內(nèi)錯角相等。如圖
所示,如果
a∥b,則
=
;
=。
性質(zhì)
3:兩直線平行,同旁內(nèi)角互補。如圖
所示,如果
a∥b,則
+
=
180°;
+
=
180°。
性質(zhì)
4:平行于同一條直線的兩條直線互相平行。如果
a∥b,a∥c,則
∥。
8、平行線的判定:
判定
1:同位角相等,兩直線平行。如圖
所示,如果
=
或
=
或
=
或
=,則
a∥b。
判定
2:內(nèi)錯角相等,兩直線平行。如圖
所示,如果
=
或
=,則
a∥b。
判定
3:同旁內(nèi)角互補,兩直線平行。如圖
所示,如果
+
=
180°;
+
=
180°,則
a∥b。
判定
4:平行于同一條直線的兩條直線互相平行。如果
a∥b,a∥c,則
∥。
9、判斷一件事情的語句叫命題。命題由
題設(shè)
和
結(jié)論
兩部分組成,有
真命題
和
假命
題
之分。如果題設(shè)成立,那么結(jié)論
一定
成立,這樣的命題叫
真命題
;如果題設(shè)成立,那
么結(jié)論
不一定
成立,這樣的命題叫假命題。真命題的正確性是經(jīng)過推理證實的,這樣的真
命題叫定理,它可以作為繼續(xù)推理的依據(jù)。
10、平移:在平面內(nèi),將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移
變換,簡稱平移。
平移后,新圖形與原圖形的形狀
和
大小
完全相同。平移后得到的新圖形中每一點,都是
由原圖形中的某一點移動后得到的,這樣的兩個點叫做對應(yīng)點。
平移性質(zhì):平移前后兩個圖形中①對應(yīng)點的連線平行且相等;②對應(yīng)線段相等;③對應(yīng)角相等。
第六章
實數(shù)
【知識點一】實數(shù)的分類
1、按定義分類:
2.按性質(zhì)符號分類:
注:0
既不是正數(shù)也不是負(fù)數(shù).【知識點二】實數(shù)的相關(guān)概念
1.相反數(shù)
(1)代數(shù)意義:只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù).0的相反數(shù)是
0.(2)幾何意義:在數(shù)軸上原點的兩側(cè),與原點距離相等的兩個點表示的兩個數(shù)互為相反數(shù),或數(shù)軸上,互為相反數(shù)的兩個數(shù)所對應(yīng)的點關(guān)于原點對稱.(3)互為相反數(shù)的兩個數(shù)之和等于
0.a、b
互為相反數(shù)
a+b=0.2.絕對值
|a|≥0.3.倒數(shù)
(1)0
沒有倒數(shù)
(2)乘積是
1的兩個數(shù)互為倒數(shù).a、b
互為倒數(shù)
.4.平方根
(1)如果一個數(shù)的平方等于
a,這個數(shù)就叫做
a的平方根.一個正數(shù)有兩個平方根,它們互為
相反數(shù);0
有一個平方根,它是
0
本身;負(fù)數(shù)沒有平方根.a(a≥0)的平方根記作.(2)一個正數(shù)
a的正的平方根,叫做
a的算術(shù)平方根.a(a≥0)的算術(shù)平方根記作
.5.立方根
如果
x3=a,那么
x
叫做
a的立方根.一個正數(shù)有一個正的立方根;一個負(fù)數(shù)有一個負(fù)的立方
根;零的立方根是零.【知識點三】實數(shù)與數(shù)軸
數(shù)軸定義:
規(guī)定了原點,正方向和單位長度的直線叫做數(shù)軸,數(shù)軸的三要素缺一不可.【知識點四】實數(shù)大小的比較
