第一篇:數(shù)列的性質(zhì)證明
只有三種形式:
x(n)=x(n-1)+F(F是關(guān)于N的函數(shù))用累加法
x(n)/x(n-1)=G(G是關(guān)于N的函數(shù))用累積法
x(n)=Ax(n-1)+B
x(n)取倒數(shù)后是上述情況
等差數(shù)列an依次每項(xiàng)k之和仍為等差數(shù)列,其公差為原公差的k^2倍,即數(shù)列Sk,S2k-Sk,S3k-S2k也為等差數(shù)列
對(duì)此條性質(zhì)進(jìn)行證明Sk=ka1+k(k-1)d/2
S2k=2ka1+2k(2k-1)d/2
S3k=3ka1+3k(3k-1)d/2
S2k-Sk=ka1+k(3k-1)d/2
S3k-S2k=ka1+k(5k-1)d/2
(S2k-Sk)-Sk=k^2*d
(S3k-S2k)-(S2k-Sk)=k^2*d
所以
等差數(shù)列an依次每項(xiàng)k之和仍為等差數(shù)列,其公差為原公差的k^2倍,即數(shù)列Sk,S2k-Sk,S3k-S2k也為等差數(shù)列
證明.項(xiàng)數(shù)為奇數(shù)2n-1的等差數(shù)列{an}有(1)S奇-S偶=an
(2)s奇/S偶=n/n-1.證明:由題意令此數(shù)列公差為d,則:a(n+1)-an=d,即an-a(n+1)=d
又由通項(xiàng)公式得:a(2n-1)=a1+(2n-2)d=an+(n-1)d
S奇-S偶=(a1-a2)+(a3-a4)+...+(a(2n-3)-a(2n-2))+a(2n-1)
=(n-1)*(-d)+an+(n-1)d
=an
求前2n-1項(xiàng)和得:S(2n-1)=S奇+S偶=(2n-1)[a1+a(2n-1)]/2
又a1+a(2n-1)=2an,則:
S奇+S偶=(2n-1)*an=(2n-1)*(S奇-S偶)
即:2nS奇=(2n-2)S偶
所以:s奇/S偶=2n/(2n-2)=n/(n-1)
證明.項(xiàng)數(shù)為偶數(shù)2n的等差數(shù)列{an}有(1)S奇-S偶=nd,(2)s奇/S偶=an/an+1
(3)S2n=n(a1+a2n)=~~~=n(an+an+1)
[an與an+1為中間兩項(xiàng)】
證明:(1)S奇=a1+a3+…+a(2n-1),共n項(xiàng)(2n-1為下標(biāo))
S偶=a2+a4+…+a2n,共n項(xiàng)(2n為下標(biāo))
S偶-S奇=(a2-a1)+(a4-a3)+…+[a2n-a(2n-1)]=nd
(2)S奇=A1+A3+A5+……+A(2n-3)+A(2n-1)
S偶=A2+A4+A6+……+A(2n-2)+A2n
如果n為奇數(shù)
A1+A(2n-1)=A3+A(2n-3)=……=A(n-2)+A(n+2)=2An
A2+A2n=A4+A(2n-2)=……=A(n-1)+A(n+3)=2A(n+1)
S奇=nAn
S偶=nA(n+1)
S奇/S偶=An/A(n+1)
如果n為偶數(shù)
A1+A(2n-1)=A3+A(2n-3)=……=A(n-1)+A(n+1)=2An
A2+A2n=A4+A(2n-2)=……=An+A(n+2)=2A(n+1)
S奇=nAn
S偶=nA(n+1)
S奇/S偶=An/A(n+1)
(3)項(xiàng)數(shù)為偶數(shù),所以都可以配對(duì),共有N對(duì)
p,q,r,s為下標(biāo),當(dāng)p+q=r+s時(shí),有ap+aq=ar+as,所以a1+a2n=a2+a2n-1=…=ak+a(2n-k+1)……=an+an+1,這n對(duì)的值都相等 所以S2n=n(a1+a2n)=……n(ak+a(2n-k+1)=……=n(an+an+1)
第二篇:數(shù)列證明
數(shù)列證明
1、數(shù)列{an}的前n項(xiàng)和記為Sn,已知a1?1,an?1?(Ⅰ)數(shù)列{
2、已知數(shù)列?an?的前n項(xiàng)和為Sn,Sn?n?2Sn(n?1,2,3?).證明: nSn}是等比數(shù)列;
(Ⅱ)Sn?1?4an.n1(an?1)(n?N?).3(Ⅰ)求a1,a2;
(Ⅱ)求證數(shù)列?an?是等比數(shù)列。
3、已知數(shù)列{an}的前項(xiàng)和為Sn,且滿足an?2Sn?Sn?1?0?n?2?a1?1。2?1?
