第一篇:3+1復(fù)習(xí)5.6數(shù)學(xué)歸納法歸納猜想證明
高三3+1復(fù)習(xí)——5.6數(shù)學(xué)歸納法歸納猜想證明
5.6歸納、猜想、證明(講義)
復(fù)習(xí)目標(biāo):1.掌握數(shù)學(xué)歸納法證明的書(shū)寫(xiě)過(guò)程
2.掌握用數(shù)歸法證明恒等式及整除問(wèn)題
3.培養(yǎng)觀察、歸納、猜想、證明的能力
例1.求證:2+4?6????2n??22222n?n?1??2n?1? n?N* 3??
用數(shù)學(xué)歸納法證明命題的步驟:
1)證明
2)假設(shè)命題成立;證明 由1)2)得:命題對(duì)于都成立。
11111111??????例2.求證 :1?????? 2342n?12nn?1n?2n?n
例3.設(shè)f?n??111++?+n?N*,那么f?n?1??f?n?=__________ n?1n?22n
111111(A);(B);(C)+;(D)- 2n?12n?22n?12n?22n?12n?2??
例4.用數(shù)學(xué)歸納法證明12-22+32-42+?+?2n-1???2n???n?2n?1? 時(shí),當(dāng)n?k?1時(shí)2
2比n?k時(shí),等式左邊增加的項(xiàng)是____________________
例5.在數(shù)列?an?中,9Sn?10an?7n n?N*
(1)求出a1,a2,a3,并猜想?an?的通項(xiàng)公式;
(2)用數(shù)歸法證明你的結(jié)論.??
高三3+1復(fù)習(xí)——5.6數(shù)學(xué)歸納法歸納猜想證明
5.6歸納、猜想、證明(學(xué)生版)
1.某個(gè)與自然數(shù)有關(guān)的命題,如果n?kn?N*時(shí)該命題成立,可推得n?k?1時(shí)命題成立,現(xiàn)
為了推得n?5時(shí)該命題不成立,則有()
(A)n?6時(shí)命題不成立;(B)n?6時(shí)命題成立;
(C)n?4時(shí)命題不成立;(D)n?4時(shí)命題成立;
2.用數(shù)學(xué)歸納法證明1?a?a???a
____________________________
2n?1??1?an?2??a?1?,在驗(yàn)證n?1時(shí),左端計(jì)算所得項(xiàng)為1?a
n?n?1? ?n?N*?時(shí),在假設(shè)2
n?k等式成立后.要證明n?k?1時(shí)也成立,這時(shí)要證明的等式為_(kāi)____________________________________________
111111114.數(shù)學(xué)歸納法證明:1????????????n?N*時(shí),當(dāng)n從k到2342n?12nn?1n?2n?n
k?1時(shí)等式左邊增加的項(xiàng)為_(kāi)___________________________________;等式右邊增加的項(xiàng)為_(kāi)_____________________________________
3.用數(shù)學(xué)歸納法證明等式12-22+32-42+?+?-1?n?1n2???1?n?1??
5.用數(shù)學(xué)歸納法證明:3?5????2n?1??222n4n2?12n?11 3??
6.已知正數(shù)列?an?n?N*中前n項(xiàng)和為Sn,且2Sn?an?
然后用數(shù)歸法證明.??1,求a1,a2,a3,并猜測(cè)通項(xiàng)an,an
第二篇:§5.6幾何證明舉例
年級(jí)八年級(jí)學(xué)科數(shù)學(xué)第五 單元第 8課時(shí)總計(jì)課時(shí)2013年 11月 4日
§5.6幾何證明舉例(2)
課程標(biāo)準(zhǔn):掌握等腰三角形的性質(zhì)和判定定理,了解等邊三角形的概念并探索其性質(zhì)。學(xué)習(xí)目標(biāo):
1.學(xué)生會(huì)根據(jù)三角形全等推導(dǎo)等腰三角形的性質(zhì)。
2.熟練掌握應(yīng)用等腰三角形的性質(zhì)定理。
3.掌握等邊三角形的性質(zhì),并會(huì)運(yùn)用判定等邊三角形。
學(xué)習(xí)重點(diǎn)難點(diǎn):
等腰三角形的性質(zhì)定理和判定定理。
我的目標(biāo)以及突破重難點(diǎn)的設(shè)想:
學(xué)前準(zhǔn)備:
學(xué)情分析:
學(xué)案使用說(shuō)明以及學(xué)法指導(dǎo):
預(yù)習(xí)案
一、教材助讀
1、等腰三角形的性質(zhì)是什么?判定是什么?