1.對于數(shù)軸上的任意兩個點,靠右邊的點所表示的數(shù)較大.2.正數(shù)都大于
0,負(fù)數(shù)都小于
0,兩個正數(shù),絕對值較大的那個正數(shù)大;兩個負(fù)數(shù);絕對值大的反而小.3.無理數(shù)的比較大?。?/p>
【知識點五】實數(shù)的運算
1.加法
同號兩數(shù)相加,取相同的符號,并把絕對值相加;絕對值不相等的異號兩數(shù)相加,取絕對值
較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;互為相反數(shù)的兩個數(shù)相加得
0;一
個數(shù)同
0
相加,仍得這個數(shù).2.減法:減去一個數(shù)等于加上這個數(shù)的相反數(shù).3.乘法
幾個非零實數(shù)相乘,積的符號由負(fù)因數(shù)的個數(shù)決定,當(dāng)負(fù)因數(shù)有偶數(shù)個時,積為正;當(dāng)負(fù)因
數(shù)有奇數(shù)個時,積為負(fù).幾個數(shù)相乘,有一個因數(shù)為
0,積就為
0.4.除法
除以一個數(shù),等于乘上這個數(shù)的倒數(shù).兩個數(shù)相除,同號得正,異號得負(fù),并把絕對值相除.0
除以任何一個不等于
0的數(shù)都得
0.5.乘方與開方
(1)an
所表示的意義是
n
個
a
相乘,正數(shù)的任何次冪是正數(shù),負(fù)數(shù)的偶次冪是正數(shù),負(fù)數(shù)的奇次冪是負(fù)數(shù).(2)正數(shù)和
0
可以開平方,負(fù)數(shù)不能開平方;正數(shù)、負(fù)數(shù)和
0
都可以開立方.(3)零指數(shù)與負(fù)指數(shù)
【知識點六】有效數(shù)字和科學(xué)記數(shù)法
1.有效數(shù)字:
一個近似數(shù),從左邊第一個不是
0的數(shù)字起,到精確到的數(shù)位為止,所有的數(shù)字,都叫做
這個近似數(shù)的有效數(shù)字.2.科學(xué)記數(shù)法:
把一個數(shù)用
(1≤
<10,n
為整數(shù))的形式記數(shù)的方法叫科學(xué)記數(shù)法.第七章
平面直角坐標(biāo)系
一、知識網(wǎng)絡(luò)結(jié)構(gòu)
二、知識要點
1、有序數(shù)對:有順序的兩個數(shù)
a
與
b
組成的數(shù)對叫做有序數(shù)對,記做(a,b)。
2、平面直角坐標(biāo)系:在平面內(nèi),兩條互相垂直且有公共原點的數(shù)軸組成平面直角坐標(biāo)系。
3、橫軸、縱軸、原點:水平的數(shù)軸稱為
x
軸或橫軸;豎直的數(shù)軸稱為
y
軸或縱軸;兩坐標(biāo)軸的交點為平面直角坐標(biāo)系的原點。
4、坐標(biāo):對于平面內(nèi)任一點
P,過
P
分別向
x
軸,y
軸作垂線,垂足分別在x
軸,y
軸上,對應(yīng)的數(shù)
a,b
分別叫點
P的橫坐標(biāo)和縱坐標(biāo),記作
P(a,b)。
5、象限:兩條坐標(biāo)軸把平面分成四個部分,右上部分叫第一象限,按逆時針方向依次叫第二象限、第三象限、第四象限。坐標(biāo)軸上的點不在任何一個象限內(nèi)。
6、各象限點的坐標(biāo)特點①第一象限的點:橫坐標(biāo)
