欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      數(shù)學(xué)模型心得體會(huì)(最終定稿)

      時(shí)間:2019-05-12 14:45:01下載本文作者:會(huì)員上傳
      簡(jiǎn)介:寫寫幫文庫(kù)小編為你整理了多篇相關(guān)的《數(shù)學(xué)模型心得體會(huì)》,但愿對(duì)你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫(kù)還可以找到更多《數(shù)學(xué)模型心得體會(huì)》。

      第一篇:數(shù)學(xué)模型心得體會(huì)

      數(shù)學(xué)建模的心得體會(huì)

      姓名:張秋月 專業(yè):數(shù)學(xué)與應(yīng)用數(shù)學(xué)

      班級(jí):1102班 學(xué)號(hào):2011254010223

      這學(xué)期,我學(xué)習(xí)了數(shù)學(xué)建模這門課,我覺(jué)得他與其他科的不同是與現(xiàn)實(shí)聯(lián)系密切,而且能引導(dǎo)我們把以前學(xué)得到的枯燥的數(shù)學(xué)知識(shí)應(yīng)用到實(shí)際問(wèn)題中去,用建模的思想、方法來(lái)解決實(shí)際問(wèn)題,很神奇,而且也接觸了一些計(jì)算機(jī)軟件,使問(wèn)題求解很快就出了答案。

      在學(xué)習(xí)的過(guò)程中,我獲得了很多知識(shí),對(duì)我有非常大的提高。同時(shí)我有了一些感想和體會(huì)。

      本來(lái)在學(xué)習(xí)數(shù)學(xué)的過(guò)程中就遇到過(guò)很多困難,感覺(jué)很枯燥,很難學(xué),概念抽象、邏輯嚴(yán)密等等,所以我的學(xué)習(xí)積極性慢慢就降低了,而且不知道學(xué)了要怎么用,不知道現(xiàn)實(shí)生活中哪里到。通過(guò)學(xué)習(xí)了數(shù)學(xué)模型中的好多模型后,我發(fā)現(xiàn)數(shù)學(xué)應(yīng)用的廣泛性。數(shù)學(xué)模型是一種模擬,使用數(shù)學(xué)符號(hào)、數(shù)學(xué)式子、程序、圖形等對(duì)實(shí)際課題本質(zhì)屬性的抽象而又簡(jiǎn)潔的刻畫,他或能解釋默寫客觀現(xiàn)象,或能預(yù)測(cè)未來(lái)的發(fā)展規(guī)律,或能為控制某一現(xiàn)象的發(fā)展提供某種意義下的最優(yōu)策略或較好策略。數(shù)學(xué)模型一般并非現(xiàn)實(shí)問(wèn)題的直接翻版,它的建立常常既需要人們對(duì)現(xiàn)實(shí)問(wèn)題深入細(xì)微的觀察和分析,又需要人們靈活巧妙地利用各種數(shù)學(xué)知識(shí)。這種應(yīng)用知識(shí)從實(shí)際課題中抽象、提煉出數(shù)學(xué)模型的過(guò)程就稱為數(shù)學(xué)建模。不論是用數(shù)學(xué)方法在科技和生產(chǎn)領(lǐng)域解決哪類實(shí)際問(wèn)題,還是與其他學(xué)科相結(jié)合形成的交叉學(xué)科,首要的和關(guān)鍵的一步是建立研究對(duì)象的數(shù)學(xué)模型,并加以計(jì)算求解。數(shù)學(xué)建模和計(jì)算機(jī)技術(shù)在知識(shí)經(jīng)濟(jì)的作用可謂是如虎添翼。

      數(shù)學(xué)建模屬于一門應(yīng)用數(shù)學(xué),學(xué)習(xí)這門課要求我們學(xué)會(huì)如何將實(shí)際問(wèn)題經(jīng)過(guò)分析、簡(jiǎn)化轉(zhuǎn)化為個(gè)數(shù)學(xué)問(wèn)題,然后用適用的數(shù)學(xué)方法去解決。數(shù)學(xué)建模是一種數(shù)學(xué)的思考方法,是運(yùn)用數(shù)學(xué)的語(yǔ)言和方法,通過(guò)抽象、簡(jiǎn)化建立能近似刻畫并解決實(shí)際問(wèn)題的一種強(qiáng)有力地?cái)?shù)學(xué)手段。在學(xué)習(xí)中,我知道了數(shù)學(xué)建模的過(guò)程,其過(guò)程如下:

      (1)模型準(zhǔn)備:了解問(wèn)題的實(shí)際背景,明確其實(shí)際意義,掌握對(duì)象的各種信息。用數(shù)學(xué)語(yǔ)言來(lái)描述問(wèn)題。

      (2)模型假設(shè):根據(jù)實(shí)際對(duì)象的特征和建模的目的,對(duì)問(wèn)題進(jìn)行必要的簡(jiǎn)化,并用精確地語(yǔ)言提出一些恰當(dāng)?shù)募僭O(shè)。(3)模型建立:在假設(shè)的基礎(chǔ)上,利用適當(dāng)?shù)臄?shù)學(xué)工具來(lái)刻畫各變量之間的數(shù)學(xué)關(guān)系,建立相應(yīng)的數(shù)學(xué)結(jié)構(gòu)。

      (4)模型求解:利用或取得的數(shù)據(jù)資料,對(duì)模型的所有參數(shù)做出計(jì)算。

      (5)模型分析:對(duì)所得的結(jié)果進(jìn)行數(shù)學(xué)上的分析。

      (6)模型檢驗(yàn):將模型分析結(jié)果與實(shí)際情形進(jìn)行比較,以此來(lái)驗(yàn)證模型的準(zhǔn)確性、合理性和適用性。如果模型與實(shí)際較吻合,則要對(duì)計(jì)算結(jié)果給出其實(shí)際含義,并進(jìn)行解釋。如果模型與實(shí)際吻合較差,則應(yīng)該修改假設(shè),再次進(jìn)行建模過(guò)程。數(shù)學(xué)模型既順應(yīng)時(shí)代發(fā)展的潮流,也符合教育改革的要求。對(duì)于數(shù)學(xué)教育而言,既應(yīng)該讓學(xué)生掌握準(zhǔn)確快捷的計(jì)算方法和嚴(yán)密的邏輯推理,也需要培養(yǎng)學(xué)生用數(shù)學(xué)工具分析解決實(shí)際問(wèn)題的意識(shí)和能力,傳統(tǒng)的數(shù)學(xué)教學(xué)體系和內(nèi)容無(wú)疑偏重于前者,而開(kāi)設(shè)數(shù)學(xué)建模課程則是加強(qiáng)后者的一種嘗試,數(shù)學(xué)建模的初衷是為了幫助大家提升分析問(wèn)題,解決問(wèn)題的能力。我認(rèn)為學(xué)習(xí)數(shù)學(xué)模型的意義有如下幾點(diǎn):一 學(xué)習(xí)數(shù)學(xué)模型我們可以參加數(shù)學(xué)建模競(jìng)賽,而數(shù)學(xué)建模競(jìng)賽是為了促進(jìn)數(shù)學(xué)建模的發(fā)展而應(yīng)運(yùn)而生的,它可以培養(yǎng)大家的競(jìng)賽能力、抗壓能力、問(wèn)題設(shè)計(jì)能力、搜索資料的能力、計(jì)算機(jī)運(yùn)用能力、論文寫作與修改完善能力、語(yǔ)言表達(dá)能力、創(chuàng)新能力等科學(xué)綜合素養(yǎng),它讓大家從傳統(tǒng)的知識(shí)培養(yǎng)轉(zhuǎn)變到能力的培養(yǎng),讓我們的思想追求有了質(zhì)的變化!這也是我們現(xiàn)代教育所追求的;二 學(xué)習(xí)數(shù)學(xué)可以提升我的邏輯思維能力和運(yùn)算等抽象能力,但好多人覺(jué)得數(shù)學(xué)和實(shí)際遙不可及,可是呢,數(shù)學(xué)建模則成為了解決這種現(xiàn)象的殺手锏,因?yàn)閿?shù)學(xué)建模就是為了培養(yǎng)大家的分析問(wèn)題和分解決問(wèn)題的能力。