2、等邊三角形的性質(zhì)和判定是什么?
探究案
探究一:等腰三角形的性質(zhì)
(1)“等腰三角形的兩個(gè)底角相等”是真命題嗎?怎樣證明。
(2)在右圖等腰△ABC中,AB=AC.AD為BC邊上的高
∠1與∠2有什么關(guān)系?BD與CD有什么關(guān)系?
你能得出什么結(jié)論?試著總結(jié)一下。
探究二:等腰三角形的判定(合作交流)
(3)說(shuō)出命題“等腰三角形的兩個(gè)底角相等”的逆命題?
(4)這個(gè)逆命題是真命題嗎?怎樣證明它的正確性?
課型:新授執(zhí)筆:馬海麗審核: 滕廣福韓增美
(5)求證:如果一個(gè)三角形有兩個(gè)角相等,那么這個(gè)三角形是等腰三角形
已知:
求證:
點(diǎn)撥:注意條件中為什么是兩個(gè)“角”,不是兩個(gè)“底角”。
三、精講點(diǎn)撥:
1、等腰三角形的性質(zhì):
性質(zhì)1:
性質(zhì)2:
2、數(shù)學(xué)語(yǔ)言敘述:
性質(zhì)1:性質(zhì)2:
∵AB=AC∵AB=AC
∴∠B= ∠C① AD平分∠BAC
(等邊對(duì)等角)
(①,② ,③均可作為一個(gè)條件,推出其他兩項(xiàng))
(三線合一)
3、總結(jié)等邊三角形的性質(zhì)以及判定(學(xué)生小組討論,寫(xiě)出他們的證明過(guò)程)
四、應(yīng)用新知
例
2、已知,如圖,在△ABC中,AB=AC,D是AB上的一點(diǎn),DE⊥BC,交BC于點(diǎn)E,交CA的延長(zhǎng)線于點(diǎn)F。
求證:AD=AF。
點(diǎn)撥:以后證明線段相等或角相等時(shí),除利用三角形全等外,還可以利用等腰三角形的性質(zhì)和判定。
五、課堂小結(jié):
訓(xùn)練案
課本180頁(yè) 練習(xí)1,2題
我的反思:
第三篇:5.6幾何的證明舉例
5.6幾何證明舉例
(二)諸馮學(xué)校 備課組
學(xué)習(xí)目標(biāo):
1、進(jìn)一步學(xué)習(xí)幾何證明的思路和步驟;
2、牢固掌握等腰三角形的性質(zhì)及判定,等邊三角形的性質(zhì)及判定,并
能夠熟練地應(yīng)用它們進(jìn)行相關(guān)的證明與計(jì)算。
重點(diǎn):等腰三角形的性質(zhì)及判定
難點(diǎn):等腰三角形的性質(zhì)地應(yīng)用。
學(xué)習(xí)過(guò)程:
一、溫故知新:等腰三角形的對(duì)稱(chēng)軸是,由軸對(duì)稱(chēng)的性質(zhì),你認(rèn)為等腰三角形兩個(gè)底角大小有什么關(guān)系?
二、創(chuàng)設(shè)情境:你會(huì)用所學(xué)的知識(shí)證明你的結(jié)論嗎?自主學(xué)習(xí)課本P177——179內(nèi)容,獨(dú)立完成課后練習(xí)1、2后,與小組同學(xué)交流.通過(guò)學(xué)習(xí)等腰三角形的性質(zhì),請(qǐng)思考以下問(wèn)題:
1、等腰三角形的頂角是45゜,則底角是()。
2、三角形的一個(gè)外角平分線平行于三角形的一邊,則這個(gè)三角形一定是()。
三、挑戰(zhàn)自我:自學(xué)課本180頁(yè)挑戰(zhàn)自我,小組討論,展示。
四、鞏固提升:
1.等腰三角形一腰上的高與另一腰的夾角為30°,則頂角的度數(shù)為()
(A)60°(B)120°(C)60°或150°(D)60°或120
2.已知等腰三角形的兩邊長(zhǎng)分別為2和5,則它的周長(zhǎng)為()
(A)12或9(B)12(C)9(D)7
3.如圖,等腰三角形ABC中,AB=AC,∠A=44°,CD⊥AB于D,則∠DCB等于()
(A)44°(B)68°(C)46°(D)22°
4、如圖,在△ABC中,∠ABC=2∠ACB,BD平分∠ABC,AD∥BC,則圖中等腰三角形共有個(gè).(第4題)
四、課堂小結(jié):同學(xué)們本節(jié)課的學(xué)習(xí),你收獲嗎?