0,縱坐標(biāo)
0;②第二象限的點:橫坐標(biāo)
0,縱坐標(biāo)
0;③第三象限的點:橫坐標(biāo)
0,縱坐標(biāo)
0;④第四象限的點:橫坐標(biāo)
0,縱坐標(biāo)
0。
7、坐標(biāo)軸上點的坐標(biāo)特點①x
軸正半軸上的點:橫坐標(biāo)
0,縱坐標(biāo)
0;②x
軸負(fù)半軸上的點:
橫坐標(biāo)
0,縱坐標(biāo)
0;③y
軸正半軸上的點:橫坐標(biāo)
0,縱坐標(biāo)
0;④y
軸負(fù)半軸上的點:橫
坐
標(biāo)
0,縱坐標(biāo)
0;⑤坐標(biāo)原點:橫坐標(biāo)
0,縱坐標(biāo)
0。(填“>”、“<”或“=”)
8、點
P(a,b)到
x
軸的距離是
|b|,到
y
軸的距離是
|a|。
9、對稱點的坐標(biāo)特點①關(guān)于
x
軸對稱的兩個點,橫坐標(biāo)
相等,縱坐標(biāo)
互為相反數(shù);②關(guān)于
y
軸對稱的兩個點,縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù);③關(guān)于原點對稱的兩個點,橫坐標(biāo)、縱
坐標(biāo)分別互為相反數(shù)。
10、點
P(2,3)
到
x
軸的距離是
;
到
y
軸的距離是
;
點
P(2,3)
關(guān)于
x
軸對稱的點坐標(biāo)
為(,);點
P(2,3)
關(guān)于
y
軸對稱的點坐標(biāo)為(,)。
11、如果兩個點的橫坐標(biāo)
相同,則過這兩點的直線與
y
軸平行、與
x
軸垂直
;如果兩點的縱坐標(biāo)相同,則過這兩點的直線與
x
軸平行、與
y
軸垂直
。如果點
P(2,3)、Q(2,6),這
兩點橫坐標(biāo)相同,則
PQ∥y
軸,PQ⊥x
軸;如果點
P(-1,2)、Q(4,2),這兩點縱坐標(biāo)相同,則
PQ∥x
軸,PQ⊥y
軸。
12、平行于
x
軸的直線上的點的縱坐標(biāo)相同;平行于
y
軸的直線上的點的橫坐標(biāo)相同;在一、三象限角平分線上的點的橫坐標(biāo)與縱坐標(biāo)相同;在二、四象限角平分線上的點的橫坐標(biāo)與縱
坐標(biāo)互為相反數(shù)。如果點
P(a,b)
在一、三象限角平分線上,則
P
點的橫坐標(biāo)與縱坐標(biāo)相
同,即
a
=
b
;如果點
P(a,b)
在二、四象限角平分線上,則
P
點的橫坐標(biāo)與縱坐標(biāo)互為相
反數(shù),即
a
=
-b。
13、表示一個點(或物體)的位置的方法:一是準(zhǔn)確恰當(dāng)?shù)亟⑵矫嬷苯亲鴺?biāo)系;二是正確寫
出物體或某地所在的點的坐標(biāo)。選擇的坐標(biāo)原點不同,建立的平面直角坐標(biāo)系也不同,得到的同一個點的坐標(biāo)也不同。
14、圖形的平移可以轉(zhuǎn)化為點的平移。坐標(biāo)平移規(guī)律:①左右平移時,橫坐標(biāo)進(jìn)行加減,縱坐標(biāo)不變;②上下平移時,橫坐標(biāo)不變,縱坐標(biāo)進(jìn)行加減;③坐標(biāo)進(jìn)行加減時,按“左減右
加、上加下減”的規(guī)律進(jìn)行。如將點
P(2,3)向左平移
個單位后得到的點的坐標(biāo)為(,);
將點
P(2,3)向右平移