      在學(xué)習(xí)了數(shù)學(xué)模型后,它所教給我們的不單是一些數(shù)學(xué)方面的知識(shí),比如說(shuō)一些數(shù)學(xué)計(jì)算軟件,學(xué)習(xí)建模的同時(shí),借用各種建模軟件解決問(wèn)題是必不可少的Matlab,Lingo,等都是非常方便的。數(shù)學(xué)模型是數(shù)學(xué)學(xué)習(xí)的新的方式,他為我們提供了自主學(xué)習(xí)的空間,有助于我們體驗(yàn)數(shù)學(xué)在解決實(shí)際問(wèn)題中的價(jià)值和作用,體驗(yàn)數(shù)學(xué)與日常生化和其他學(xué)科的聯(lián)系,體驗(yàn)綜合運(yùn)用知識(shí)和方法解決實(shí)際問(wèn)題的過(guò)程,增強(qiáng)應(yīng)用意識(shí);而且數(shù)學(xué)模型還對(duì)我們有綜合能力的培養(yǎng)、鍛煉與提高。它培養(yǎng)了我們?nèi)妗⒍嘟嵌瓤紤]問(wèn)題的能力,使我們的邏輯推理能力和量化分析能力得到很好地鍛煉和提高。而且我認(rèn)為數(shù)學(xué)模型帶給我的是發(fā)散性思維,各種研究方法和手段。教會(huì)我凡事要有自己的創(chuàng)新,自己的嚴(yán)密思維,不能局限于俗套。總之學(xué)習(xí)數(shù)學(xué)模型有利于激發(fā)我們的學(xué)習(xí)數(shù)學(xué)的興趣,豐富我們學(xué)習(xí)數(shù)學(xué)探索的情感體驗(yàn);有利于我們自覺(jué)體驗(yàn)、鞏固所學(xué)的的數(shù)學(xué)知識(shí)。還鍛煉了我們的耐心和意志力。

      第二篇:數(shù)學(xué)模型心得體會(huì)

      這學(xué)期,我進(jìn)行了數(shù)學(xué)建模實(shí)訓(xùn)的設(shè)計(jì),我覺(jué)得他與其他科的不同是與現(xiàn)實(shí)聯(lián)系密切,而且能引導(dǎo)我們把以前學(xué)得到的枯燥的數(shù)學(xué)知識(shí)應(yīng)用到實(shí)際問(wèn)題中去,用建模的思想、方法來(lái)解決實(shí)際問(wèn)題,很神奇,而且也接觸了一些計(jì)算機(jī)軟件,使問(wèn)題求解很快就出了答案。

      數(shù)學(xué)模型既順應(yīng)時(shí)代發(fā)展的潮流,也符合教育改革的要求。對(duì)于數(shù)學(xué)教育而言,既應(yīng)該讓學(xué)生掌握準(zhǔn)確快捷的計(jì)算方法和嚴(yán)密的邏輯推理,也需要培養(yǎng)學(xué)生用數(shù)學(xué)工具分析解決實(shí)際問(wèn)題的意識(shí)和能力,傳統(tǒng)的數(shù)學(xué)教學(xué)體系和內(nèi)容無(wú)疑偏重于前者,而開(kāi)設(shè)數(shù)學(xué)建模課程則是加強(qiáng)后者的一種嘗試,數(shù)學(xué)建模的初衷是為了幫助大家提升分析問(wèn)題,解決問(wèn)題的能力。

      在學(xué)習(xí)了數(shù)學(xué)模型后,它所教給我們的不單是一些數(shù)學(xué)方面的知識(shí),比如說(shuō)一些數(shù)學(xué)計(jì)算軟件,學(xué)習(xí)建模的同時(shí),借用各種建模軟件解決問(wèn)題是必不可少的Matlab,Lingo,等都是非常方便的。數(shù)學(xué)模型是數(shù)學(xué)學(xué)習(xí)的新的方式,他為我們提供了自主學(xué)習(xí)的空間,有助于我們體驗(yàn)數(shù)學(xué)在解決實(shí)際問(wèn)題中的價(jià)值和作用,體驗(yàn)數(shù)學(xué)與日常生化和其他學(xué)科的聯(lián)系,體驗(yàn)綜合運(yùn)用知識(shí)和方法解決實(shí)際問(wèn)題的過(guò)程,增強(qiáng)應(yīng)用意識(shí);而且數(shù)學(xué)模型還對(duì)我們有綜合能力的培養(yǎng)、鍛煉與提高。它培養(yǎng)了我們?nèi)?、多角度考慮問(wèn)題的能力,使我們的邏輯推理能力和量化分析能力得到很好地鍛煉和提高。而且我認(rèn)為數(shù)學(xué)模型帶給我的是發(fā)散性思維,各種研究方法和手段。教會(huì)我凡事要有自己的創(chuàng)新,自己的嚴(yán)密思維,不能局限于俗套。

      在本次實(shí)訓(xùn)中我的指導(dǎo)老師給予了我很大的幫助,是他帶領(lǐng)著我去研究去探索,去一步一步的接近最正確的答案,發(fā)現(xiàn)真理,我非常感謝我的指導(dǎo)老師,他教會(huì)了我探索精神,讓我懂得了在困難面前絕不能放棄。

      總之,通過(guò)這次數(shù)學(xué)建模的實(shí)訓(xùn),不僅使我們加深了對(duì)書本知識(shí)的理解,學(xué)習(xí)了lingo軟件的使用,熟知了編寫報(bào)告的規(guī)范要求,培養(yǎng)了我們解決問(wèn)題,吸取經(jīng)驗(yàn),團(tuán)隊(duì)合作的精神。我相信這些收獲會(huì)伴隨我們學(xué)習(xí)、工作和生活,我們將帶著一顆不畏懼困難,勇敢面對(duì)困難,積極尋找解決困難的心去面對(duì)明天,尋找更美好的未來(lái)!