五、達(dá)標(biāo)檢測(cè)
1、如圖,△ABC是等邊三角形,AD是高,并且AB恰好是DE的垂直平分線,則下列結(jié)論正確的是()
(A)△ABC≌△AED(B)△AED是等邊三角形(C)∠EAB=60°(D)AD>DE2、如圖,△ABC是等邊三角形,BD是中線,延長(zhǎng)BC到E,使CE=CD,則下列結(jié)論正確的是()
(A)△CDE是等邊三角形(B)DE=AB(C)點(diǎn)D在線段BE的垂直平分線上(D)點(diǎn)D在AB的垂直平分線上
3、已知:如圖,△ABC是等邊三角形,DE∥BC,分別交AB、AC于點(diǎn)D、E。
求證:△ADE是等邊三角形。
六、布置作業(yè)
七、教學(xué)反思
C
D(第1題)
(第2題)E E
第四篇:哥德巴赫猜想的證明
《哥德巴赫猜想的嚴(yán)謹(jǐn)定性證明》 作者姓名:崔坤
作者單位:即墨市瑞達(dá)包裝輔料廠 E-mail:cwkzq@126.com 關(guān)鍵詞:CK表格,陳氏定理,瑞尼定理,哥德巴赫猜想 哥德巴赫猜想:哥德巴赫1742年給歐拉的信中哥德巴赫提出了以下猜想:
任一大于2的偶數(shù)都可寫(xiě)成兩個(gè)質(zhì)數(shù)之和。
由于近代數(shù)學(xué)規(guī)定1不是素?cái)?shù),那么除2以外所有的素?cái)?shù)都是奇素?cái)?shù),據(jù)此哥猜等價(jià):
定理A:每個(gè)≥6的偶數(shù)都是2個(gè)奇素?cái)?shù)之和。推論B: 每個(gè)≥9的奇數(shù)O都是3個(gè)奇素?cái)?shù)之和;
證明:首先我們?cè)O(shè)計(jì)一個(gè)表格---CK表格:
第一頁(yè) 在這個(gè)表格中通項(xiàng)N=An=2n+4,它是有2層等差數(shù)列構(gòu)成的閉合系統(tǒng),即上層是:首項(xiàng)為3,公差為2,末項(xiàng)是奇數(shù)(2n+1)的遞增等差數(shù)列。
下層是:首項(xiàng)為奇數(shù)(2n+1),公差為-2,末項(xiàng)是3的遞減等差數(shù)列。
由于偶數(shù)是無(wú)限的,故這個(gè)表格是個(gè)無(wú)限的,由此組成的系統(tǒng)就是一個(gè)非閉合系統(tǒng)。表中D(N)表示奇素?cái)?shù)對(duì)的個(gè)數(shù),H(N)表示奇合數(shù)對(duì)的個(gè)數(shù),M(N)表示奇素?cái)?shù)與奇合數(shù)成對(duì)的個(gè)數(shù)。不超過(guò)2n+1的奇素?cái)?shù)個(gè)數(shù)為 π(2n+1)-1有CK表格可知:D(N)= π(2n+1)-1-M(N)根據(jù)CK表格、陳氏定理1+
1、瑞尼定理1+2,第一層篩得:
N1=P1+H1,偶數(shù)N1≥12,奇素?cái)?shù)P1≥3,奇數(shù)H1≥9,即: N1=P1+H1=P1+P3=P5+H3,篩得:N1=P1+P3,其中奇素?cái)?shù)P1≥3,奇素?cái)?shù)P3≥3,奇素?cái)?shù)P5≥3,奇合數(shù)H3≥9 偶數(shù)N1的最小值是3+3=6,故每個(gè)N1≥6的偶數(shù)都是2個(gè)奇素?cái)?shù)之和 故命題得證
同理:第二層篩得:
N2=P2+H2,偶數(shù)N2≥12,奇素?cái)?shù)P2≥3,奇數(shù)H2≥9,第二頁(yè) 即:
N2=P2+H2=P2+P4=P6+H4,篩得:N2=P2+P4,其中奇素?cái)?shù)P2≥3,奇素?cái)?shù)P4≥3,奇素?cái)?shù)P6≥3,奇合數(shù)H4≥9 偶數(shù)N2的最小值是3+3=6,故每個(gè)N2≥6的偶數(shù)都是2個(gè)奇素?cái)?shù)之和 故命題得證
第三層篩得: N3=N1+N2, N4=H3+H4 則N3=P5+P6+ H3+H4= P5+P6+ N4 那么N3-N4=P5+P6 設(shè)N=N3-N4, 則N=P5+P6,其中奇素?cái)?shù)P5≥3,奇素?cái)?shù)P6≥3 故每個(gè)N1≥6的偶數(shù)都是2個(gè)奇素?cái)?shù)之和 故命題得證 綜上所述:
故定理A得證:每個(gè)≥6的偶數(shù)都是2個(gè)奇素?cái)?shù)之和。
第三頁(yè)
推論B: 每一個(gè)大于等于9的奇數(shù)O都可以表示成三個(gè)奇素?cái)?shù)之和。簡(jiǎn)言:O=P1+P2+P3 證明:設(shè)P1、P2、P3均為≥3的奇素?cái)?shù),那么根據(jù)定理A可知:P3+N=P3+P1+P2, 因?yàn)镻3為≥3,N≥6,所以奇數(shù)O=(P3+N)≥9,即奇數(shù)O=P1+P2+P3 故:每一個(gè)大于等于9的奇數(shù)O都可以表示成三個(gè)奇素?cái)?shù)之和。
簡(jiǎn)言:O=P1+P2+P3,故推論B得證 至此我們成功的證明了哥德巴赫猜想。作者:崔坤
即墨市瑞達(dá)包裝輔料廠 2016-09-14-14-38
第四頁(yè)
第五篇:哥德巴赫猜想證明方法
哥德巴赫猜想的證明方法
探索者:王志成人們不是說(shuō):證明哥德巴赫猜想,必須證明“充分大”的偶數(shù)有“1+1”的素?cái)?shù)對(duì),才能說(shuō)明哥德巴赫猜想成立嗎?今天,我們就來(lái)談如何尋找“充分大”的偶數(shù)素?cái)?shù)對(duì)的方法。
“充分大”的偶數(shù)指10的500次方,即500位數(shù)以上的偶數(shù)。因?yàn)?,我沒(méi)有學(xué)過(guò)電腦,也不知道大數(shù)的電腦計(jì)算方法,所以,我只有將“充分大”的偶數(shù)素?cái)?shù)對(duì)的尋找方法告訴大家,請(qǐng)電腦高手幫助進(jìn)行實(shí)施。又因?yàn)?,人們已?jīng)能夠?qū)ふ?000位數(shù)以上的素?cái)?shù),對(duì)于500位數(shù)以內(nèi)的素?cái)?shù)的尋找應(yīng)該不是問(wèn)題,所以,“充分大”的偶數(shù)應(yīng)該難不住當(dāng)今的學(xué)術(shù)界。
“充分大”的偶數(shù)雖然大,我認(rèn)為:我們只須要尋找一個(gè)特定的等差數(shù)列后,再取該數(shù)列的1000項(xiàng)到2000項(xiàng),在這2000個(gè)數(shù)之內(nèi)必然能夠?qū)ふ业浇M成偶數(shù)素?cái)?shù)對(duì)的素?cái)?shù)。下面,我們進(jìn)行簡(jiǎn)單的探索,從中尋找到具體方法。
我們以偶數(shù)39366為例,進(jìn)行探索,按照本人的定理:在偶數(shù)內(nèi),既不能被素因子整除,也不與偶數(shù)除以素因子的余數(shù)相同的數(shù)(自然數(shù)1除外),必然能夠組成偶數(shù)的素?cái)?shù)對(duì)。
這里所說(shuō)的素因子,指小于偶數(shù)平方根的素?cái)?shù),√39366≈198,即小于198的素?cái)?shù)為偶數(shù)39366的素因子。
一、初步探索,1、素因子2,39366/2余0,當(dāng)然,任何偶數(shù)除以2都余0,素?cái)?shù)2把自然數(shù)分為:1+2N和2+2N,除以2余0的數(shù)和與偶數(shù)除以素因子2的余數(shù)相同的數(shù)都是2+2N數(shù)列中的數(shù),剩余1+2N數(shù)列中的數(shù)為哥德巴赫數(shù)的形成線路;
2、素因子3,39366/3余0,素?cái)?shù)3把1+2N數(shù)列分為:1+6N,3+6N,5+6N,除以3余0的數(shù)和與偶數(shù)除以素因子3的余數(shù)相同的數(shù)都是3+6N數(shù)列中的數(shù),剩余1+6N,5+6N,兩個(gè)數(shù)列中的數(shù)為哥德巴赫數(shù)的形成線路;