個單位后得到的點的坐標(biāo)為(,);將點
P(2,3)向上平移
個單位
后得到的點的坐標(biāo)為(,);將點
P(2,3)向下平移
個單位后得到的點的坐標(biāo)為(,);將點
P(2,3)先向左平移
個單位后再向上平移
個單位后得到的點的坐標(biāo)為(,);將點
P(2,3)先向左平移
個單位后再向下平移
個單位后得到的點的坐標(biāo)為(,);將點
P(2,3)先向
右平移
個單位后再向上平移
個單位后得到的點的坐標(biāo)為(,);將點
P(2,3)先向右平移
個單位后再向下平移
個單位后得到的點的坐標(biāo)為(,)。
第八章
二元一次方程組
一、知識網(wǎng)絡(luò)結(jié)構(gòu)
二、知識要點
1、含有未知數(shù)的等式叫方程,使方程左右兩邊的值相等的未知數(shù)的值叫方程的解。
2、方程含有兩個未知數(shù),并且含有未知數(shù)的項的次數(shù)都是
1,這樣的方程叫二元一次方程,二元一次方程的一般形式為
(為常數(shù),并且)。使二元一次方程的左右兩邊的值相等的未
知數(shù)的值叫二元一次方程的解,一個二元一次方程一般有無數(shù)組解。
3、方程組含有兩個未知數(shù),并且含有未知數(shù)的項的次數(shù)都是
1,這樣的方程組叫二元一次
方程組。使二元一次方程組每個方程的左右兩邊的值相等的未知數(shù)的值叫二元一次方程組的解,一個二元一次方程組一般有一個解。
4、用代入法解二元一次方程組的一般步驟:觀察方程組中,是否有用含一個未知數(shù)的式子
表示另一個未知數(shù),如果有,則將它直接代入另一個方程中;如果沒有,則將其中一個方程
變形,用含一個未知數(shù)的式子表示另一個未知數(shù);再將表示出的未知數(shù)代入另一個方程中,從而消去一個未知數(shù),求出另一個未知數(shù)的值,將求得的未知數(shù)的值代入原方程組中的任何
一個方程,求出另外一個未知數(shù)的值。
5、用加減法解二元一次方程組的一般步驟:(1)方程組的兩個方程中,如果同一個未知數(shù)的系數(shù)既不相等又不互為相反數(shù),就用適當(dāng)?shù)臄?shù)去乘方程的兩邊,使同一個未知數(shù)的系數(shù)相等
或互為相反數(shù);(2)把兩個方程的兩邊分別相加或相減,消去一個未知數(shù);(3)解這個一元一次方
程,求出一個未知數(shù)的值;(4)將求出的未知數(shù)的值代入原方程組中的任何一個方程,求出另
外一個未知數(shù)的值,從而得到原方程組的解。
6、解三元一次方程組的一般步驟:①觀察方程組中未知數(shù)的系數(shù)特點,確定先消去哪個未
知數(shù);②利用代入法或加減法,把方程組中的一個方程,與另外兩個方程分別組成兩組,消
去同一個未知數(shù),得到一個關(guān)于另外兩個未知數(shù)的二元一次方程組;③解這個二元一次方程
組,求得兩個未知數(shù)的值;④將這兩個未知數(shù)的值代入原方程組中較簡單的一個方程中,求
出第三個未知數(shù)的值,從而得到原三元一次方程組的解。
第九章
不等式與不等式組
一、知識網(wǎng)絡(luò)結(jié)構(gòu)
二、知識要點
1、用不等號表示不等關(guān)系的式子叫不等式,不等號主要包括:、、≥、≤、≠。
2、在含有未知數(shù)的不等式中,使不等式成立的未知數(shù)的值叫不等式的解,一個含有未知數(shù)的不等式的所有的解組成的集合,叫這個不等式的解集。不等式的解集可以在數(shù)軸上表示出