      第三篇:數(shù)學(xué)模型心得體會(huì)

      數(shù)學(xué)建模的心得體會(huì)

      姓名:張秋月專業(yè):數(shù)學(xué)與應(yīng)用數(shù)學(xué)

      班級(jí):1102班學(xué)號(hào):2011254010223

      這學(xué)期,我學(xué)習(xí)了數(shù)學(xué)建模這門課,我覺(jué)得他與其他科的不同是與現(xiàn)實(shí)聯(lián)系密切,而且能引導(dǎo)我們把以前學(xué)得到的枯燥的數(shù)學(xué)知識(shí)應(yīng)用到實(shí)際問(wèn)題中去,用建模的思想、方法來(lái)解決實(shí)際問(wèn)題,很神奇,而且也接觸了一些計(jì)算機(jī)軟件,使問(wèn)題求解很快就出了答案。

      在學(xué)習(xí)的過(guò)程中,我獲得了很多知識(shí),對(duì)我有非常大的提高。同時(shí)我有了一些感想和體會(huì)。

      本來(lái)在學(xué)習(xí)數(shù)學(xué)的過(guò)程中就遇到過(guò)很多困難,感覺(jué)很枯燥,很難學(xué),概念抽象、邏輯嚴(yán)密等等,所以我的學(xué)習(xí)積極性慢慢就降低了,而且不知道學(xué)了要怎么用,不知道現(xiàn)實(shí)生活中哪里到。通過(guò)學(xué)習(xí)了數(shù)學(xué)模型中的好多模型后,我發(fā)現(xiàn)數(shù)學(xué)應(yīng)用的廣泛性。數(shù)學(xué)模型是一種模擬,使用數(shù)學(xué)符號(hào)、數(shù)學(xué)式子、程序、圖形等對(duì)實(shí)際課題本質(zhì)屬性的抽象而又簡(jiǎn)潔的刻畫,他或能解釋默寫客觀現(xiàn)象,或能預(yù)測(cè)未來(lái)的發(fā)展規(guī)律,或能為控制某一現(xiàn)象的發(fā)展提供某種意義下的最優(yōu)策略或較好策略。數(shù)學(xué)模型一般并非現(xiàn)實(shí)問(wèn)題的直接翻版,它的建立常常既需要人們對(duì)現(xiàn)實(shí)問(wèn)題深入細(xì)微的觀察和分析,又需要人們靈活巧妙地利用各種數(shù)學(xué)知識(shí)。這種應(yīng)用知識(shí)從實(shí)際課題中抽象、提煉出數(shù)學(xué)模型的過(guò)程就稱為數(shù)學(xué)建模。不論是用數(shù)學(xué)方法在科技和生產(chǎn)領(lǐng)域解決哪類實(shí)際問(wèn)題,還

      是與其他學(xué)科相結(jié)合形成的交叉學(xué)科,首要的和關(guān)鍵的一步是建立研究對(duì)象的數(shù)學(xué)模型,并加以計(jì)算求解。數(shù)學(xué)建模和計(jì)算機(jī)技術(shù)在知識(shí)經(jīng)濟(jì)的作用可謂是如虎添翼。

      數(shù)學(xué)建模屬于一門應(yīng)用數(shù)學(xué),學(xué)習(xí)這門課要求我們學(xué)會(huì)如何將實(shí)際問(wèn)題經(jīng)過(guò)分析、簡(jiǎn)化轉(zhuǎn)化為個(gè)數(shù)學(xué)問(wèn)題,然后用適用的數(shù)學(xué)方法去解決。數(shù)學(xué)建模是一種數(shù)學(xué)的思考方法,是運(yùn)用數(shù)學(xué)的語(yǔ)言和方法,通過(guò)抽象、簡(jiǎn)化建立能近似刻畫并解決實(shí)際問(wèn)題的一種強(qiáng)有力地?cái)?shù)學(xué)手段。在學(xué)習(xí)中,我知道了數(shù)學(xué)建模的過(guò)程,其過(guò)程如下:

      (1)模型準(zhǔn)備:了解問(wèn)題的實(shí)際背景,明確其實(shí)際意義,掌握對(duì)象的各種信息。用數(shù)學(xué)語(yǔ)言來(lái)描述問(wèn)題。

      (2)模型假設(shè):根據(jù)實(shí)際對(duì)象的特征和建模的目的,對(duì)問(wèn)題進(jìn)行必要的簡(jiǎn)化,并用精確地語(yǔ)言提出一些恰當(dāng)?shù)募僭O(shè)。

      (3)模型建立:在假設(shè)的基礎(chǔ)上,利用適當(dāng)?shù)臄?shù)學(xué)工具來(lái)刻畫各變量之間的數(shù)學(xué)關(guān)系,建立相應(yīng)的數(shù)學(xué)結(jié)構(gòu)。

      (4)模型求解:利用或取得的數(shù)據(jù)資料,對(duì)模型的所有參數(shù)做出計(jì)算。

      (5)模型分析:對(duì)所得的結(jié)果進(jìn)行數(shù)學(xué)上的分析。

      (6)模型檢驗(yàn):將模型分析結(jié)果與實(shí)際情形進(jìn)行比較,以此來(lái)驗(yàn)證模型的準(zhǔn)確性、合理性和適用性。如果模型與實(shí)際較吻合,則要對(duì)計(jì)算結(jié)果給出其實(shí)際含義,并進(jìn)行解釋。如果模型與實(shí)際吻合較差,則應(yīng)該修改假設(shè),再次進(jìn)行建模過(guò)程。

      數(shù)學(xué)模型既順應(yīng)時(shí)代發(fā)展的潮流,也符合教育改革的要求。對(duì)于數(shù)學(xué)教育而言,既應(yīng)該讓學(xué)生掌握準(zhǔn)確快捷的計(jì)算方法和嚴(yán)密的邏輯推理,也需要培養(yǎng)學(xué)生用數(shù)學(xué)工具分析解決實(shí)際問(wèn)題的意識(shí)和能力,傳統(tǒng)的數(shù)學(xué)教學(xué)體系和內(nèi)容無(wú)疑偏重于前者,而開(kāi)設(shè)數(shù)學(xué)建模課程則是加強(qiáng)后者的一種嘗試,數(shù)學(xué)建模的初衷是為了幫助大家提升分析問(wèn)題,解決問(wèn)題的能力。我認(rèn)為學(xué)習(xí)數(shù)學(xué)模型的意義有如下幾點(diǎn):一 學(xué)習(xí)數(shù)學(xué)模型我們可以參加數(shù)學(xué)建模競(jìng)賽,而數(shù)學(xué)建模競(jìng)賽是為了促進(jìn)數(shù)學(xué)建模的發(fā)展而應(yīng)運(yùn)而生的,它可以培養(yǎng)大家的競(jìng)賽能力、抗壓能力、問(wèn)題設(shè)計(jì)能力、搜索資料的能力、計(jì)算機(jī)運(yùn)用能力、論文寫作與修改完善能力、語(yǔ)言表達(dá)能力、創(chuàng)新能力等科學(xué)綜合素養(yǎng),它讓大家從傳統(tǒng)的知識(shí)培養(yǎng)轉(zhuǎn)變到能力的培養(yǎng),讓我們的思想追求有了質(zhì)的變化!這也是我們現(xiàn)代教育所追求的;二 學(xué)習(xí)數(shù)學(xué)可以提升我的邏輯思維能力和運(yùn)算等抽象能力,但好多人覺(jué)得數(shù)學(xué)和實(shí)際遙不可及,可是呢,數(shù)學(xué)建模則成為了解決這種現(xiàn)象的殺手锏,因?yàn)閿?shù)學(xué)建模就是為了培養(yǎng)大家的分析問(wèn)題和分解決問(wèn)題的能力。

