第一篇:函數(shù)極限的性質(zhì)證明
函數(shù)極限的性質(zhì)證明
X1=2,Xn+1=2+1/Xn,證明Xn的極限存在,并求該極限
求極限我會(huì)
|Xn+1-A|<|Xn-A|/A
以此類推,改變數(shù)列下標(biāo)可得|Xn-A|<|Xn-1-A|/A;
|Xn-1-A|<|Xn-2-A|/A;
……
|X2-A|<|X1-A|/A;
向上迭代,可以得到|Xn+1-A|<|Xn-A|/(A^n)
2只要證明{x(n)}單調(diào)增加有上界就可以了。
用數(shù)學(xué)歸納法:
①證明{x(n)}單調(diào)增加。
x(2)=√=√5>x(1);
設(shè)x(k+1)>x(k),則
x(k+2)-x(k+1))=√-√(分子有理化)
=/【√+√】>0。
②證明{x(n)}有上界。
x(1)=1<4,設(shè)x(k)<4,則
x(k+1)=√<√(2+3*4)<4。
3當(dāng)0
當(dāng)0
構(gòu)造函數(shù)f(x)=x*a^x(0
令t=1/a,則:t>
1、a=1/t
且,f(x)=x*(1/t)^x=x/t^x(t>1)
則:
lim(x→+∞)f(x)=lim(x→+∞)x/t^x
=lim(x→+∞)(分子分母分別求導(dǎo))
=lim(x→+∞)1/(t^x*lnt)
=1/(+∞)
=0
所以,對于數(shù)列n*a^n,其極限為0
用數(shù)列極限的定義證明
3.根據(jù)數(shù)列極限的定義證明:
(1)lim=0
n→∞
(2)lim=3/2
n→∞
(3)lim=0
n→∞
(4)lim0.999…9=1
n→∞n個(gè)9
5幾道數(shù)列極限的證明題,幫個(gè)忙。。Lim就省略不打了。。
n/(n^2+1)=0
√(n^2+4)/n=1
sin(1/n)=0
實(shí)質(zhì)就是計(jì)算題,只不過題目把答案告訴你了,你把過程寫出來就好了
第一題,分子分母都除以n,把n等于無窮帶進(jìn)去就行
第二題,利用海涅定理,把n換成x,原題由數(shù)列極限變成函數(shù)極限,用羅比達(dá)法則(不知樓主學(xué)了沒,沒學(xué)的話以后會(huì)學(xué)的)
第三題,n趨于無窮時(shí)1/n=0,sin(1/n)=0
不知樓主覺得我的解法對不對呀limn/(n^2+1)=lim(1/n)/(1+1/n^2)=lim(1/n)/(1+lim(1+n^2)=0/1=0
lim√(n^2+4)/n=lim√(1+4/n^2)=√1+lim(4/n^2)=√1+4lim(1/n^2)=1
limsin(1/n)=lim=lim(1/n)*lim/(1/n)=0*1=0
第二篇:函數(shù)極限的性質(zhì)
§3.2 函數(shù)極限的性質(zhì)
§2 函數(shù)極限的性質(zhì)
Ⅰ.教學(xué)目的與要求
1.理解掌握函數(shù)極限的唯一性、局部有界性、局部保號(hào)性、保不等式性,迫斂性定理并會(huì)利用這些定理證明相關(guān)命題.2.掌握函數(shù)極限四則運(yùn)算法則、迫斂性定理,會(huì)利用其求函數(shù)極限.Ⅱ.教學(xué)重點(diǎn)與難點(diǎn):
重點(diǎn): 函數(shù)極限的性質(zhì).難點(diǎn): 函數(shù)極限的性質(zhì)的證明及其應(yīng)用.Ⅲ.講授內(nèi)容
在§1中我們引入了下述六種類型的函數(shù)極限:
1)limf?x? ;2)limf?x?;3)limf?x?
x???x???x???f?x?;
6)limf?x?。4)limf?x?; 5)lim??x?x0x?x0x?x0它們具有與數(shù)列極限相類似的一些性質(zhì),下面以第4)種類型的極限為代表來敘述并證明這些性質(zhì).至于其他類型極限的性質(zhì)及其證明,只要相應(yīng)地作些修改即可.定理3.2(唯一性)若極限limf?x?存在,則此極限是唯一的.
x?x0
證
設(shè)?,?都是f當(dāng)x?x0時(shí)的極限,則對任給的??0,分別存在正數(shù)
?1與?2,使得當(dāng)0?x?x0??1時(shí)有
f?x?????,(1)
當(dāng)0?x?x0??2時(shí)有
f?x?????,(2)
取??min??1,?2?,則當(dāng)0?x?x0??時(shí),(1)式與(2)式同時(shí)成立,故有
????(f?x???)??f?x?????f?x????f?x????2?
