欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      高中理科數(shù)學(xué)解析幾何解題方法集錦

      時(shí)間:2019-05-15 14:03:02下載本文作者:會(huì)員上傳
      簡(jiǎn)介:寫寫幫文庫(kù)小編為你整理了多篇相關(guān)的《高中理科數(shù)學(xué)解析幾何解題方法集錦》,但愿對(duì)你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫(kù)還可以找到更多《高中理科數(shù)學(xué)解析幾何解題方法集錦》。

      第一篇:高中理科數(shù)學(xué)解析幾何解題方法集錦

      22弦長(zhǎng)問(wèn)題:|AB|=(1?k)[(x1?x2)?4x1x2]。

      Ⅰ.求曲線的方程

      1.曲線的形狀已知這類問(wèn)題一般可用待定系數(shù)法解決。

      分析:曲線的形狀已知,可以用待定系數(shù)法。

      2.曲線的形狀未知-----求軌跡方程這種方法叫做直接法。

      一般地,如果選擇了m個(gè)參數(shù),則需要列出m+1個(gè)方程。

      Ⅱ.研究圓錐曲線有關(guān)的問(wèn)題

      1.有關(guān)最值問(wèn)題

      2.有關(guān)范圍問(wèn)題

      分析:這是一道直線與圓錐曲線位置關(guān)系的問(wèn)題,對(duì)于(1),可以設(shè)法得到關(guān)于a的不等式,通過(guò)解不等式求出a的范圍,即:“求范圍,找不等式”?;蛘邔表示為另一個(gè)變量的函數(shù),利用求函數(shù)的值域求出a的范圍;對(duì)于(2)首先要把△NAB的面積表示為一個(gè)變量的函數(shù),然后再求它的最大值,即:“最值問(wèn)題,函數(shù)思想”。

      x2y2

      ??1(a?b?0),A,B是橢圓上的兩點(diǎn),線段AB的垂直平分線與已知橢圓a2b2

      a2?b2a2?b2

      ?x0?x軸相交于點(diǎn)P(x0,0),證明:?.aa

      第二篇:高中數(shù)列解題方法

      數(shù)

      1.公式法:

      等差數(shù)列求和公式:Sn?

      n(a1?an)n(n-1)?na1?d 2

      2Sn?na1(q?1)

      等比數(shù)列求和公式:a1(1-qn)(a1-anq)Sn??(q?1)1?q1?q

      等差數(shù)列通項(xiàng)公式:an?a1?(n?1)d

      等比數(shù)列通項(xiàng)公式:an?a1qn?

      12.錯(cuò)位相減法

      適用題型:適用于通項(xiàng)公式為等差的一次函數(shù)乘以等比的數(shù)列形式 和等差等比數(shù)列相乘{(lán)an},{bn}分別是等差數(shù)列和等比數(shù)列.Sn?a1b1?a2b2?a3b3?...?anbn

      例題:

      已知an?a1?(n?1)d,bn?a1qn?1,cn?anbn,求{cn}的前n項(xiàng)和Sn

      3.倒序相加法

      這是推導(dǎo)等差數(shù)列的前n項(xiàng)和公式時(shí)所用的方法,就是將一個(gè)數(shù)列倒過(guò)來(lái)排列(反序),再把它與原數(shù)列相加,就可以得到n個(gè)(a1?an)

      例題:已知等差數(shù)列{an},求該數(shù)列前n項(xiàng)和Sn

      4.分組法

      有一類數(shù)列,既不是等差數(shù)列,也不是等比數(shù)列,若將這類數(shù)列適當(dāng)拆開(kāi),可分為幾個(gè)等差、等比或常見(jiàn)的數(shù)列,然后分別求和,再將其合并即可.5.裂項(xiàng)法

      適用于分式形式的通項(xiàng)公式,把一項(xiàng)拆成兩個(gè)或多個(gè)的差的形式,即然后累加時(shí)抵消中間的許多項(xiàng)。

      常用公式:

      111??n(n?1)nn?1

      1111(2)?(?)(2n?1)(2n?1)22n?12n?1 11(3)?(a?)a?ba?(1)

      例題:求數(shù)列an?1的前n項(xiàng)和S

      n n(n?1)

      小結(jié):此類變形的特點(diǎn)是將原數(shù)列每一項(xiàng)拆為兩項(xiàng)之后,其中中間的大部分項(xiàng)都互相抵消了。只剩下有限的幾項(xiàng)。