      在學(xué)習(xí)了數(shù)學(xué)模型后,它所教給我們的不單是一些數(shù)學(xué)方面的知識(shí),比如說(shuō)一些數(shù)學(xué)計(jì)算軟件,學(xué)習(xí)建模的同時(shí),借用各種建模軟件解決問(wèn)題是必不可少的Matlab,Lingo,等都是非常方便的。數(shù)學(xué)模型是數(shù)學(xué)學(xué)習(xí)的新的方式,他為我們提供了自主學(xué)習(xí)的空間,有助于我們體驗(yàn)數(shù)學(xué)在解決實(shí)際問(wèn)題中的價(jià)值和作用,體驗(yàn)數(shù)學(xué)與日常生化和其他學(xué)科的聯(lián)系,體驗(yàn)綜合運(yùn)用知識(shí)和方

      法解決實(shí)際問(wèn)題的過(guò)程,增強(qiáng)應(yīng)用意識(shí);而且數(shù)學(xué)模型還對(duì)我們有綜合能力的培養(yǎng)、鍛煉與提高。它培養(yǎng)了我們?nèi)?、多角度考慮問(wèn)題的能力,使我們的邏輯推理能力和量化分析能力得到很好地鍛煉和提高。而且我認(rèn)為數(shù)學(xué)模型帶給我的是發(fā)散性思維,各種研究方法和手段。教會(huì)我凡事要有自己的創(chuàng)新,自己的嚴(yán)密思維,不能局限于俗套。總之學(xué)習(xí)數(shù)學(xué)模型有利于激發(fā)我們的學(xué)習(xí)數(shù)學(xué)的興趣,豐富我們學(xué)習(xí)數(shù)學(xué)探索的情感體驗(yàn);有利于我們自覺(jué)體驗(yàn)、鞏固所學(xué)的的數(shù)學(xué)知識(shí)。還鍛煉了我們的耐心和意志力。

      第四篇:數(shù)學(xué)模型

      數(shù)學(xué)建模的心得體會(huì)

      學(xué)完數(shù)學(xué)建模,使我感觸良多:它所教給我們的不單是一些數(shù)學(xué)方面的知識(shí),更多的其實(shí)是綜合能力的培養(yǎng)、鍛煉與提高。它培養(yǎng)了我們?nèi)?、多角度考慮問(wèn)題的能力,使我們的邏輯推理能力和量化分析能力得以到很好的鍛煉和提高。

      首先我想簡(jiǎn)單介紹下數(shù)學(xué)模型: 一.?dāng)?shù)學(xué)模型的定義

      現(xiàn)在數(shù)學(xué)模型還沒(méi)有一個(gè)統(tǒng)一的準(zhǔn)確的定義,因?yàn)檎驹诓煌慕嵌瓤梢杂胁煌亩x。不過(guò)我們可以給出如下定義。“數(shù)學(xué)模型是關(guān)于部分現(xiàn)實(shí)世界和為一種特殊目的而作的一個(gè)抽象的、簡(jiǎn)化的結(jié)構(gòu)?!本唧w來(lái)說(shuō),數(shù)學(xué)模型就是為了某種目的,用字母、數(shù)學(xué)及其它數(shù)學(xué)符號(hào)建立起來(lái)的等式或不等式以及圖表、圖像、框圖等描述客觀事物的特征及其內(nèi)在聯(lián)系的數(shù)學(xué)結(jié)構(gòu)表達(dá)式。

      二.建立數(shù)學(xué)模型的方法和步驟 第一、模型準(zhǔn)備

      首先要了解問(wèn)題的實(shí)際背景,明確建模目的,搜集必需的各種信息,盡量弄清對(duì)象的特征。

      第二、模型假設(shè)

      根據(jù)對(duì)象的特征和建模目的,對(duì)問(wèn)題進(jìn)行必要的、合理的簡(jiǎn)化,用精確的語(yǔ)言作出假設(shè),是建模至關(guān)重要的一步。如果對(duì)問(wèn)題的所有因素一概考慮,無(wú)疑是一種有勇氣但方法欠佳的行為,所以高超的建模者能充分發(fā)揮想象力、洞察力和判斷力,善于辨別主次,而且為了使處理方法簡(jiǎn)單,應(yīng)盡量使問(wèn)題線性化、均勻化。

      第三、模型構(gòu)成

      根據(jù)所作的假設(shè)分析對(duì)象的因果關(guān)系,利用對(duì)象的內(nèi)在規(guī)律和適當(dāng)?shù)臄?shù)學(xué)工具,構(gòu)造各個(gè)量間的等式關(guān)系或其它數(shù)學(xué)結(jié)構(gòu)。這時(shí),我們便會(huì)進(jìn)入一個(gè)廣闊的應(yīng)用數(shù)學(xué)天地,這里在高數(shù)、概率老人的膝下,有許多可愛(ài)的孩子們,他們是圖論、排隊(duì)論、線性規(guī)劃、對(duì)策論等許多許多,真是泱泱大國(guó),別有洞天。不過(guò)我們應(yīng)當(dāng)牢記,建立數(shù)學(xué)模型是為了讓更多的人明了并能加以應(yīng)用,因此工具愈簡(jiǎn)單愈有價(jià)值。

      第四、模型求解 可以采用解方程、畫圖形、證明定理、邏輯運(yùn)算、數(shù)值運(yùn)算等各種傳統(tǒng)的和近代的數(shù)學(xué)方法,特別是計(jì)算機(jī)技術(shù)。一道實(shí)際問(wèn)題的解決往往需要紛繁的計(jì)算,許多時(shí)候還得將系統(tǒng)運(yùn)行情況用計(jì)算機(jī)模擬出來(lái),因此編程和熟悉數(shù)學(xué)軟件包能力便舉足輕重。

      第五、模型分析

      對(duì)模型解答進(jìn)行數(shù)學(xué)上的分析?!皺M看成嶺側(cè)成峰,遠(yuǎn)近高低各不同”,能否對(duì)模型結(jié)果作出細(xì)致精當(dāng)?shù)姆治觯瑳Q定了你的模型能否達(dá)到更高的檔次。還要記住,不論那種情況都需進(jìn)行誤差分析,數(shù)據(jù)穩(wěn)定性分析。

      數(shù)學(xué)模型主要是將現(xiàn)實(shí)對(duì)象的信息加以翻譯,歸納的產(chǎn)物。通過(guò)對(duì)數(shù)學(xué)模型的假設(shè)、求解、驗(yàn)證,得到數(shù)學(xué)上的解答,再經(jīng)過(guò)翻譯回到現(xiàn)實(shí)對(duì)象,給出分析、決策的結(jié)果。其實(shí),數(shù)學(xué)建模對(duì)我們來(lái)說(shuō)并不陌生,在我們的日常生活和工作中,經(jīng)常會(huì)用到有關(guān)建模的概念。例如,我們平時(shí)出遠(yuǎn)門,會(huì)考慮一下出行的路線,以達(dá)到既快速又經(jīng)濟(jì)的目的;一些廠長(zhǎng)經(jīng)理為了獲得更大的利潤(rùn),往往會(huì)策劃出一個(gè)合理安排生產(chǎn)和銷售的最優(yōu)方案??這些問(wèn)題和建模都有著很大的聯(lián)系。而在學(xué)習(xí)數(shù)學(xué)建模以前,我們面對(duì)這些問(wèn)題時(shí),解決它的方法往往是一種習(xí)慣性的思維方式,只知道該這樣做,卻不很清楚為什么會(huì)這樣做,現(xiàn)在,我們這種陳舊的思考方式己經(jīng)被數(shù)學(xué)建模中培養(yǎng)出的多角度、層次分明、從本質(zhì)上區(qū)分問(wèn)題的新穎多維的思考方式所替代。這種凝聚了許多優(yōu)秀方法為一體的思考方式一旦被你把握,它就轉(zhuǎn)化成了你自身的素質(zhì),不僅在你以后的學(xué)習(xí)工作中繼續(xù)發(fā)揮作用,也為你的成長(zhǎng)道路印下了閃亮的一頁(yè)。