3、素因子5,39366/5余1,我們對(duì)上面剩余的兩個(gè)數(shù)列任意取一個(gè)數(shù)列1+6N,取與素因子相同的項(xiàng),5個(gè)項(xiàng)有:1,7,13,19,25。在這5個(gè)項(xiàng)中,必然有一個(gè)項(xiàng)除以5余0,必然有一個(gè)項(xiàng)除以素因子的余數(shù)與偶數(shù)除以素因子的余數(shù)相同,必然剩余素因子5減去2(不能被素因子整除的,為素因子減去1)個(gè)項(xiàng),即5-2=3個(gè)項(xiàng)既不能被素因子整除,也不與偶數(shù)除以素因子的余數(shù)相同的數(shù)。剩余7,13,19,以前面的素因子乘積2*3*5為公差,組成3個(gè)哥德巴赫數(shù)的形成線路:7+30N,13+30N,19+30N。后面只取3個(gè)項(xiàng),至少有一個(gè)項(xiàng)。
4、素因子7,39366/7余5,我們?nèi)我馊?+30N的3個(gè)項(xiàng)有:7,37,67,這3個(gè)數(shù)中37,67,既不能被素因子整除,也不與偶數(shù)除以素因子的余數(shù)相同的數(shù)。即37+210N和67+210N兩條線路都可以,5、素因子11,39366/11余8,我們?nèi)?7+210N的3個(gè)項(xiàng):37,247,457,這3個(gè)數(shù),既不能被素因子整除,也不與偶數(shù)除以素因子的余數(shù)相同的數(shù)。組成3個(gè)數(shù)列:37+2310N,247+2310N,457+2310N。
7、素因子13,39366/13余2,因?yàn)?,下一個(gè)公差為2*3*5*7*11*13=30030,39366/30030≈1,不能組成與素因子13相同的13個(gè)項(xiàng),尋找組成偶數(shù)的素?cái)?shù)對(duì)的素?cái)?shù),在取最后一個(gè)公差的等差數(shù)列時(shí),不能取與素因子相同項(xiàng)數(shù)時(shí),最少必須取素因子1/2以上的項(xiàng)。我們?nèi)?47+2310N數(shù)列在偶數(shù)1/2之內(nèi)的數(shù)有:247,2557,4867,7177,9487,11797,14107,16417,18727。
從素因子13到197,雖然還有40個(gè)素因子進(jìn)行刪除,但是,大家不要怕,它們的刪除率是相當(dāng)?shù)偷模?,在這些數(shù)中必然有能夠組成偶數(shù)素?cái)?shù)對(duì)的素?cái)?shù)存在。
素因子13,刪除能被13整除的數(shù)247,刪除除以13與39366除以13余數(shù)相同的數(shù)14107; 素因子19,刪除除以19與39366除以19余數(shù)相同的數(shù)11797;
素因子31,刪除能被31整除的數(shù)4867;
素因子53,刪除能被53整除的數(shù)9487,刪除除以53與39366除以53余數(shù)相同的數(shù)16417;
素因子61,刪除能被61整除的數(shù)18727。
最后,剩余2557和7177兩個(gè)數(shù),必然能組成偶數(shù)39366的素?cái)?shù)對(duì)。
探索方法
二、1、尋找等差數(shù)列的公差,令偶數(shù)為M、公差為B,我們已知該題的公差為2310,2310=2*3*5*7*11,大于11的下一個(gè)素?cái)?shù)為13,用13/2=6.5,那么,公差的要件為: M/B>6.5,即大于7個(gè)項(xiàng),主要是既要取最大的公差,又要確保不低于下一個(gè)素因子的1/2個(gè)項(xiàng)。我們就選擇2310為該偶數(shù)的公差。
2、尋找等差數(shù)列的首項(xiàng),令首項(xiàng)為A,A的條件為:既不能被組成公差的素?cái)?shù)2,3,5,7,11整除,也不與偶數(shù)除以2,3,5,7,11的余數(shù)相同,還必須在公差2310之內(nèi);
(1)、不能被2,3,5,7,11整除的數(shù)有:在2310之內(nèi),大于或等于13的素?cái)?shù);自然數(shù)1;由大于或等于13的素因子與大于或等于13的素因子所組成的合數(shù)。為了方便起見(jiàn),我們?cè)谶@里取大于或等于13的素因子。
(2)、A除以2,3,5,7,11的余數(shù)不與偶數(shù)39366除以2,3,5,7,11的余數(shù)相同。因39366-13=39353,39353分別除以2,3,5,7,11不能整除,故13除以2,3,5,7,11的余數(shù)不與偶數(shù)39366除以2,3,5,7,11的余數(shù)相同,可以定為首項(xiàng),得該等差數(shù)列為13+2310N。