由?的任意性得???,這就證明了極限是唯一的.定理3。3(局部有限性)若limf?x?存在,則f在x0的某空心鄰域U0?x0?內(nèi)有界.
x?x0
證
設(shè)limf?x???.取??1,則存在??0使得對一切x?U0?x0;??有
x?x0
f?x????1?f?x????1 這就證明了f在U0?x0;??內(nèi)有界.
§3.2 函數(shù)極限的性質(zhì)
定理3.4(局部保號(hào)性)若limf?x????0(或?0),則對任何正數(shù)r??(或
x?x0r???),存在U0?x0?,使得對一切x?U0?x0?有
f?x??r?0(或f?x???r?0)
證
設(shè)??0,對任何r?(0,?),取????r,則存在??0,使得對一切
x?U0?x0;??
f?x??????r,這就證得結(jié)論.對于??0的情形可類似地證明.
注
在以后應(yīng)用局部保號(hào)性時(shí),常取r?A.
2x?x0定理3.5(保不等式性)設(shè)limf?x?與都limg?x?都存在,且在某鄰域U0x0;?'內(nèi)
x?x0??有f?x??g?x?則
limf?x??limg?x?
(3)
x?x0x?x0
證
設(shè)
limf?x?=?,limg?x?=?,則對任給的??0,分別存在正數(shù)?1與?2使x?x0x?x0得當(dāng)0?x?x0??1時(shí)有
????f?x?,當(dāng)0?x?x0??2 時(shí)有
g?x?????
令??min?',?1,?2,則當(dāng)0?x?x0??時(shí),不等式f?x??g?x?與(4)、(5)兩式同時(shí)成立,于是有
????f?x??g?x?????
從而????2?.由?的任意性推出???,即(3)式成立.
定理3.6(迫斂性)設(shè)limf?x?=limg?x?=A,且在某U0x0;?'內(nèi)有
x?x0x?x0????
f?x??則limh?x???.
x?x0h?x??g?x?
證
按假設(shè),對任給的??0,分別存在正數(shù)?1與?2,使得當(dāng) 0?x?x0??1時(shí)有,§3.2 函數(shù)極限的性質(zhì)
????f?x?
(7)
當(dāng)0?x?x0??2時(shí)有
g?x?????
(8)
令??min?,?1,?2,則當(dāng)0?x?x0??時(shí),不等式(6)、(7)、(8)同時(shí)成立,故有
????f?x??h?x??g?x????? 由此得h?x?????,所以limh?x???
x?x0?'?
定理3.7(四則運(yùn)算法則)若極限limf?x?與limg?x?都存在,則函數(shù)
x?x0x?x0f?g,f?g當(dāng)x?x0時(shí)極限也存在,且
1)lim?f?x??g?x???limf?x??limg?x?;
x?x0x?x0x?x02)lim?f?x?g?x???x?x0x?x0limf?x?.limg?x?;
x?x0 又若limg?x??0,則f|g當(dāng)x?x0時(shí)極限存在,且有
x?x03)limx?x0f?x??g?x?x?x0limf?x?limg?x?.
x?x0
這個(gè)定理的證明類似于數(shù)列極限中的相應(yīng)定理,留給學(xué)生作為練習(xí).
利用函數(shù)極限的迫斂性與四則運(yùn)算法則,我們可從一些簡單的函數(shù)極限出發(fā),計(jì)算較復(fù)雜的函數(shù)極限.
例 1求limx??x?0?x?解
當(dāng)x?0時(shí)有
1?x?x???1,?x??1?