來。求不等式的解集的過程叫解不等式。含有一個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是
1,這樣的不等式叫一元一次不等式。
3、不等式的性質(zhì):
①性質(zhì)
1:不等式的兩邊同時加上(或減去)同一個數(shù)(或式子),不等號的方向
不變。
用字母表示為:
如果,那么
;
如果,那么
;
如果,那么
;
如果,那么。
②性質(zhì)
2:不等式的兩邊同時乘以(或除以)同一個
正數(shù),不等號的方向
不變。
用字母表示為:
如果,那么
(或);如果,那么
(或);
如果,那么
(或);如果,那么
(或);
③性質(zhì)
3:不等式的兩邊同時乘以(或除以)同一個
負(fù)數(shù),不等號的方向
改變。
用字母表示為:
如果,那么
(或);如果,那么
(或);
如果,那么
(或);如果,那么
(或);
4、解一元一次不等式的一般步驟:①去分母;②去括號;③移項;④合并同類項;
⑤系數(shù)化為
。這與解一元一次方程類似,在解時要根據(jù)一元一次不等式的具體情況靈活選擇步驟。
5、不等式組中含有一個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是
1,這樣的不等式組叫一
元一次不等式組。使不等式組中的每個不等式都成立的未知數(shù)的值叫不等式組的解,一個不
等式組的所有的解組成的集合,叫這個不等式組的解集解(簡稱不等式組的解)。不等式組的解集可以在數(shù)軸上表示出來。求不等式組的解集的過程叫解不等式組。
6、解一元一次不等式組的一般步驟:①求出這個不等式組中各個不等式的解集;②利用數(shù)軸
求出這些不等式的解集的公共部分,得到這個不等式組的解集。如果這些不等式的解集的沒
有公共部分,則這個不等式組無解
(此時也稱這個不等式組的解集為空集)。
7、求出各個不等式的解集后,確定不等式組的解的口訣:大大取大,小小取小,大小小大
取中間,大大小小無處找。
第十章
數(shù)據(jù)的收集、整理與描述
知識要點
1、對數(shù)據(jù)進(jìn)行處理的一般過程:收集數(shù)據(jù)、整理數(shù)據(jù)、描述數(shù)據(jù)、分析得出結(jié)論。
2、數(shù)據(jù)收集過程中,調(diào)查的方法通常有兩種:全面調(diào)查和抽樣調(diào)查。
3、除了文字?jǐn)⑹?、列表、劃記法外,還可以用條形圖、折線圖、扇形圖、直方圖來描述數(shù)
據(jù)。
4、抽樣調(diào)查簡稱抽查,它只抽取一部分對象進(jìn)行調(diào)查,根據(jù)調(diào)查數(shù)據(jù)推斷全體對象的情況。
要考察的全體對象叫總體,組成總體的每一個考察對象叫個體,被抽取的那部分個體組成總
體的一個樣本,樣本中個體的數(shù)目叫這個樣本的容量。
5、畫頻數(shù)直方圖的步驟:①計算數(shù)差(最大值與最小值的差);②確定組距和組數(shù);③列頻數(shù)分
布表;④畫頻數(shù)直方圖。
第五篇:初一數(shù)學(xué)上冊知識點2021
初一數(shù)學(xué)上冊知識點有哪些你知道嗎?數(shù)學(xué)是研究數(shù)量、結(jié)構(gòu)、變化、空間以及信息等概念的一門學(xué)科,從某種角度看屬于形式科學(xué)的一種。一起來看看初一數(shù)學(xué)上冊知識點2021,歡迎查閱!