      注意: 余下的項(xiàng)具有如下的特點(diǎn)

      1余下的項(xiàng)前后的位置前后是對(duì)稱的。

      2余下的項(xiàng)前后的正負(fù)性是相反的。

      6.數(shù)學(xué)歸納法

      一般地,證明一個(gè)與正整數(shù)n有關(guān)的命題,有如下步驟:

      (1)證明當(dāng)n取第一個(gè)值時(shí)命題成立;

      (2)假設(shè)當(dāng)n=k(k≥n的第一個(gè)值,k為自然數(shù))時(shí)命題成立,證明當(dāng)n=k+1時(shí)命題也成立。

      例題:求證: 1×2×3×4 + 2×3×4×5 + 3×4×5×6 + …… + n(n+1)(n+2)(n+3)= n(n?1)(n?2)(n?3)(n?4)5

      7.通項(xiàng)化歸

      先將通項(xiàng)公式進(jìn)行化簡(jiǎn),再進(jìn)行求和。

      8.(備用)a3?b3?(a?b)(a2?ab?b2)

      a?b?(a?b)(a?ab?b)3322

      第三篇:數(shù)學(xué)證明題解題方法

      數(shù)學(xué)證明題解題方法

      第一步:結(jié)合幾何意義記住零點(diǎn)存在定理、中值定理、泰勒公式、極限存在的兩個(gè)準(zhǔn)則等基本原理,包括條件及結(jié)論。知道基本原理是證明的基礎(chǔ),知道的程度(即就是對(duì)定理理解的深入程度)不同會(huì)導(dǎo)致不同的推理能力。如2006年數(shù)學(xué)一真題第16題(1)是證明極限的存在性并求極限。只要證明了極限存在,求值是很容易的,但是如果沒(méi)有證明第一步,即使求出了極限值也是不能得分的。因?yàn)閿?shù)學(xué)推理是環(huán)環(huán)相扣的,如果第一步未得到結(jié)論,那么第二步就是空中樓閣。這個(gè)題目非常簡(jiǎn)單,只用了極限存在的兩個(gè)準(zhǔn)則之一:?jiǎn)握{(diào)有界數(shù)列必有極限。只要知道這個(gè)準(zhǔn)則,該問(wèn)題就能輕松解決,因?yàn)閷?duì)于該題中的數(shù)列來(lái)說(shuō),“單調(diào)性”與“有界性”都是很好驗(yàn)證的。像這樣直接可以利用基本原理的證明題并不是很多,更多的是要用到第二步。

      第二步:借助幾何意義尋求證明思路。一個(gè)證明題,大多時(shí)候是能用其幾何意義來(lái)正確解釋的,當(dāng)然最為基礎(chǔ)的是要正確理解題目文字的含義。如2007年數(shù)學(xué)一第19題是一個(gè)關(guān)于中值定理的證明題,可以在直角坐標(biāo)系中畫出滿足題設(shè)條件的函數(shù)草圖,再聯(lián)系結(jié)論能夠發(fā)現(xiàn):兩個(gè)函數(shù)除兩個(gè)端點(diǎn)外還有一個(gè)函數(shù)值相等的點(diǎn),那就是兩個(gè)函數(shù)分別取最大值的點(diǎn)(正確審題:兩個(gè)函數(shù)取得最大值的點(diǎn)不一定是同一個(gè)點(diǎn))之間的一個(gè)點(diǎn)。這樣很容易想到輔助函數(shù)F(x)=f(x)-g(x)有三個(gè)零點(diǎn),兩次應(yīng)用羅爾中值定理就能得到所證結(jié)論。再如2005年數(shù)學(xué)一第18題(1)是關(guān)于零點(diǎn)存在定理的證明題,只要在直角坐標(biāo)系中結(jié)合所給條件作出函數(shù)y=f(x)及y=1-x在上的圖形就立刻能看到兩個(gè)函數(shù)圖形有交點(diǎn),這就是所證結(jié)論,重要的是寫出推理過(guò)程。從圖形也應(yīng)該看到兩函數(shù)在兩個(gè)端點(diǎn)處大小關(guān)系恰好相反,也就是差函數(shù)在兩個(gè)端點(diǎn)的值是異號(hào)的,零點(diǎn)存在定理保證了區(qū)間內(nèi)有零點(diǎn),這就證得所需結(jié)果。如果第二步實(shí)在無(wú)法完滿解決問(wèn)題的話,轉(zhuǎn)第三步。