      數(shù)學(xué)建模所要解決的問(wèn)題決不是單一學(xué)科問(wèn)題,它除了要求我們有扎實(shí)的數(shù)學(xué)知識(shí)外,還需要我們不停地去學(xué)習(xí)和查閱資料,除了我們要學(xué)習(xí)許多數(shù)學(xué)分支問(wèn)題外,還要了解工廠生產(chǎn)、經(jīng)濟(jì)投資、保險(xiǎn)事業(yè)等方面的知識(shí),這些知識(shí)決不是任何專業(yè)中都能涉獵得到的。它能極大地拓寬和豐富我們的內(nèi)涵,讓我們感到了知識(shí)的重要性,也領(lǐng)悟到了“學(xué)習(xí)是不斷發(fā)現(xiàn)真理的過(guò)程”這句話的真諦所在,這些知識(shí)必將為我們將來(lái)的學(xué)習(xí)工作打下堅(jiān)實(shí)的基礎(chǔ)。從現(xiàn)在我們的學(xué)習(xí)來(lái)看,我們都是直接受益者。毫不夸張的說(shuō),建模過(guò)程挖掘了我們的潛能,使我們對(duì)自己的能力有了新的認(rèn)識(shí),特別是自學(xué)能力得到了極大的提高,而且思想的交鋒也迸發(fā)出了智慧的火花,從而增加了繼續(xù)深入學(xué)習(xí)數(shù)學(xué)的主動(dòng)性和積極性。再次,數(shù)學(xué)建模也培養(yǎng)了我們的概括力和想象力,也就是要一眼就能抓住問(wèn)題的本質(zhì)所在。我們只有先對(duì)實(shí)際問(wèn)題進(jìn)行概括歸納,同時(shí)在允許的情況下盡量忽略各種次要因素,緊緊抓住問(wèn)題的本質(zhì)方面,使問(wèn)題盡可能簡(jiǎn)單化,這樣才能解決問(wèn)題。數(shù)學(xué)建模還能增強(qiáng)我們的抽象能力以及想象力。對(duì)實(shí)際問(wèn)題再進(jìn)行“翻譯”,即進(jìn)行抽象,要用我們熟悉的數(shù)學(xué)語(yǔ)言、數(shù)學(xué)符號(hào)和數(shù)學(xué)公式將它們準(zhǔn)確的表達(dá)出來(lái)。

      通過(guò)學(xué)習(xí)數(shù)學(xué)建模,對(duì)我的收益不遜于以前所學(xué)的文化知識(shí),使我終生難忘。而且,我覺(jué)得數(shù)學(xué)建?;顒?dòng)本身就是教學(xué)方法改革的一種探索,它打破常規(guī)的那種老師臺(tái)上講,學(xué)生聽(tīng),一味鉆研課本的傳統(tǒng)模式,而采取提出問(wèn)題,課堂討論,帶著問(wèn)題去學(xué)習(xí)、不固定于基本教材,不拘泥于某種方法,激發(fā)學(xué)生的多種思維,增強(qiáng)其學(xué)習(xí)主動(dòng)性,培養(yǎng)學(xué)生獨(dú)立思考,積極思維的特性,這樣有利于學(xué)生根據(jù)自己的特點(diǎn)把握所學(xué)知識(shí),形成自己的學(xué)習(xí)機(jī)制,逐步培養(yǎng)很強(qiáng)的自學(xué)能力和分析、解決新問(wèn)題的能力。這對(duì)于我們以后所從事的教育工作也是一個(gè)很好的啟發(fā)。

      第五篇:數(shù)學(xué)模型論文[推薦]

      數(shù)學(xué)模型論文(數(shù)學(xué)模型論文范文):研究數(shù)學(xué)模型提高企業(yè)競(jìng)爭(zhēng)力 摘要:在對(duì)研究數(shù)學(xué)模型提升企業(yè)競(jìng)爭(zhēng)力的發(fā)展歷程進(jìn)行概述的基礎(chǔ)上,探討了煤炭企業(yè)該如何研究數(shù)學(xué)模型提高競(jìng)爭(zhēng)力。關(guān)鍵詞:氫數(shù)學(xué)模型;企業(yè)管理;提高企業(yè)競(jìng)爭(zhēng)力

      Stduy on Mathematical Models to ImproveEnterprise's Competence Abstract:The article is aimed to probe on how coal companies to study mathematical in anattempt to improve competence based on the developing course of enterprise's competenceenhanced by studying mathematical models Keywords:mathematical models;enterprise management;promotion of enterprise's competence 【引言】

      科學(xué)技術(shù)是第一生產(chǎn)力。一方面先進(jìn)的生產(chǎn)技術(shù)是一個(gè)動(dòng)態(tài)的技術(shù),它隨著人類的發(fā)明創(chuàng)造在不斷地向前發(fā)展,特別是當(dāng)今在以計(jì)算機(jī)技術(shù)、網(wǎng)絡(luò)技術(shù)、多媒體技術(shù)為核心的信息技術(shù)的推動(dòng)下,其發(fā)展之迅速更是日新月異;另一方面,在知識(shí)經(jīng)濟(jì)時(shí)代,知識(shí)信息就是財(cái)富,誰(shuí)及時(shí)地了解并掌握先進(jìn)的生產(chǎn)技術(shù),誰(shuí)就能在成本控制與技術(shù)創(chuàng)新上占據(jù)優(yōu)勢(shì),進(jìn)而在激烈的競(jìng)爭(zhēng)中取勝。所以最新的科學(xué)技術(shù)是一個(gè)會(huì)變化發(fā)展的,受到所有人追蹤的技術(shù)。本文介紹了在高技術(shù)本質(zhì)上是數(shù)學(xué)技術(shù)意義下的數(shù)學(xué)模型技術(shù),并探討了煤炭企業(yè)如何研究、應(yīng)用她。

      1研究數(shù)學(xué)模型提升企業(yè)競(jìng)爭(zhēng)力概述

      世界上成功的企業(yè)無(wú)一不是在成本上進(jìn)行控制與技術(shù)上進(jìn)行創(chuàng)新的成功中發(fā)展壯大起來(lái)的。因此,當(dāng)今煤炭產(chǎn)業(yè)要發(fā)展,煤炭企業(yè)要壯大,煤炭人一定要追蹤并善于緊跟當(dāng)今世界科技發(fā)展步伐。通過(guò)文獻(xiàn)信息檢索發(fā)現(xiàn):提高企業(yè)管理者信息素質(zhì),研究數(shù)學(xué)模型,對(duì)企業(yè)生產(chǎn)經(jīng)營(yíng)活動(dòng)的每個(gè)環(huán)節(jié)建立數(shù)學(xué)模型,借助計(jì)算機(jī)求解、分析這些數(shù)學(xué)模型,并根據(jù)求解、分析的結(jié)果,對(duì)企業(yè)生產(chǎn)經(jīng)營(yíng)活動(dòng)的每個(gè)環(huán)節(jié)進(jìn)行優(yōu)化和調(diào)整,是一種當(dāng)今正在興起的、能有效提高企業(yè)競(jìng)爭(zhēng)力的、先進(jìn)的企業(yè)管理技術(shù)。