?1??1?x?1?故由迫斂性得:
xlim
而limx??=1
?0?x?0??x?另一方面,當(dāng)x?0有1?x???1?x,故又由迫斂性又可得:
lim x???1 ?
x?0
?x??x?綜上,我們求得lim x???1
x?0?x?
?1??1??1??1?§3.2 函數(shù)極限的性質(zhì)
例 2求lim?xtanx?1?x??
4解由xtanx?xsinx及§1例4所得的,cosxsixn?sin?
limx???442?limcoxs,?2x?4并按四則運(yùn)算法則有
limsinx?xtanx?1?=limx?
limx?x?
?4?4x??4limcosx
x?
1=?lim?x?4???1 44例 3求lim?3??1?3?.
x??1x?1x?1??解 當(dāng)x?1?0時(shí)有
?x?1??x?2??x?
213?3?x?1x?1x3?1x2?x?1故所求的極限等于
x?2?1?2???1 2x??1x2?x?1??1????1??1lim例4
證明lima?1?a?1? xx?0
證
任給??0(不妨設(shè)??1),為使
x
a?1??
(9)
即1???a?1??,利用對數(shù)函數(shù)loga
loga?1????x?loga?1??? 于是,令
x(當(dāng)a?1時(shí))的嚴(yán)格增性,只要
??min?loga?1???,?loga?1????,則當(dāng)0?x??時(shí),就有(9)式成立,從而證得結(jié)論.
Ⅳ 小結(jié)與提問:本節(jié)要求學(xué)生理解掌握函數(shù)極限的性質(zhì),并利用其討論相關(guān)命題.指導(dǎo)學(xué)生對定理的應(yīng)用作總結(jié).Ⅴ 課外作業(yè): P51 2、3、5、7、8、9.
第三篇:函數(shù)極限的性質(zhì)
§3.2 函數(shù)極限的性質(zhì)
§2函數(shù)極限的性質(zhì)
Ⅰ.教學(xué)目的與要求
1.理解掌握函數(shù)極限的唯一性、局部有界性、局部保號(hào)性、保不等式性,迫斂性定理并會(huì)利用這些定理證明相關(guān)命題.2.掌握函數(shù)極限四則運(yùn)算法則、迫斂性定理,會(huì)利用其求函數(shù)極限.Ⅱ.教學(xué)重點(diǎn)與難點(diǎn):
重點(diǎn): 函數(shù)極限的性質(zhì).難點(diǎn): 函數(shù)極限的性質(zhì)的證明及其應(yīng)用.Ⅲ.講授內(nèi)容
在§1中我們引入了下述六種類型的函數(shù)極限:
1)limf?x? ;2)limf?x?;3)limf?x?x???x???x???
f?x?;6)limf?x?。4)limf?x?; 5)lim??x?x0x?x0x?x0
它們具有與數(shù)列極限相類似的一些性質(zhì),下面以第4)種類型的極限為代表來敘述并證明這些性質(zhì).至于其他類型極限的性質(zhì)及其證明,只要相應(yīng)地作些修改即可.定理3.2(唯一性)若極限limf?x?存在,則此極限是唯一的. x?x0
證設(shè)?,?都是f當(dāng)x?x0時(shí)的極限,則對任給的??0,分別存在正數(shù)
?1與?2,使得當(dāng)0?x?x0??1時(shí)有
f?x?????,(1)當(dāng)0?x?x0??2時(shí)有
f?x?????,(2)
取??min??1,?2?,則當(dāng)0?x?x0??時(shí),(1)式與(2)式同時(shí)成立,故有
????(f?x???)??f?x????f?x????f?x????2?
由?的任意性得???,這就證明了極限是唯一的.定理3。3(局部有限性)若limf?x?存在,則f在x0的某空心鄰域U0?x0?內(nèi)有界. x?x0
證設(shè)limf?x???.取??1,則存在??0使得對一切x?U0?x0;??有 x?x0
f?x????1?f?x???1
這就證明了f在U0?x0;??內(nèi)有界.
定理3.4(局部保號(hào)性)若limf?x????0(或?0),則對任何正數(shù)r??(或x?x0
r???),存在U0?x0?,使得對一切x?U0?x0?有
f?x??r?0(或f?x???r?0)
證設(shè)??0,對任何r?(0,?),取????r,則存在??0,使得對一切
x?U0?x0;??
f?x??????r,這就證得結(jié)論.對于??0的情形可類似地證明.