      第三步:逆推。從結(jié)論出發(fā)尋求證明方法。如2004年第15題是不等式證明題,該題只要應(yīng)用不等式證明的一般步驟就能解決問(wèn)題:即從結(jié)論出發(fā)構(gòu)造函數(shù),利用函數(shù)的單調(diào)性推出結(jié)論。在判定函數(shù)的單調(diào)性時(shí)需借助導(dǎo)數(shù)符號(hào)與單調(diào)性之間的關(guān)系,正常情況只需一階導(dǎo)的符號(hào)就可判斷函數(shù)的單調(diào)性,非正常情況卻出現(xiàn)的更多(這里所舉出的例子就屬非正常情況),這時(shí)需先用二階導(dǎo)數(shù)的符號(hào)判定一階導(dǎo)數(shù)的單調(diào)性,再用一階導(dǎo)的符號(hào)判定原來(lái)函數(shù)的單調(diào)性,從而得所要證的結(jié)果。該題中可設(shè)F(x)=ln*x-ln*a-4(x-a)/e*,其中eF(a)就是所要證的不等式。

      第四篇:一般數(shù)學(xué)解題方法

      初中數(shù)學(xué)解題方法之我見(jiàn)

      1、配方法

      所謂配方,就是把一個(gè)解析式利用恒等變形的方法,把其中的某些項(xiàng)配成一個(gè)或幾個(gè)多項(xiàng)式正整數(shù)次冪的和形式。通過(guò)配方解決數(shù)學(xué)問(wèn)題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡(jiǎn)根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。

      2、因式分解法

      因式分解,就是把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個(gè)有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項(xiàng)添項(xiàng)、求根分解、換元、待定系數(shù)等等。

      3、換元法

      換元法是數(shù)學(xué)中一個(gè)非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個(gè)比較復(fù)雜的數(shù)學(xué)式子中,用新的變?cè)ゴ嬖降囊粋€(gè)部分或改造原來(lái)的式子,使它簡(jiǎn)化,使問(wèn)題易于解決。

      4、判別式法與韋達(dá)定理

      一元二次方程根的判別,不僅用來(lái)判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運(yùn)算中都有非常廣泛的應(yīng)用。韋達(dá)定理除了已知一元二次方程的一個(gè)根,求另一根;已知兩個(gè)數(shù)的和與積,求這兩個(gè)數(shù)等簡(jiǎn)單應(yīng)用外,還可以討論二次方程根的符號(hào),解對(duì)稱方程組,都有非常廣泛的應(yīng)用。

      5、待定系數(shù)法

      在解數(shù)學(xué)問(wèn)題時(shí),若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問(wèn)題,這種解題方法稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。

      第五篇:數(shù)學(xué)經(jīng)典解題方法

      1、配方法

      所謂配方,就是把一個(gè)解析式利用恒等變形的方法,把其中的某些項(xiàng)配成一個(gè)或幾個(gè)多項(xiàng)式正整數(shù)次冪的和形式。通過(guò)配方解決數(shù)學(xué)問(wèn)題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡(jiǎn)根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。

      2、因式分解法

      因式分解,就是把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個(gè)有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項(xiàng)添項(xiàng)、求根分解、換元、待定系數(shù)等等。

      3、換元法

      換元法是數(shù)學(xué)中一個(gè)非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個(gè)比較復(fù)雜的數(shù)學(xué)式子中,用新的變?cè)ゴ嬖降囊粋€(gè)部分或改造原來(lái)的式子,使它簡(jiǎn)化,使問(wèn)題易于解決。

      4、判別式法與韋達(dá)定理

      一元二次方程ax2+bx+c=0(a、b、c屬于R,a≠0)根的判別,△=b2-4ac,不僅用來(lái)判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運(yùn)算中都有非常廣泛的應(yīng)用。

      韋達(dá)定理除了已知一元二次方程的一個(gè)根,求另一根;已知兩個(gè)數(shù)的和與積,求這兩個(gè)數(shù)等簡(jiǎn)單應(yīng)用外,還可以求根的對(duì)稱函數(shù),計(jì)論二次方程根的符號(hào),解對(duì)稱方程組,以及解一些有關(guān)二次曲線的問(wèn)題等,都有非常廣泛的應(yīng)用。

      5、待定系數(shù)法

      在解數(shù)學(xué)問(wèn)題時(shí),若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問(wèn)題,這種解題方法稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。