      數(shù)學(xué)模型是一種用數(shù)學(xué)方法對(duì)事物進(jìn)行定量分析、研究的技術(shù)。它雖然古老并在人類發(fā)展史上不斷顯示出巨大威力。但由于運(yùn)用數(shù)學(xué)模型研究事物要求研究者必須具有相關(guān)的專業(yè)知識(shí)(如要運(yùn)用數(shù)學(xué),物理,化學(xué),經(jīng)濟(jì)、財(cái)會(huì)管理等知識(shí)才能建立數(shù)學(xué)模型),并且還要進(jìn)行復(fù)雜的數(shù)學(xué)計(jì)算與邏輯推理,所以一直以來(lái)數(shù)學(xué)模型都只是作為少數(shù)科學(xué)家們(物理學(xué)家、天文學(xué)家、力學(xué)家等人)的神秘武器。數(shù)學(xué)模型做為一種技術(shù)真正得到推廣是在高等教育和計(jì)算機(jī)技術(shù)得到普以后的事情。首先,高等教育的發(fā)展普及使得社會(huì)的新成員或多或少有了建立數(shù)學(xué)模型的能力。其次,隨著計(jì)算機(jī)的發(fā)明和計(jì)算機(jī)技術(shù)的發(fā)展,一方面,人們發(fā)現(xiàn)可以用計(jì)算機(jī)來(lái)完成數(shù)學(xué)計(jì)算和邏輯推理工作,從而使得一些復(fù)雜的、以前靠人工不可能完成的計(jì)算與推理工作,現(xiàn)在都可以用計(jì)算機(jī)來(lái)完成,這樣就形成了一種把計(jì)算機(jī)技術(shù)與數(shù)學(xué)技術(shù)結(jié)合起來(lái)的“高技術(shù)”,這是一種普遍的、可以實(shí)現(xiàn)的新技術(shù)———數(shù)學(xué)模型技術(shù);另一方面,微型計(jì)算機(jī)不僅性能越來(lái)越好,應(yīng)用軟件越來(lái)越豐富,操作變得越來(lái)越容易,而且價(jià)格也是越來(lái)越便宜,使得計(jì)算機(jī)應(yīng)用走進(jìn)了千家萬(wàn)戶,人人都有了使用計(jì)算機(jī)的條件,為人們研究數(shù)學(xué)模型技術(shù)奠定了基礎(chǔ)。

      隨著信息技術(shù)的發(fā)展,信息高速公路使全球經(jīng)濟(jì)一體化,各個(gè)企業(yè)、公司之間的競(jìng)爭(zhēng)日益激烈,殘酷的競(jìng)爭(zhēng)迫使著人們不得不對(duì)企業(yè)經(jīng)營(yíng)管理進(jìn)行深入地研究。馬克思曾經(jīng)說(shuō)過(guò)“:任何一門科學(xué)只有充分利用了數(shù)學(xué)才能夠達(dá)到完美的境界”。遵循這一思路,人們?cè)谄髽I(yè)經(jīng)營(yíng)管理的研究中開(kāi)始引進(jìn)數(shù)學(xué)思想和方法,嘗試對(duì)企業(yè)生產(chǎn)經(jīng)營(yíng)的各個(gè)環(huán)節(jié)建立數(shù)學(xué)模型,通過(guò)研究這些數(shù)學(xué)模型來(lái)對(duì)這些環(huán)節(jié)進(jìn)行定量的分析和研究。例如人們結(jié)合各自企業(yè)的實(shí)際創(chuàng)建了種種數(shù)學(xué)模型,有工廠升級(jí)方案的優(yōu)化模型[1],加工流水線設(shè)計(jì)模型,設(shè)備的維修更換模型,應(yīng)急設(shè)施的選址問(wèn)題模型[2],革新技術(shù)的推廣模型,Van Meegeren的藝術(shù)偽造品模型[3],生產(chǎn)庫(kù)存問(wèn)題模型,供求平衡狀態(tài)下使利潤(rùn)最大的最優(yōu)價(jià)格模型[6],生產(chǎn)計(jì)劃模型,運(yùn)輸模型,排班問(wèn)題模型,分配問(wèn)題模型,投入產(chǎn)出模型,利潤(rùn)分段生產(chǎn)計(jì)劃模型,生產(chǎn)和庫(kù)存計(jì)劃模型,技術(shù)改造模型,互不相容產(chǎn)品存放問(wèn)題模型[4]等等。依據(jù)對(duì)這些數(shù)學(xué)模型進(jìn)行研究的結(jié)果,人們對(duì)企業(yè)生產(chǎn)經(jīng)營(yíng)的相應(yīng)環(huán)節(jié)進(jìn)行優(yōu)化和調(diào)整,實(shí)現(xiàn)了經(jīng)營(yíng)管理決策最優(yōu)化和最大程度地節(jié)約成本減少開(kāi)支的巨大成功。任何成功的技術(shù),必定會(huì)被納入教育內(nèi)容傳播開(kāi)去。今天,運(yùn)用數(shù)學(xué)模型研究事物正在成為一種潮流,數(shù)學(xué)模型技術(shù)已經(jīng)為越來(lái)越多的大學(xué)所傳授,并迅速地應(yīng)用到各行各業(yè)中。

      2煤炭企業(yè)如何研究數(shù)學(xué)模型

      針對(duì)上述數(shù)學(xué)模型技術(shù)發(fā)展形勢(shì),筆者以為,煤炭企業(yè)應(yīng)該緊跟研究數(shù)學(xué)模型提高企業(yè)競(jìng)爭(zhēng)力的潮流,在企業(yè)管理中重視研究數(shù)學(xué)模型,用數(shù)學(xué)模型分析企業(yè)生產(chǎn)經(jīng)營(yíng)活動(dòng)的每個(gè)環(huán)節(jié),并據(jù)此對(duì)每個(gè)環(huán)節(jié)進(jìn)行優(yōu)化和調(diào)整,實(shí)現(xiàn)最大程度地節(jié)約成本和減少開(kāi)支,增強(qiáng)企業(yè)競(jìng)爭(zhēng)力。具體地說(shuō)就是要:

      2.1培養(yǎng)人們的信息素質(zhì)

      信息素質(zhì)又稱“信息文化”、“信息素養(yǎng)”,指全球信息化需要人們具備的一種基本能力,即人們?cè)诠ぷ髦羞\(yùn)用信息技術(shù)解決問(wèn)題的能力。人類社會(huì)已經(jīng)進(jìn)入信息時(shí)代,對(duì)于信息時(shí)代的理解不能只限于利用電子郵件、QQ聊天、電話、短信等通信工具方便了人們之間的聯(lián)系,而應(yīng)該認(rèn)識(shí)到信息時(shí)代還包括人們可以方便、快捷地獲取、處理、發(fā)布信息。具有信息素質(zhì)的人能夠判斷什么時(shí)候需要信息,并且懂得如何去獲取信息,如何去評(píng)價(jià)和有效利用獲得的信息。信息素質(zhì)可以概括為信息意識(shí)、信息能力、信息道德3個(gè)方面。信息意識(shí),是人們對(duì)信息需求的自我意識(shí),主要表現(xiàn)在人們從信息的角度去感受、理解和評(píng)價(jià)自然界、社會(huì)中的各種現(xiàn)象、行為,判斷、洞察有用信息的能力。包括人們對(duì)信息的敏銳感受和理解,對(duì)信息在工作、學(xué)習(xí)、科研等各個(gè)領(lǐng)域重要性的領(lǐng)悟。是人對(duì)各種信息的自覺(jué)心理反應(yīng),是人們掌握信息、應(yīng)用信息的自覺(jué)性的內(nèi)在要求,是對(duì)客觀事物中有價(jià)值的信息特殊、敏銳的感受力、判斷力,并力圖獲取和加以利用的強(qiáng)烈愿望。信息能力包括信息獲取、加工處理和利用能力等。一個(gè)人信息能