○1 求證:??是等差數(shù)列
;○2求an的表達(dá)式;
S?n?
4、在數(shù)列?an?中,a1?2,an?1?4an?3n?1,(n∈N*)。
(Ⅰ)證明數(shù)列?an?n?是等比數(shù)列;
(Ⅱ)求數(shù)列?an?的前n項(xiàng)和Sn;
5、設(shè){an}是等差數(shù)列,{bn}是各項(xiàng)都為正數(shù)的等比數(shù)列,且a1?b1?1,a3?b5?21,a5?b3?13。
(Ⅰ)求{an},{bn}的通項(xiàng)公式;
(Ⅱ)求數(shù)列?
?an??的前n項(xiàng)和Sn ?bn? 2
6、已知數(shù)列?an?中,Sn是其前n項(xiàng)和,并且Sn?1?4an?2(n?1,2,?),a1?1,⑴設(shè)數(shù)列bn?an?1?2an(n?1,2,??),求證:數(shù)列?bn?是等比數(shù)列; ⑵設(shè)數(shù)列cn?an,(n?1,2,??),求證:數(shù)列?cn?是等差數(shù)列; n2⑶求數(shù)列?an?的通項(xiàng)公式及前n項(xiàng)和。
7、已知數(shù)列{an}的前n項(xiàng)和為Sn,且an?Sn?Sn?1(n?2,Sn?0),a1?
(Ⅰ)求證:數(shù)列{
2.91}為等差數(shù)列; Sn8、已知數(shù)列{an}滿足a1?1,an?1?2an?1
(1)求證:{an?1}是等比數(shù)列
(2)求an的表達(dá)式和Sn的表達(dá)式
9、數(shù)列?an?的前n項(xiàng)和為Sn,a1?1,an?1?2Sn(n?N*).(Ⅰ)求數(shù)列?an?的通項(xiàng)an;(Ⅱ)求數(shù)列?nan?的前n項(xiàng)和Tn.
第三篇:數(shù)列證明
數(shù)列——證明
1.已知a1?3且an?Sn?1?2,(1)證明 數(shù)列?公式.n?Sn?是等差數(shù)列;(2)求Sn及an的通項(xiàng)n??2?