取等差數(shù)列13在M/2的項(xiàng)有:13,2323,4633,6943,9253,11563,13873,16183,18493。當(dāng)然,你也可以取該數(shù)列在偶數(shù)內(nèi)的所有項(xiàng),但是,當(dāng)你全盤(pán)計(jì)算該偶數(shù)素?cái)?shù)對(duì)時(shí),取所有項(xiàng)必然形成與對(duì)稱(chēng)數(shù)列的計(jì)算重復(fù),該數(shù)列的對(duì)稱(chēng)數(shù)列:因2310-13=2297,13不能被2,3,5,7,11整除,除以2,3,5,7,11的余數(shù)不與偶數(shù)39366除以2,3,5,7,11的余數(shù)相同,那么,對(duì)稱(chēng)數(shù)2297也必然滿足這些條件,2297+2310N同樣是產(chǎn)生素?cái)?shù)對(duì)的等差數(shù)列。
3、在上面的9上項(xiàng)中,去掉合數(shù):2323,4633,6943,9253,11563,4、再去掉除以后面40個(gè)素因子余數(shù)與偶數(shù)除以這40個(gè)素因子余數(shù)相同的數(shù),也就是對(duì)稱(chēng)數(shù)是合數(shù)的數(shù):13,13873,16183,剩余18493必然能夠組成偶數(shù)39366的素?cái)?shù)對(duì)。
簡(jiǎn)單地談一下素?cái)?shù)生成線路與哥德巴赫數(shù)的生成線路的區(qū)別:
1、素?cái)?shù)生成線路,我們?nèi)匀灰?310為公差,在2310之內(nèi)不能被2,3,5,7,11整除的數(shù)有:2310*(1/2)*(2/3)*(4/5)*(6/7)*(10/11)=480個(gè),我們可以用這480個(gè)數(shù)為首項(xiàng),以2310為公差組成480個(gè)等差數(shù)列,為偶數(shù)39366內(nèi)的素?cái)?shù)生成線路。對(duì)于相鄰的偶數(shù)39364和39368來(lái)說(shuō),素?cái)?shù)的生成線路是一樣的。
2、我們把能夠組成偶數(shù)素?cái)?shù)對(duì)的素?cái)?shù)稱(chēng)為哥德巴赫數(shù),偶數(shù)39366的哥德巴赫數(shù)生成線路,以2310為公差,在2310之內(nèi),既不能被2,3,5,7,11整除,也不與偶數(shù)39366除以2,3,5,7,11的余數(shù)相同的數(shù)有:2310*(1/2)*(2/3)*(3/5)*(5/7)*(9/11)=270個(gè),即偶數(shù)39366以2310為公差的哥德巴赫數(shù)生成線路為270條,在2310內(nèi)的這270個(gè)數(shù)又是與2310/2=1155完全對(duì)稱(chēng)的,如果全盤(pán)進(jìn)行計(jì)算必然重復(fù),故,也可以看成是270/2=135條完整的哥德巴赫數(shù)形成線路,而素?cái)?shù)生成線路是不會(huì)重復(fù)的。
而偶數(shù)39364的哥德巴赫數(shù)生成線路,在2310之內(nèi)既不能被2,3,5,7,11整除,也不與偶數(shù)除以2,3,5,7,11的余數(shù)相同的數(shù)有:2310*(1/2)*(1/3)*(3/5)*(5/7)*(9/11)=135,為135條線路,只有偶數(shù)39366的1/2。區(qū)別在于偶數(shù)39366能夠被素因子3整除,為乘以2/3,偶數(shù)39364不能夠被素因子3整除,為乘以1/3,即能夠整除的素因子X(jué),為乘以(X-1)/X,不能夠整除的素因子Y,為乘以(Y-2)/Y,所以,偶數(shù)39366的素?cái)?shù)對(duì)相當(dāng)于偶數(shù)39364的素?cái)?shù)對(duì)的2倍。