初一上冊數(shù)學(xué)知識點總結(jié)
有理數(shù)及其運算板塊:
1、整數(shù)包含正整數(shù)和負(fù)整數(shù),分?jǐn)?shù)包含正分?jǐn)?shù)和負(fù)分?jǐn)?shù)。正整數(shù)和正分?jǐn)?shù)通稱為正數(shù),負(fù)整數(shù)和負(fù)分?jǐn)?shù)通稱為負(fù)數(shù)。
2、正整數(shù)、0、負(fù)整數(shù)、正分?jǐn)?shù)、負(fù)分?jǐn)?shù)這樣的數(shù)稱為有理數(shù)。
3、絕對值:數(shù)軸上一個數(shù)所對應(yīng)的點與原點的距離叫做該數(shù)的絕對值,用“||”表示。
整式板塊:
1、單項式:由數(shù)與字母的乘積組成的式子叫做單項式。
2、單項式的次數(shù):一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù)。
3、整式:單項式與多項式統(tǒng)稱整式。
4、同類項:字母相同,并且相同字母的指數(shù)也相同的項叫做同類項。
一元一次方程。
1、含有未知數(shù)的等式叫做方程,使方程左右兩邊的.值都相等的未知數(shù)的值叫做方程的解。
2、移項:把等式一邊的某項變號后移到另一邊,叫做移項等。
其實,七年級上冊數(shù)學(xué)知識點總結(jié)還包括很多,但是我想,萬變不離其宗。
大家平時要注意整理與積累。配合多加練習(xí)。一些知識要點及時記錄在筆記本上,一些錯題也要及時整理、復(fù)習(xí)。一個個知識點去通過。我相信只要做個有心人,就可以在數(shù)學(xué)考試中取得高分。
初一上冊數(shù)學(xué)知識點整理
一、:代數(shù)初步知識。
1.代數(shù)式:用運算符號“+-×÷……”連接數(shù)及表示數(shù)的字母的式子稱為代數(shù)式(字母所取得數(shù)應(yīng)保證它所在的式子有意義,其次字母所取得數(shù)還應(yīng)使實際生活或生產(chǎn)有意義;單獨一個數(shù)或一個字母也是代數(shù)式)
2.列代數(shù)式的幾個注意事項:
(1)數(shù)與字母相乘,或字母與字母相乘通常使用“?”乘,或省略不寫;
(2)數(shù)與數(shù)相乘,仍應(yīng)使用“×”乘,不用“?”乘,也不能省略乘號;
(3)數(shù)與字母相乘時,一般在結(jié)果中把數(shù)寫在字母前面,如a×5應(yīng)寫成5a;
(4)帶分?jǐn)?shù)與字母相乘時,要把帶分?jǐn)?shù)改成假分?jǐn)?shù)形式,如a×應(yīng)寫成a;
(5)在代數(shù)式中出現(xiàn)除法運算時,一般用分?jǐn)?shù)線將被除式和除式聯(lián)系,如3÷a寫成的形式;
(6)a與b的差寫作a-b,要注意字母順序;若只說兩數(shù)的差,當(dāng)分別設(shè)兩數(shù)為a、b時,則應(yīng)分類,寫做a-b和b-a.二、:幾個重要的代數(shù)式(m、n表示整數(shù))。
(1)a與b的平方差是:a2-b2;a與b差的平方是:(a-b)2;
(2)若a、b、c是正整數(shù),則兩位整數(shù)是:10a+b,則三位整數(shù)是:100a+10b+c;
(3)若m、n是整數(shù),則被5除商m余n的數(shù)是:5m+n;偶數(shù)是:2n,奇數(shù)是:2n+1;三個連續(xù)整數(shù)是:n-1、n、n+1;
(4)若b>0,則正數(shù)是:a2+b,負(fù)數(shù)是:-a2-b,非負(fù)數(shù)是:a2,非正數(shù)是:-a2.三、:有理數(shù)。
1.有理數(shù):
(1)凡能寫成形式的數(shù),都是有理數(shù).正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);π不是有理數(shù);
(2)有理數(shù)的分類:①②
(3)注意:有理數(shù)中,1、0、-1是三個特殊的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性;
(4)
2.數(shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線.3.相反數(shù):
(1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;
(2)注意:a-b+c的相反數(shù)是-a+b-c;a-b的相反數(shù)是b-a;a+b的相反數(shù)是-a-b;
(3)
4.絕對值:
(1)正數(shù)的絕對值是其本身,0的絕對值是0,負(fù)數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;
(2)絕對值可表示為:初一上冊知識點絕對值的問題經(jīng)常分類討論;
(3)