112.已知等比數(shù)列?an?的公比為q=-.(1)若a3?,求數(shù)列?an?的前n項(xiàng)和;(Ⅱ)證明:
42對(duì)任意k?N?,ak,ak?2,ak?1成等差數(shù)列。
3.已知等比數(shù)列?an?中,a1?1?an11(1)sn為數(shù)列?an?前n項(xiàng)的和,證明:sn?,q?,332
(2)設(shè)bn?log3a1?log3a2???log3an,求數(shù)列?bn?的通項(xiàng)公式.4.成等差數(shù)列的三個(gè)正數(shù)的和等于15,并且這三個(gè)數(shù)分別加上2、5、13后成為等比數(shù)列{bn}中的b2、b4、b5(Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;(Ⅱ)數(shù)列{bn}的前n項(xiàng)和為Sn,求證:數(shù)列{Sn?是等比數(shù)列.5.在數(shù)列?an?中,a1=0,且對(duì)任意k?N,a2k?1,a2k,a2k+1成等差數(shù)列,其公差為2k.*54
(Ⅰ)證明a4,a5,a6成等比數(shù)列;(Ⅱ)求數(shù)列?an?的通項(xiàng)公式;
第四篇:第2課數(shù)列的性質(zhì)(模版)
第2課數(shù)列的性質(zhì)
(時(shí)間:90分鐘滿分:100分)
題型示例
三個(gè)互不相等的實(shí)數(shù)成等差數(shù)列,如果適當(dāng)排列這三個(gè)數(shù),又可成為等比數(shù)列,這三個(gè)數(shù)的和為6,求這三個(gè)數(shù).分析三個(gè)數(shù)適當(dāng)排列,不同的排列方法有6種,但這里不必分成6種,因?yàn)槿粢匀齻€(gè)數(shù)中哪一個(gè)
數(shù)為等比中項(xiàng),則只有三種情況,因此對(duì)于分類討論問(wèn)題,恰當(dāng)?shù)姆诸愂墙夂脝?wèn)題的關(guān)鍵.解由已知,可設(shè)這三個(gè)數(shù)為a-d,a,a+d,則a-d+a+a+d=6,∴a=2,這三個(gè)數(shù)可表示為2-d,2,2+d,(1)若2-d為等比中項(xiàng),則有(2-d)2=2(2+d),解之得d=6或d=0(舍去).此時(shí)三個(gè)數(shù)為:-4,2,8.(2)若2+d是等比中項(xiàng),則有(2+d)2=2(2-d),解之得d=-6或d=0(舍去),此時(shí)三個(gè)數(shù)為:8,2,-4.(3)若2為等比中項(xiàng),則22=(2+d)·(2-d),∴d=0(舍去).綜上可求得此三數(shù)為-4,2,8.點(diǎn)評(píng)此題給我們的啟示是:數(shù)學(xué)解題既要精煉又要全面.一、選擇題(8×3′=24′)
1.下列各命題中,真命題是()
A.若{an}成等差數(shù)列,則{|an|}也成等差數(shù)列
B.若{|an|}成等差數(shù)列,則{an}也成等差數(shù)列
C.若存在自然數(shù)n,使得2an+1=an+an+2,則{an}一定是等差數(shù)列
D.若{an}是等差數(shù)列,對(duì)任何自然數(shù)n都有2an+1=an+an+
22.從{1,2,3,4,5,6,7,8,9,10}中任選3個(gè)不同的數(shù)使它們成等差數(shù)列,則這樣的等差數(shù)列最多有
()
A.20個(gè)B.40個(gè)C.60個(gè)D.80個(gè)
3.若正數(shù)a、b、c依次成公比大于1的等比數(shù)列,則當(dāng)x>1時(shí),logax、logbx、logcx()
A.依次成等差數(shù)列B.依次成等比數(shù)列
C.各項(xiàng)的倒數(shù)依次成等差數(shù)列D.各項(xiàng)的倒數(shù)依次成等比數(shù)列