對(duì)于“充分大”的偶數(shù)的估算:充分大的偶數(shù)為500位數(shù),素?cái)?shù)對(duì)個(gè)數(shù),根據(jù)《哥德巴赫猜想的初級(jí)證明法》中,當(dāng)偶數(shù)大于91時(shí),偶數(shù)的素?cái)?shù)對(duì)個(gè)數(shù)不低于K(√M)/4,估計(jì)當(dāng)偶數(shù)大于500位時(shí),K的值為4*10的10次方,得充分大的偶數(shù)的素?cái)?shù)對(duì)個(gè)數(shù)不低于260位數(shù),用500位數(shù)的偶數(shù)除以260位數(shù)的數(shù),得充分大的偶數(shù)平均240位數(shù)個(gè)數(shù)字中,有一個(gè)素?cái)?shù)對(duì)的存在。如果我們直接進(jìn)行尋找,相當(dāng)于大海撈針。
如果,我們按照上面的方法二進(jìn)行尋找,公差應(yīng)為496位數(shù),估計(jì)素?cái)?shù)2*3*5*7*?*1283為496位數(shù),從素?cái)?shù)1289到2861之內(nèi),有素?cái)?shù)除以素因子2,3,5,7,?,1283的余數(shù)不與偶數(shù)除以這些素因子的余數(shù)相同的數(shù)存在,存在的這個(gè)數(shù)可以作為等差數(shù)列的首項(xiàng),2*3*5*7*?*1283的積作為等差數(shù)列的公差,取1289項(xiàng),即1289個(gè)數(shù),在這1289個(gè)數(shù)中,應(yīng)該有能夠組成500位數(shù)的偶數(shù)的1+1的素?cái)?shù)對(duì)的素?cái)?shù)存在。
難易度分析
尋找“充分大”偶數(shù)的一個(gè)“1+1”素?cái)?shù)對(duì)與驗(yàn)證1000位數(shù)以上的一個(gè)素?cái)?shù)相比較,到底哪一個(gè)難度小。
人類(lèi)已經(jīng)能夠?qū)ふ也Ⅱ?yàn)證1000位數(shù)以上的素?cái)?shù),到底人們使用的什么辦法,我雖然不知道,但有一點(diǎn)可以肯定:都涉及素?cái)?shù),如果是簡(jiǎn)單的方法,那么,都是簡(jiǎn)單方法;如果是笨辦法,那么,都用笨辦法。我們?cè)谶@里采用笨辦法進(jìn)行比較:
充分大的偶數(shù)指500位數(shù)的數(shù),與1000位數(shù)的素?cái)?shù)相比,相差500位數(shù)。1000位數(shù)的數(shù)開(kāi)平方為500位數(shù),我們以位數(shù)相差一半的數(shù)為例進(jìn)行分析。
100000000與10000相差一半的位數(shù)。笨辦法是:要驗(yàn)證100000000以上的一個(gè)素?cái)?shù),假設(shè)要驗(yàn)證的這個(gè)數(shù)開(kāi)平方約等于10000,必須要用這個(gè)數(shù)除以10000之內(nèi)的素?cái)?shù),不能被這之內(nèi)所有的素?cái)?shù)整除,這個(gè)數(shù)才是素?cái)?shù)。因?yàn)椋?0000內(nèi)共有素?cái)?shù)1229個(gè),即必須做1229個(gè)除法題,才能得知這個(gè)數(shù)是不是素?cái)?shù)。說(shuō)個(gè)再笨一點(diǎn)的辦法,假設(shè)我們不知道10000之內(nèi)的素?cái)?shù),能否驗(yàn)證100000000以上的這個(gè)數(shù)是不是素?cái)?shù)呢?能,那就是用這個(gè)數(shù)除以10000內(nèi)的所有數(shù),不能被這之內(nèi)所有的數(shù)整除,也說(shuō)明這個(gè)數(shù)是素?cái)?shù)。(之所以說(shuō),這兩種辦法是笨辦法,當(dāng)我們知道10000內(nèi)的所有素?cái)?shù)時(shí),要尋找100000000內(nèi)的所有素?cái)?shù),不是用除法,而是用乘法,步驟最多只占第一種笨辦法的1%,詳見(jiàn)本人的《素?cái)?shù)的分布》中所說(shuō)的方法)。
當(dāng)我們尋找偶數(shù)10000的一個(gè)素?cái)?shù)對(duì),須要多少個(gè)運(yùn)算式?