(4)|a|是重要的非負(fù)數(shù),即|a|≥0;注意:|a|?|b|=|a?b|,5.有理數(shù)比大?。?1)正數(shù)的絕對值越大,這個數(shù)越大;(2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0小;(3)正數(shù)大于一切負(fù)數(shù);(4)兩個負(fù)數(shù)比大小,絕對值大的反而小;(5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù)>0,小數(shù)-大數(shù)<0.四、:有理數(shù)法則及運算規(guī)律。
(1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;
(2)異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;
(3)一個數(shù)與0相加,仍得這個數(shù).2.有理數(shù)加法的運算律:
(1)加法的交換律:a+b=b+a;(2)加法的結(jié)合律:(a+b)+c=a+(b+c).3.有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a-b=a+(-b).4.有理數(shù)乘法法則:
(1)兩數(shù)相乘,同號為正,異號為負(fù),并把絕對值相乘;
(2)任何數(shù)同零相乘都得零;
(3)幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負(fù)因式的個數(shù)決定.5.有理數(shù)乘法的運算律:
(1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac.6.有理數(shù)除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù),.7.有理數(shù)乘方的法則:
(1)正數(shù)的任何次冪都是正數(shù);
五、:乘方的定義。
(1)求相同因式積的運算,叫做乘方;
(2)乘方中,相同的因式叫做底數(shù),相同因式的個數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;
(3)
(4)據(jù)規(guī)律底數(shù)的小數(shù)點移動一位,平方數(shù)的小數(shù)點移動二位.2.3.近似數(shù)的精確位:一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位.4.有效數(shù)字:從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個近似數(shù)的有效數(shù)字.5.混合運算法則:先乘方,后乘除,最后加減;注意:怎樣算簡單,怎樣算準(zhǔn)確,是數(shù)學(xué)計算的最重要的原則.6.特殊值法:是用符合題目要求的數(shù)代入,并驗證題設(shè)成立而進(jìn)行猜想的一種方法,但不能用于證明.六、:整式的加減。
1.單項式:在代數(shù)式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數(shù)式叫單項式.2.單項式的系數(shù)與次數(shù):單項式中不為零的數(shù)字因數(shù),叫單項式的數(shù)字系數(shù),簡稱單項式的系數(shù);系數(shù)不為零時,單項式中所有字母指數(shù)的和,叫單項式的次數(shù).3.多項式:幾個單項式的和叫多項式.4.多項式的項數(shù)與次數(shù):多項式中所含單項式的個數(shù)就是多項式的項數(shù),每個單項式叫多項式的項;多項式里,次數(shù)項的次數(shù)叫多項式的次數(shù);注意:(若a、b、c、p、q是常數(shù))是常見的兩個二次三項式.5.整式:單項式和多項式統(tǒng)稱為整式.七、:整式分類為。
1.同類項:所含字母相同,并且相同字母的指數(shù)也相同的單項式是同類項.2.合并同類項法則:系數(shù)相加,字母與字母的指數(shù)不變.3.去(添)括號法則:去(添)括號時,若括號前邊是“+”號,括號里的各項都不變號;若括號前邊是“-”號,括號里的各項都要變號.4.整式的加減:整式的加減,實際上是在去括號的基礎(chǔ)上,把多項式的同類項合并.5.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數(shù)從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列).注意:多項式計算的最后結(jié)果一般應(yīng)該進(jìn)行升冪(或降冪)排列.八、:一元一次方程
1.等式與等量:用“=”號連接而成的式子叫等式.注意:“等量就能代入”!
2.等式的性質(zhì):
等式性質(zhì)1:等式兩邊都加上(或減去)同一個數(shù)或同一個整式,所得結(jié)果仍是等式;
等式性質(zhì)2:等式兩邊都乘以(或除以)同一個不為零的數(shù),所得結(jié)果仍是等式.3.方程:含未知數(shù)的等式,叫方程.4.方程的解:使等式左右兩邊相等的未知數(shù)的值叫方程的解;注意:“方程的解就能代入”!