注在以后應(yīng)用局部保號(hào)性時(shí),常取r?A.2
x?x0定理3.5(保不等式性)設(shè)limf?x?與都limg?x?都存在,且在某鄰域U0x0;?'內(nèi)x?x0??
有f?x??g?x?則
limf?x??limg?x?(3)x?x0x?x0
證設(shè)limf?x?=?,limg?x?=?,則對任給的??0,分別存在正數(shù)?1與?2使x?x0x?x0
得當(dāng)0?x?x0??1時(shí)有
????f?x?,當(dāng)0?x?x0??2 時(shí)有
g?x?????
令??min?',?1,?2,則當(dāng)0?x?x0??時(shí),不等式f?x??g?x?與(4)、(5)兩式同時(shí)成立,于是有
????f?x??g?x?????
從而????2?.由?的任意性推出???,即(3)式成立.
定理3.6(迫斂性)設(shè)limf?x?=limg?x?=A,且在某U0x0;?'內(nèi)有 x?x0x?x0????
f?x??
則limh?x???. x?x0h?x??g?x?
證按假設(shè),對任給的??0,分別存在正數(shù)?1與?2,使得當(dāng)0?x?x0??1時(shí)有,2????f?x?(7)當(dāng)0?x?x0??2時(shí)有
g?x?????(8)令??min?,?1,?2,則當(dāng)0?x?x0??時(shí),不等式(6)、(7)、(8)同時(shí)成立,故有
????f?x??h?x??g?x?????
由此得h?x?????,所以limh?x??? x?x0?'?
定理3.7(四則運(yùn)算法則)若極限limf?x?與limg?x?都存在,則函數(shù) x?x0x?x0
f?g,f?g當(dāng)x?x0時(shí)極限也存在,且
1)lim?f?x??g?x???limf?x??limg?x?; x?x0x?x0x?x0
2)lim?f?x?g?x???x?x0x?x0limf?x?.limg?x?; x?x0
又若limg?x??0,則f|g當(dāng)x?x0時(shí)極限存在,且有 x?x0
3)limx?x0f?x??gxx?x0limf?x?limg?x?. x?x0
這個(gè)定理的證明類似于數(shù)列極限中的相應(yīng)定理,留給學(xué)生作為練習(xí).
利用函數(shù)極限的迫斂性與四則運(yùn)算法則,我們可從一些簡單的函數(shù)極限出發(fā),計(jì)算較復(fù)雜的函數(shù)極限.
例 1求limx??x?0?x?
解當(dāng)x?0時(shí)有
1?x?x???1,?x??1? ?1?
?1?x?1?故由迫斂性得:xlim而limx??=1 ?0?x?0??x?
另一方面,當(dāng)x?0有1?x???1?x,故又由迫斂性又可得:lim x???1 ?x?0?x??x?
綜上,我們求得lim x???1 x?0?x??1??1??1??1?
例 2求lim?xtanx?1?
x??
解由xtanx?xsinx及§1例4所得的,cosx
sixn?si?lim
x???442?limcoxs,?2x?4
并按四則運(yùn)算法則有
limsinx
?xtanx?1?=limx?lim
x?x??4?4x??
4limcosxx?1=?lim?x?4???1
4例 3求lim?3??1?3?. x??1x?1x?1??
解 當(dāng)x?1?0時(shí)有
?x?1??x?2??x?213?3?x?1x?1x3?1x2?x?1
故所求的極限等于
x?2?1?2???1 2x??1x2?x?1?1??1?1lim
例4證明lima?1?a?1? x
x?0
證任給??0(不妨設(shè)??1),為使
xa?1??(9)
即1???a?1??,利用對數(shù)函數(shù)loga
loga?1????x?loga?1???
于是,令x(當(dāng)a?1時(shí))的嚴(yán)格增性,只要 ??min?loga?1???,?loga?1????,則當(dāng)0?x??時(shí),就有(9)式成立,從而證得結(jié)論.