我們知道:2*3*5*7*11=2310,10000/2310≈4,13/2=6.5,按理說(shuō)應(yīng)該取等差數(shù)列的7項(xiàng)以上,這里可以取4個(gè)項(xiàng),接近應(yīng)取數(shù)。我們基本上可以使用這個(gè)公差。這里的計(jì)算為5個(gè)計(jì)算式,簡(jiǎn)稱(chēng)5步;
大于11的素?cái)?shù),從13開(kāi)始,尋找等差數(shù)列的首項(xiàng),我們用(10000-13)分別除以2,3,5,7,11。能被3整除,除到3為止,一個(gè)減法,兩個(gè)除法,為3步;
素?cái)?shù)17,(10000-17)分別除以2,3,5,7,11。不能整除,可以用17為等差數(shù)列的首項(xiàng),組成等差數(shù)列:17+2310N。為6步;
數(shù)列17+2310N在10000內(nèi)有:17,2327,4637,6947,9257,為4步;
計(jì)算素因子,√10000=100,素因子為100之內(nèi)的素?cái)?shù),除2,3,5,7,11外,還剩13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,為20個(gè)素因子。為1步;
用10000分別除以這20個(gè)素因子,把余數(shù)記下來(lái)。為20步;
用17分別除以這些素因子,當(dāng)除到67時(shí)余數(shù)與10000除以67余數(shù)相同,為14步; 用2327分別除以這些素因子,當(dāng)除到13時(shí)余數(shù)為0,為1步;
用4637分別除以這些素因子,當(dāng)除到31時(shí)余數(shù)與10000除以31余數(shù)相同,為6步; 用6947分別除以這些素因子,當(dāng)除到43時(shí)余數(shù)與10000除以43余數(shù)相同,為9步; 用9257分別除以這些素因子,既不能整除,也不與10000除以這些素因子的余數(shù)相同,奇數(shù)9257必然能組成偶數(shù)10000的素?cái)?shù)對(duì)。為20步。
總計(jì)為:102步計(jì)算式。而驗(yàn)證100000000以上的一個(gè)素?cái)?shù)須要1229步計(jì)算式相比,結(jié)論為:尋找10000的一個(gè)素?cái)?shù)對(duì)比驗(yàn)證100000000以上的一個(gè)素?cái)?shù)簡(jiǎn)單。也就是說(shuō),尋找一個(gè)500位數(shù)偶數(shù)1+1的素?cái)?shù)對(duì),比驗(yàn)證一個(gè)1000位數(shù)以上的素?cái)?shù)容易。
尋找500位數(shù)偶數(shù)的素?cái)?shù)對(duì),因?yàn)椋?*3*5*7*11*?*1283左右,其乘積為493到496位數(shù),下一個(gè)素?cái)?shù)可能為1289左右,1289/2=644.5。才能滿足取下一個(gè)素因子的值的1/2以上個(gè)項(xiàng),當(dāng)然,能夠取到1289個(gè)項(xiàng)以上更好,更容易尋找到偶數(shù)的素?cái)?shù)對(duì)。
敬請(qǐng)世界電腦高手驗(yàn)證,充分大的偶數(shù)必然有1+1的素?cái)?shù)對(duì)存在,哥德巴赫猜想必然成立。
四川省三臺(tái)縣工商局:王志成