4.已知數(shù)列{an},如果a1,a2-a1,a3-a2,…,an-an-1,…是首項(xiàng)為1,公比為1的等比數(shù)列,則an等于(n
3∈N)()3131)B.(1?n?1)A.(1?2233n
2121(1?)D.(1?n?1)3333n
15.等差數(shù)列{an}的公差為,S100=145,則a1+a3+a5+…+a99的值為()
2145A.60B.85C.D.75 2
6.已知數(shù)列前n項(xiàng)和Sn=2n-1(n∈N*),則此數(shù)列奇數(shù)項(xiàng)的前n項(xiàng)和為()
11A.(2n?1?1)B.(2n?1?2)33
11C.(22n?1)D.(22n?2)33
7.正項(xiàng)等比數(shù)列{an}的首項(xiàng)a1=2-5,其前11項(xiàng)的幾何平均數(shù)為25,若前11項(xiàng)中抽取一項(xiàng)后的幾何平均
數(shù)仍是25,則抽去一項(xiàng)的項(xiàng)數(shù)為()
A.6B.7C.9D.11 C.1(a1?a2)2
8.已知x、y為正實(shí)數(shù),且x,a1,a2,y成等差數(shù)列,x,b1,b2,y成等比數(shù)列,則的取值范圍是b1b
2()
A.RB.(0,4?C.[4,+??D.(-∞,0]∪[4,+∞)
二、填空題(4×3′=12′)
9.等差數(shù)列{an}最初五項(xiàng)之和與其次五項(xiàng)之和的比為3∶4(n∈N*),則首項(xiàng)a1與公差d的比為.10.已知等比數(shù)列{an}的前n項(xiàng)和為Sn(n∈N),若a3=3S2+2,a4=3S3+2,則公比q的值是11.12-22+32-42+52-62+…+992-100212.若一個(gè)等差數(shù)列前3項(xiàng)的和為34,最后3項(xiàng)的和為146,且所有項(xiàng)的和為390,則這個(gè)數(shù)
列有項(xiàng).三、解答題(3×10′+12′+10′=52′)
13.已知數(shù)列{an}的首項(xiàng)a1=a(a是常數(shù)且a≠-1),an=2an-1+1(n∈N*,n≥2).(1){an}是否是等差數(shù)列?若是,求出{an}的通項(xiàng)公式;若不是,說(shuō)明理由;
(2)設(shè)bn=an+c(n∈N*,c是常數(shù)),若{bn}是等比數(shù)列,求實(shí)數(shù)c的值,并求出{bn}的通項(xiàng)公式.14.設(shè)實(shí)數(shù)a≠0,且函數(shù)f(x)=a(x2+1)-(2x+
(1)求a的值;
(2)設(shè)數(shù)列{an}的前n項(xiàng)和Sn=f(n),令bn=
列.1)有最小值-1.aa2?a4???a2n,n=1,2,3…,證明數(shù)列{bn}是等差數(shù)n
3n217n?15.若數(shù)列{an}的前n項(xiàng)和Sn=-(n∈N*),求數(shù)列{|an|}的前n項(xiàng)和Tn.2
216.在某兩個(gè)正數(shù)之間插入一個(gè)數(shù)a,則三數(shù)成等差數(shù)列,若插入二個(gè)數(shù)b,c,則四數(shù)成等
比數(shù)列.(1)求證:2a≥b+c;
(2)求證:(a+1)2≥(b+1)(c+1).1171317.已知數(shù)列{an}的通項(xiàng)公式an=n2?n?(n∈N*)4126
1(1)是否存在等于的項(xiàng)?為什么? 2
(2)此數(shù)列是否有相等的連續(xù)兩項(xiàng)?若有,它們分別是哪兩項(xiàng);若沒(méi)有,說(shuō)明理由;
(3)此數(shù)列是否有值最小的項(xiàng)?為什么?