Ⅳ 小結(jié)與提問:本節(jié)要求學(xué)生理解掌握函數(shù)極限的性質(zhì),并利用其討論相關(guān)命題.指導(dǎo)學(xué)生對定理的應(yīng)用作總結(jié).Ⅴ 課外作業(yè): P51 2、3、5、7、8、9.
第四篇:函數(shù)極限證明
函數(shù)極限證明
記g(x)=lim^(1/n),n趨于正無窮;
下面證明limg(x)=max{a1,...am},x趨于正無窮。把max{a1,...am}記作a。
不妨設(shè)f1(x)趨于a;作b>a>=0,M>1;
那么存在N1,當(dāng)x>N1,有a/M<=f1(x)注意到f2的極限小于等于a,那么存在N2,當(dāng)x>N2時(shí),0<=f2(x)同理,存在Ni,當(dāng)x>Ni時(shí),0<=fi(x)取N=max{N1,N2...Nm};
那么當(dāng)x>N,有
(a/M)^n<=f1(x)^n<=f1(x)^n+...fm(x)^n所以a/M<=^(1/n)
第五篇:函數(shù)極限的證明
函數(shù)極限的證明
(一)時(shí)函數(shù)的極限:
以時(shí)和為例引入.介紹符號(hào):的意義,的直觀意義.定義(和.)
幾何意義介紹鄰域其中為充分大的正數(shù).然后用這些鄰域語言介紹幾何意義.例1驗(yàn)證例2驗(yàn)證例3驗(yàn)證證……
(二)時(shí)函數(shù)的極限:
由考慮時(shí)的極限引入.定義函數(shù)極限的“”定義.幾何意義.用定義驗(yàn)證函數(shù)極限的基本思路.例4驗(yàn)證例5驗(yàn)證例6驗(yàn)證證由=
為使需有為使需有于是,倘限制,就有
例7驗(yàn)證例8驗(yàn)證(類似有(三)單側(cè)極限:
1.定義:單側(cè)極限的定義及記法.幾何意義:介紹半鄰域然后介紹等的幾何意義.例9驗(yàn)證證考慮使的2.單側(cè)極限與雙側(cè)極限的關(guān)系:
Th類似有:例10證明:極限不存在.例11設(shè)函數(shù)在點(diǎn)的某鄰域內(nèi)單調(diào).若存在,則有
=§2函數(shù)極限的性質(zhì)(3學(xué)時(shí))
教學(xué)目的:使學(xué)生掌握函數(shù)極限的基本性質(zhì)。
教學(xué)要求:掌握函數(shù)極限的基本性質(zhì):唯一性、局部保號(hào)性、不等式性質(zhì)以及有理運(yùn)算性等。
教學(xué)重點(diǎn):函數(shù)極限的性質(zhì)及其計(jì)算。
教學(xué)難點(diǎn):函數(shù)極限性質(zhì)證明及其應(yīng)用。
教學(xué)方法:講練結(jié)合。
一、組織教學(xué):
我們引進(jìn)了六種極限:,.以下以極限為例討論性質(zhì).均給出證明或簡證.二、講授新課:
(一)函數(shù)極限的性質(zhì):以下性質(zhì)均以定理形式給出.1.唯一性:
2.局部有界性:
3.局部保號(hào)性:
4.單調(diào)性(不等式性質(zhì)):
Th4若和都存在,且存在點(diǎn)的空心鄰域,使,都有證設(shè)=(現(xiàn)證對有)
註:若在Th4的條件中,改“”為“”,未必就有以舉例說明.5.迫斂性:
6.四則運(yùn)算性質(zhì):(只證“+”和“”)
(二)利用極限性質(zhì)求極限:已證明過以下幾個(gè)極限:
(注意前四個(gè)極限中極限就是函數(shù)值)
這些極限可作為公式用.在計(jì)算一些簡單極限時(shí),有五組基本極限作為公式用,我們將陸續(xù)證明這些公式.利用極限性質(zhì),特別是運(yùn)算性質(zhì)求極限的原理是:通過有關(guān)性質(zhì),把所求極限化為基本極限,代入基本極限的值,即計(jì)算得所求極限.例1(利用極限和)
例2例3註:關(guān)于的有理分式當(dāng)時(shí)的極限.例4
例5例6例7