      6、構(gòu)造法

      在解題時(shí),我們常常會(huì)采用這樣的方法,通過(guò)對(duì)條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個(gè)圖形、一個(gè)方程(組)、一個(gè)等式、一個(gè)函數(shù)、一個(gè)等價(jià)命題等,架起一座連接條件和結(jié)論的橋梁,從而使問(wèn)題得以解決,這種解題的數(shù)學(xué)方法,我們稱為構(gòu)造法。運(yùn)用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識(shí)互相滲透,有利于問(wèn)題的解決。

      下載高中理科數(shù)學(xué)解析幾何解題方法集錦word格式文檔
      下載高中理科數(shù)學(xué)解析幾何解題方法集錦.doc
      將本文檔下載到自己電腦,方便修改和收藏,請(qǐng)勿使用迅雷等下載。
      點(diǎn)此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會(huì)在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        數(shù)學(xué)常用解題方法[最終版]

        數(shù)學(xué)常用解題方法1. 配方法配方法是指將一代數(shù)形式變形成一個(gè)或幾個(gè)代數(shù)式平方的形式,其基本形式是:ax2+bx+c=a(x?(1)(2)(3)(4)(5) b2a)2?4ac?b4a2(a?0).高考中常見(jiàn)的基本配方形式有: a2+b2=......

        GCT數(shù)學(xué)解題方法總結(jié)

        GCT數(shù)學(xué)解題方法總結(jié)照現(xiàn)在GCT數(shù)學(xué)的發(fā)展來(lái)看,難度是越來(lái)越大了,但是從最近幾年考題來(lái)看,其中還是有相當(dāng)大的一部分基礎(chǔ)題,能否及格,這一部分的基礎(chǔ)題就是非常關(guān)鍵的了。 縱觀歷......

        初中數(shù)學(xué)解題方法大全

        初中數(shù)學(xué)選擇題解題方法與技巧胡橋一中許鎖林初中數(shù)學(xué)選擇題解題方法胡橋一中許鎖林對(duì)于選擇題,關(guān)鍵是速度與正確率,所占的時(shí)間不能太長(zhǎng),否則會(huì)影響后面的解題。提高速度與正確......

        小學(xué)數(shù)學(xué)解題方法總結(jié)

        小學(xué)數(shù)學(xué)解題方法總結(jié) 想要學(xué)好數(shù)學(xué)就要掌握好解題方法,下面是小編整理的小學(xué)數(shù)學(xué)解題方法,希望對(duì)大家有幫助! 如何正確地理解和運(yùn)用數(shù)學(xué)概念?小學(xué)數(shù)學(xué)常用的方法就是對(duì)照法。根......

        初中數(shù)學(xué)選擇題的解題方法

        初中數(shù)學(xué)選擇題的解題方法選擇題是近年來(lái)數(shù)學(xué)題中用來(lái)考察基礎(chǔ)知識(shí)的一種題型,具有概念性強(qiáng),靈活性大,邏輯嚴(yán)謹(jǐn),覆蓋面大,且評(píng)分標(biāo)準(zhǔn)統(tǒng)一,閱卷容易等特點(diǎn)。數(shù)學(xué)的解題方法是隨著對(duì)......

        SAT數(shù)學(xué)選擇題三個(gè)解題方法

        SAT數(shù)學(xué)選擇題三個(gè)解題方法 SAT數(shù)學(xué)選擇題的備考一般對(duì)于中國(guó)的考生而言不慎很難,但是大家還是需要掌握一些相應(yīng)的解題方法,這樣可以讓大家在SAT數(shù)學(xué)選擇題的解答上更加的有效......

        考研數(shù)學(xué)證明題三大解題方法

        考研數(shù)學(xué)證明題三大解題方法縱觀近十年考研數(shù)學(xué)真題,大家會(huì)發(fā)現(xiàn):幾乎每一年的試題中都會(huì)有一個(gè)證明題,而且基本上都是應(yīng)用中值定理來(lái)解決問(wèn)題的。但是要參加碩士入學(xué)數(shù)學(xué)統(tǒng)一考......

        考研數(shù)學(xué)證明題三大解題方法

        考研數(shù)學(xué)證明題三大解題方法 最專業(yè)的學(xué)習(xí)資料下載網(wǎng)站歡迎下載http://NewDown.org的學(xué)習(xí)資料,為了您的電腦更安全,請(qǐng)從http://NewDown.org下載本站資料,其他網(wǎng)站下載的資料,均......