四、思考與討論(12′)
18.在xOy平面上有點(diǎn)P1(a1,b1),P2(a2,b2),…,Pn(an,bn),…,對(duì)每個(gè)自然數(shù)n,點(diǎn)Pn位于函數(shù)
ay=2000()x(0 (1)求點(diǎn)Pn的縱坐標(biāo)bn的表達(dá)式; (2)若對(duì)每個(gè)自然數(shù)n,以bn、bn+ 1、bn+2為邊長(zhǎng)能構(gòu)成一個(gè)三角形,求a的取值范圍; (3)設(shè)cn=lgbn(n∈N).若a取(2)中確定的范圍的最小整數(shù),問(wèn)數(shù)列{cn}前多少項(xiàng)的和最大?試說(shuō)明理由. 參考答案 1.DA錯(cuò),例如數(shù)列-3,-1,1,這樣B也錯(cuò),C應(yīng)是對(duì)任意自然數(shù)n;D正是等差中項(xiàng)的性質(zhì).2.B由等差數(shù)列的概念知an-1+an+1=2an,所選的三個(gè)數(shù)只要首末兩數(shù)之和為偶數(shù),則該三數(shù)即可構(gòu)成等差數(shù)列.因此,把所給的10個(gè)數(shù)分為1,3,5,7,9;2,4,6,8,10兩組,分別任取兩數(shù),另一數(shù)自然確定,共有22A5=5×4×2=40個(gè).故選B.3.Cb2=ac?2lgb?lga?lgc?2lgblgalgc211?????.lgxlgxlgxlogbxlogaxlogcx 11?()n=3(1?1). 4.Aan=a1+(a2-a1)+(a3-a2)+…+(an-an-1)= n1231? 35.AS100=(a1+a3+…+a99)+(a2+a4+…+a100)=145,又(a2+a4+…+a100)-(a1+a3+a5+…+a99)=50d ??S奇?S偶?145則?解得S奇=a1+a3+a5+…+a99=60.S?S?25?偶?奇 1?(1?4n)12n???(2?1).6.Can=2,奇數(shù)項(xiàng)構(gòu)成公比為4的等比數(shù)列.∴Sn1?43n- 17.A(a11 1·q11+2+…+1011)=25?q55=2110?q=4.=25?qx=2100?x=50.1x1010抽取一項(xiàng)后,(a1·q) 抽出的項(xiàng)的q的指數(shù)為5,故是第6項(xiàng).2(a1?a2)2(x?y)2(2xy)4xy8.C????4.b1b2xyxyxy 9.13∶1a1?a2???a55a3a3a1?2d3?????a1∶d=13∶1.a6?a7???a105a8a8a1?7d 4① ② ?a3?3S2?210.4? a?3S?23?4 ②-①:a4-a3=3(33-32)=3a3,∴a4=4a3.11.-5050兩項(xiàng)結(jié)合,利用平方差公式.?a1?a2?a3?3412.13?,∵a1+an=a2+an-1=a3+an-2,?an?an?1?an?2?146 ∴34+146=3(a1+an),a1+an=60.∴390=n·60,∴n=13.213.解(1)∵a1=a(a≠-1),a2=2a+1,a3=2a2+1=2(2a+1)+1=4a+3,a1+a3=5a+3,2a2=4a+2.∵a≠-1,∴5a+3≠4a+2,即a1+a3≠2a2,故{an}不是等差數(shù)列.2(2)由{bn}是等比數(shù)列,得b1b3=b2 2,即(a+c)(4a+3+c)=(2a+1+c),化簡(jiǎn)得a-c-ac+1=0,即(a+1)(1-c)=0.∵a≠-1,∴c=1,∴b1=a+1,q= ∴bn=b1qn-1=(a+1)·2n-1.14.(1)解∵f(x)=a(x-b2=2.b1122)+a-有最小值-1.aa 12∴a>0,且f()=a-=-1.∴a=1或a=-2(舍),∴a=1.aa (2)證明由(1)知f(x)=x2-2x,∴Sn=n2-2n.∴n=1時(shí),a1=S1=-1;n≥2時(shí),an=Sn-Sn-1=(n2-2n)-[(n-1)2-2(n-1)]=2n-3.且a1=-1滿足上式.∴an=2n-3,即{an}是首項(xiàng)為-1,公差為2的等差數(shù)列.∴bn=1241n(a2?a2n)1n(1?4n?3)(a+a+…+a2n)=·=·=2n-1.nnn22 ∴bn+1-bn=[2(n+1)-1]-(2n-1)=2.