      力的大小在很大程度上決定著他的社會(huì)活動(dòng)能力和工作能力。信息道德是指整個(gè)信息活動(dòng)中的道德,即在整個(gè)信息活動(dòng)中,信息加工者、傳遞者、使用者相互之間各種行為規(guī)范的總和。進(jìn)入信息時(shí)代,首先要重視自己信息意識(shí)的培養(yǎng),使自己具有敏銳的觀察力,快速的發(fā)掘能力,能迅速有效地從龐雜散亂的事物中捕捉并掌握有價(jià)值的信息,即善于從他人看來(lái)是微不足道、毫無(wú)價(jià)值的信息中發(fā)現(xiàn)信息的意義和價(jià)值所在。這樣我們不僅懂得信息的重要性,而且會(huì)因?yàn)楣芾砥髽I(yè)的需要積極主動(dòng)地去搜集企業(yè)管理方面的最新技術(shù)。其次,要重視自己信息能力的培養(yǎng),增強(qiáng)自己的信息能力。主要是學(xué)習(xí)運(yùn)用計(jì)算機(jī)網(wǎng)絡(luò)技術(shù)從各種數(shù)字圖書館、各種文獻(xiàn)數(shù)據(jù)庫(kù)及Internet檢索文獻(xiàn)信息的方法,使自己能在需要時(shí)快速、準(zhǔn)確、完整地獲取到所需的信息,并能熟練地應(yīng)用有關(guān)信息技術(shù),充分加工利用這些信息。再次,要重視自己的信息道德培養(yǎng)。在搜集與利用當(dāng)今企業(yè)管理最新技術(shù)活動(dòng)過(guò)程中自覺(jué)遵循法律法規(guī),尊重他人的學(xué)術(shù)成果,尊重知識(shí)產(chǎn)權(quán)、合理使用文獻(xiàn)信息,自覺(jué)抵制違法信息及信息行為。

      2.2明確研究方法

      數(shù)學(xué)模型技術(shù)研究是一種科學(xué)研究,必須重視連續(xù)性和繼承性。今天人類沒(méi)有涉獵的領(lǐng)域是極少的,數(shù)學(xué)模型技術(shù)有其發(fā)生和發(fā)展的過(guò)程,任何一個(gè)研究者,在進(jìn)行數(shù)學(xué)模型技術(shù)研究時(shí),都必須首先占有大量的數(shù)學(xué)模型技術(shù)文獻(xiàn),對(duì)數(shù)學(xué)模型技術(shù)的歷史、現(xiàn)狀和未來(lái)充分了解,以前人已經(jīng)取得的成果為基礎(chǔ),進(jìn)行新的研究。如果有人已做過(guò)某數(shù)學(xué)模型技術(shù)的研究人,就可以不開(kāi)展此項(xiàng)目研究了,而直接

      利用別人的研究成果。這樣通過(guò)文獻(xiàn)檢索而直接獲得研究成果,不僅節(jié)約了科研經(jīng)費(fèi),也避免了重復(fù)勞動(dòng)和贏得了保貴的時(shí)間。如果有人正在進(jìn)行某數(shù)學(xué)模型技術(shù)的研究,也要搞清楚,當(dāng)前有哪些機(jī)構(gòu)或個(gè)人在研究此數(shù)學(xué)模型技術(shù),他們研究的進(jìn)展如何。這樣就可以從前人的研究中吸取營(yíng)養(yǎng),繼承前人的研究成果、經(jīng)驗(yàn)教訓(xùn)、避免重復(fù)他人的勞動(dòng)和少走彎路,使自己的研究工作在立項(xiàng)時(shí)就建立在一個(gè)較高的起點(diǎn)上,不僅可以確保我們的數(shù)學(xué)模型研究工作始終處于領(lǐng)先地位,而且可以保證我們的數(shù)學(xué)模型研究成果是有價(jià)值的,還可以開(kāi)拓更新的、更高層次的、更廣闊的數(shù)學(xué)模型研究領(lǐng)域。例如,20世紀(jì)世界上的重大發(fā)明日本一項(xiàng)也沒(méi)有,但是日本卻在綜合別人成果的基礎(chǔ)上創(chuàng)造出了世界一流的新技術(shù)、新產(chǎn)品。日本科學(xué)家認(rèn)為“綜合就是創(chuàng)造”。當(dāng)然,綜合是要獲取別人的研究成果的,日本的成功是建立在充分占有科研成果的基礎(chǔ)上的。筆者認(rèn)為,日本科學(xué)家們這種科研方法值得學(xué)習(xí),在利用文獻(xiàn)信息檢索技術(shù)獲取數(shù)學(xué)模型技術(shù)知識(shí)信息的基礎(chǔ)上進(jìn)行綜合創(chuàng)造,是一條很好的煤炭企業(yè)研究數(shù)學(xué)模型提升競(jìng)爭(zhēng)力渠道。

      2.3努力掌握數(shù)學(xué)模型技術(shù)

      對(duì)生產(chǎn)經(jīng)營(yíng)的各個(gè)環(huán)節(jié)建立數(shù)學(xué)模型,運(yùn)用計(jì)算機(jī)求解這些數(shù)學(xué)模型,根據(jù)求解結(jié)果調(diào)整優(yōu)化生產(chǎn),這就是企業(yè)管理中的數(shù)學(xué)模型技術(shù)。只要我國(guó)煤炭企業(yè)培養(yǎng)信息素質(zhì)把握市場(chǎng)技術(shù)與產(chǎn)品信息,運(yùn)用數(shù)學(xué)模型技術(shù)指導(dǎo)生產(chǎn)經(jīng)營(yíng),就可以提高競(jìng)爭(zhēng)力。