5.移項:改變符號后,把方程的項從一邊移到另一邊叫移項.移項的依據(jù)是等式性質(zhì)1.6.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程.7.一元一次方程的標(biāo)準(zhǔn)形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0).8.一元一次方程的最簡形式:ax=b(x是未知數(shù),a、b是已知數(shù),且a≠0).9.一元一次方程解法的一般步驟:整理方程……去分母……去括號……移項……合并同類項……系數(shù)化為1……(檢驗方程的解).九、:列一元一次方程解應(yīng)用題。
(1)讀題分析法:…………多用于“和,差,倍,分問題”
仔細(xì)讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程.(2)畫圖分析法:…………多用于“行程問題”
利用圖形分析數(shù)學(xué)問題是數(shù)形結(jié)合思想在數(shù)學(xué)中的體現(xiàn),仔細(xì)讀題,依照題意畫出有關(guān)圖形,使圖形各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ).十、:.列方程解應(yīng)用題的常用公式。
初一數(shù)學(xué)上冊知識點
整式的加減
1.單項式:表示數(shù)字或字母乘積的式子,單獨的一個數(shù)字或字母也叫單項式。
2.單項式的系數(shù)與次數(shù):單項式中的數(shù)字因數(shù),稱單項式的系數(shù);
單項式中所有字母指數(shù)的和,叫單項式的次數(shù).3.多項式:幾個單項式的和叫多項式.4.多項式的項數(shù)與次數(shù):多項式中所含單項式的個數(shù)就是多項式的項數(shù),每個單項式叫多項式的項;多項式里,次數(shù)項的次數(shù)叫多項式的次數(shù);
5..6.同類項:所含字母相同,并且相同字母的指數(shù)也相同的單項式是同類項.7.合并同類項法則:系數(shù)相加,字母與字母的指數(shù)不變.8.去(添)括號法則:
去(添)括號時,若括號前邊是“+”號,括號里的各項都不變號;若括號前邊是“-”號,括號里的各項都要變號.9.整式的加減:一找:(劃線);二“+”(務(wù)必用+號開始合并)三合:(合并)
10.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數(shù)從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列).一元一次方程
1.等式:用“=”號連接而成的式子叫等式.2.等式的性質(zhì):
等式性質(zhì)1:等式兩邊都加上(或減去)同一個數(shù)或同一個整式,所得結(jié)果仍是等式;
等式性質(zhì)2:等式兩邊都乘以(或除以)同一個不為零的數(shù),所得結(jié)果仍是等式.3.方程:含未知數(shù)的等式,叫方程.4.方程的解:使等式左右兩邊相等的未知數(shù)的值叫方程的解;注意:“方程的解就能代入”!
5.移項:改變符號后,把方程的項從一邊移到另一邊叫移項.移項的依據(jù)是等式性質(zhì)1.6.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程.7.一元一次方程的標(biāo)準(zhǔn)形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0).8.一元一次方程解法的一般步驟:
化簡方程----------分?jǐn)?shù)基本性質(zhì)
去分母----------同乘(不漏乘)最簡公分母
去括號----------注意符號變化
移項----------變號(留下靠前)
合并同類項--------合并后符號
系數(shù)化為1---------除前面
10.列一元一次方程解應(yīng)用題:
(1)讀題分析法:…………多用于“和,差,倍,分問題”
仔細(xì)讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程.(2)畫圖分析法:…………多用于“行程問題”
利用圖形分析數(shù)學(xué)問題是數(shù)形結(jié)合思想在數(shù)學(xué)中的體現(xiàn),仔細(xì)讀題,依照題意畫出有關(guān)圖形,使圖形各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ).11.列方程解應(yīng)用題的常用公式:
(1)行程問題:距離=速度?時間;
(2)工程問題:工作量=工效?工時;
工程問題常用等量關(guān)系:先做的+后做的=完成量
(3)順?biāo)嫠畣栴}:
順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;水流速度=(順?biāo)俣?逆水速度)÷2
順?biāo)嫠畣栴}常用等量關(guān)系:順?biāo)烦?逆水路程
(4)商品利潤問題:售價=定價,;
利潤問題常用等量關(guān)系:售價-進(jìn)價=利潤