∴{bn}是等差數(shù)列.15.解n≥2時(shí),an=Sn-Sn-1=10-3n..n=1時(shí),a1=S1=7滿足上式,∴對(duì)n∈N*,an=10-3n.令10-3n>0,則n<10,∴a1>0,a2>0,a3>0,a4<0,… 3 ?3n217n??(n?3)??22∴T(n)=?2.?3n?17n?24(n?4)?2?2 ?m?n?2a① ?216.證明(1)設(shè)原兩數(shù)為m,n(m,n>0),則?mc?b ② ?2③ ?nb?c 由①知a>0,由②,③知b,c>0, b2c2 ?∴=m+n=2a?2abc=b3+c3=(b+c)(b2+c2-bc)≥(b+c)(2bc-bc)=(b+c)bc,∴2a≥b+c.cb m?n(2)由①得a=≥mn=?a2≥bc 2 ?a2?bc?a2+2a≥bc+b+c?(a+1)2≥bc+b+c+1=(b+1)(c+1).??2a?b?c 17.解(1)若數(shù)列中有等于11171312的項(xiàng),則有an=n2-n+=,3n-17n+20=0 246212 51解得n=4或n=又n∈N則n=4,故數(shù)列的第4項(xiàng)等于.32 1113171317(2)an=n2-n+,an+1=(n+1)2-(n+1)+.46461212 若數(shù)列中有連續(xù)兩項(xiàng)相等,則121713113717n-n+=(n+1)2-(n+1)+解得n=.464631212 由于n∈N,故不存在相等的連續(xù)兩項(xiàng).(3)an=117223(n-)+,故當(dāng)n=3時(shí)an取最小值.46144 點(diǎn)評(píng)本題反映了數(shù)列的通項(xiàng)公式是關(guān)于項(xiàng)與它的序號(hào)的關(guān)系的式子,因此可運(yùn)用方程思想,通過(guò)通項(xiàng)公式求出數(shù)列的各項(xiàng)或某一項(xiàng)所對(duì)應(yīng)的項(xiàng)數(shù).另外,運(yùn)用函數(shù)觀點(diǎn)理解數(shù)列,其通項(xiàng)公式亦可視為定義域?yàn)檎麛?shù)集的函數(shù)解析式,于是可運(yùn)用有關(guān)函數(shù)知識(shí)解決一些數(shù)列問(wèn)題.18.解(1)由題意,可知an=11(n+n+1)=n+.22 1aan?2∴bn=2000()an=2000(). 1010 ax)在(-∞,+∞)上為減函數(shù),∴對(duì)每個(gè)正整數(shù)n,有bn>bn+1>bn+2. 10 aa∴以bn、bn+ 1、bn+2為邊能構(gòu)成三角形的充要條件是bn+1+bn+2>bn,即+()2>1.1010(2)∵函數(shù)y=2000(解得a<-5(1+5)或a>5(-1).∵0 7n?(3)易知a=7,則bn=2000()2.10 于是cn=lgbn=3+lg2+(n+11)lg0.7,且為遞減數(shù)列. 2 由,解得n≤20.8∴n=20.因此,{cn}的前20項(xiàng)和最大. 數(shù)列等比性質(zhì)分析2013福建 9.D5[2013·福建卷] 已知等比數(shù)列{an}的公比為q,記bn=am(n-1)+1+am(n-1)+2+…+am(n * -1)+m,cn=am(n-1)+1·am(n-1)+2·…·am(n-1)+m(m,n∈N),則以下結(jié)論一定正確的是() mA.?dāng)?shù)列{bn}為等差數(shù)列,公差為q 2mB.?dāng)?shù)列{bn}為等比數(shù)列,公比為q 2C.?dāng)?shù)列{cn}為等比數(shù)列,公比為qm mD.?dāng)?shù)列{cn}為等比數(shù)列,公比為qm 9.C [解析] 取an=1,q=1,則bn=m,cn=1,排除A,取a1=1,q=-1,m取正偶 cn+1amn+1·amn+2·…·amn+mmmm數(shù),則bn=0,排除B,==q·q·…·q,sdo4(共cnam(n-1)+1·am(n-1)+2·…·am(n-1)+m m個(gè)))=qm,故選C.2第五篇:數(shù)列等比性質(zhì)分析2013福建