      3在企業(yè)管理中應(yīng)用數(shù)學(xué)模型技術(shù)實(shí)例

      如上所述,煤炭企業(yè)可以在生產(chǎn)計(jì)劃制訂、組織生產(chǎn)、材料采購(gòu)、庫(kù)存管理、產(chǎn)品銷售等生產(chǎn)經(jīng)營(yíng)環(huán)節(jié)進(jìn)行數(shù)學(xué)模型研究。下面僅舉一例來(lái)說(shuō)明在企業(yè)管理中運(yùn)用數(shù)學(xué)模型的方法。例1廣告模型[5]某工廠準(zhǔn)備在電視上做廣告,電視臺(tái)的收費(fèi)標(biāo)準(zhǔn)為:時(shí)間Ⅰ:星期一至星期日18:30到22:30以外的時(shí)間每30 s收費(fèi)200元;時(shí)間Ⅱ:星期一至星期五18:30到22:30熱門時(shí)間每30 s收費(fèi)350元;時(shí)間Ⅲ:星期六及星期日18:30到22:30熱門時(shí)間每30 s收費(fèi)500元。該工廠計(jì)劃用72 000元在電視臺(tái)做1個(gè)月(30 d)每天30 s的廣告。電視臺(tái)規(guī)定:每周在時(shí)間Ⅱ和時(shí)間Ⅲ內(nèi)播出的次數(shù)之和不能超過(guò)時(shí)間Ⅰ內(nèi)播出次數(shù)的一半,而工廠希望時(shí)間Ⅲ內(nèi)播出的次數(shù)不少于4次,也就是平均1周要至少1次。據(jù)估計(jì),在時(shí)間Ⅰ內(nèi)收視率為100萬(wàn)人次,在時(shí)間Ⅱ和時(shí)間Ⅲ的收視率分別為時(shí)間Ⅰ內(nèi)的3倍和5倍,問(wèn)應(yīng)如何安排播放次數(shù),才能使收視率最高?[解]第一步,建立模型。(1)該問(wèn)題所要確定的量是在3種時(shí)間內(nèi)播出的次數(shù),這就是決策變量,設(shè)xi表示時(shí)間i播出的次數(shù)(i=1,2,3)。(2)該問(wèn)題要受到如下條件的限制:①全月播放的總次數(shù)是30次,即x1+x2+x3=30;②在時(shí)間Ⅱ和時(shí)間Ⅲ內(nèi)播出的次數(shù)之和不能超過(guò)時(shí)間Ⅰ內(nèi)播出次數(shù)的一半,即:x2+x3≤(1/2)x1或x1-2x2-2x3≥0;③在時(shí)間Ⅲ內(nèi)播出的次數(shù)不少于4次,即x3≥4;④每種時(shí)間內(nèi)播出的次數(shù)不能為負(fù)數(shù),即x1,x2,x3≥0;⑤廣告費(fèi)用不能超支,即200x1+350x2+500x3≤72 000;(3)該問(wèn)題的目的是收視率最高,所以收視率是目標(biāo)函數(shù),即z=x1+3x2+5x3

      因此,該問(wèn)題的數(shù)學(xué)模型為:

      第二步,求解模型

      用Exce“l(fā)規(guī)劃求解”工具求解,結(jié)果如下(具體求解方法見(jiàn)文[8]):x1=20,x2=0,x3=10,z=70??梢?jiàn),當(dāng)在時(shí)間Ⅰ播出廣告20次,在時(shí)間Ⅱ不播出廣告,在時(shí)間Ⅲ播出廣告10次時(shí),既滿足要求,又能使收視率達(dá)到最高達(dá)到7 000萬(wàn)人次。

      參考文獻(xiàn):

      [1]吳建國(guó).數(shù)學(xué)建模案例精編[J].北京:中國(guó)水利水電出版社,2005.[2]周義倉(cāng),等.數(shù)學(xué)建模實(shí)驗(yàn)[M].西安:西安交通大學(xué)出版社,1999.[3](美)W.F.LUCAS.微分方程模型[M].長(zhǎng)沙:國(guó)防科技大學(xué)出版社,1998.[4]王冬琳.數(shù)學(xué)建模及實(shí)驗(yàn)[M].北京:國(guó)防工業(yè)出版社,2004.[5]朱喜安.初等數(shù)量分析[M].北京:中國(guó)財(cái)政經(jīng)濟(jì)出版社,2006.[6]胡運(yùn)權(quán).運(yùn)籌學(xué)習(xí)題集[M].北京:清華大學(xué)出版社,2002.[7]葉藝林.文獻(xiàn)信息檢索教程[M].成都:西南交大出版社,2009.[8]葉藝林.用“規(guī)劃求解”工具求解線性規(guī)劃[J].景德鎮(zhèn)高專學(xué)報(bào),2006(4).

      下載數(shù)學(xué)模型心得體會(huì)(最終定稿)word格式文檔
      下載數(shù)學(xué)模型心得體會(huì)(最終定稿).doc
      將本文檔下載到自己電腦,方便修改和收藏,請(qǐng)勿使用迅雷等下載。
      點(diǎn)此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會(huì)在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        數(shù)學(xué)模型總結(jié)

        【數(shù)學(xué)建模】數(shù)學(xué)模型總結(jié)四類基本模型 1 優(yōu)化模型 1.1 數(shù)學(xué)規(guī)劃模型 線性規(guī)劃、整數(shù)線性規(guī)劃、非線性規(guī)劃、多目標(biāo)規(guī)劃、動(dòng)態(tài)規(guī)劃。 1.2 微分方程組模型 阻滯增長(zhǎng)模型、SAR......

        管理信息系統(tǒng)答案數(shù)學(xué)模型

        1.1什么是信息?信息和數(shù)據(jù)有何區(qū)別? 答:信息是關(guān)于客觀事實(shí)的、可通信的知識(shí)。首先,信息是對(duì)客觀世界各種事物的特征的反映;其次,信息時(shí)可以通信的;最后信息形成知識(shí)。 區(qū)別:數(shù)據(jù)是......

        博弈論的數(shù)學(xué)模型

        博弈論的數(shù)學(xué)模型 作者: 竺可楨學(xué)院01混合班王大方何霈鄒銘 摘要 博弈論現(xiàn)在得到了廣泛的應(yīng)用,涉及到人的決策問(wèn)題都可以用博弈論的模型加以解釋。本文首先用數(shù)學(xué)的方法表述......

        數(shù)學(xué)模型統(tǒng)計(jì)默寫

        第三四五章的數(shù)學(xué)模型統(tǒng)計(jì)默寫第一章一、名詞解釋1.滲透速度:水流在過(guò)水?dāng)嗝嫔系钠骄魉佟?.實(shí)際速度:地下水在孔隙中的流動(dòng)速度。3.水力坡度:大小等于梯度值,方向沿著等水頭面......

        《數(shù)學(xué)模型》課程教學(xué)大綱

        《數(shù)學(xué)模型》課程教學(xué)大綱 一、課程性質(zhì) “數(shù)學(xué)模型”課程是專業(yè)教育平臺(tái)必修課,是一門充分應(yīng)用其它各數(shù)學(xué)分支的應(yīng)用類課程,其主要任務(wù)不是“學(xué)數(shù)學(xué)”,而是學(xué)著“用數(shù)學(xué)”,將實(shí)......

        傳染病傳播的數(shù)學(xué)模型

        傳染病傳播的數(shù)學(xué)模型很多醫(yī)學(xué)工作者試圖從醫(yī)學(xué)的不同角度來(lái)解釋傳染病傳播時(shí)的一種現(xiàn)象,這種現(xiàn)象就是在某一民族或地區(qū),某種傳染病傳播時(shí),每次所涉及的人數(shù)大體上是一常數(shù)。結(jié)......

        數(shù)學(xué)模型的優(yōu)缺點(diǎn)(5篇模版)

        、應(yīng)用中的優(yōu)缺點(diǎn)比較 (一) 主成分分析 1、優(yōu)點(diǎn) 首先它利用降維技術(shù)用少數(shù)幾個(gè)綜合變量來(lái)代替原始多個(gè)變量,這些綜合變量集中了原始變量的大部分信息。其次它通過(guò)計(jì)算綜合主......

        關(guān)于人在雨中行走的數(shù)學(xué)模型

        關(guān)于人在雨中行走的數(shù)學(xué)模型 摘要 本題在給定的降雨條件下,分別建立相應(yīng)的數(shù)學(xué)模型,分析人體在雨中行走時(shí)淋雨多少與行走速度、降雨方向等因素的關(guān)系。其中題中所涉及到的降......