第一篇:完全平方公式教學(xué)反思
完全平方公式的教學(xué)反思
本節(jié)課屬于八年級數(shù)學(xué)上冊《整式乘除與因式分解》第二節(jié)中的內(nèi)容,前一節(jié)已學(xué)習(xí)習(xí)近平方差公式,這一課主要研究完全平方公式的特征及應(yīng)用。教學(xué)關(guān)鍵是引導(dǎo)學(xué)生正確理解完全平方公式的推導(dǎo)過程,幾何背景,并能準(zhǔn)確應(yīng)用完全平方公式解決相關(guān)問題。
教學(xué)后我進(jìn)行反思如下:本課的知識要點(diǎn)是經(jīng)歷探索完全平方公式的過程,了解公式的幾何背景,會應(yīng)公式進(jìn)行簡單的計(jì)算,教學(xué)已基本達(dá)到了預(yù)期目標(biāo),能突出重點(diǎn),兼顧難點(diǎn)。
本節(jié)課上學(xué)生體會了數(shù)形結(jié)合及轉(zhuǎn)化的數(shù)學(xué)思想,并知道猜想的結(jié)論必須要加以驗(yàn)證;授課思維流暢,知識發(fā)生發(fā)展過渡自然,學(xué)生容易得到一些結(jié)論但在老師的引導(dǎo)下又使問題的探討得以不斷深入,學(xué)生思考積極、氣氛活躍,教學(xué)效果較好。采用以小組自主探究的學(xué)習(xí)方式,同時(shí)各小組展開激烈的比賽。整節(jié)課都在緊張而愉快的氣氛中進(jìn)行。學(xué)生非?;钴S。人人都能積極參與。
先從代數(shù)式的幾何意義出發(fā),激發(fā)學(xué)生的圖形觀,利用拼圖的方法,使學(xué)生在動(dòng)手的過程中發(fā)現(xiàn)規(guī)律,并通過小組合作,探究歸納公式,然后強(qiáng)調(diào)數(shù)值的計(jì)算,使學(xué)生掌握公式的計(jì)算技巧。從而突出以學(xué)生為主體的探索性學(xué)習(xí)原則。讓學(xué)生自編符合完全平方公式和平方差公式結(jié)構(gòu)的計(jì)算題,從而有效地將兩類公式區(qū)分開,深刻認(rèn)識公式的結(jié)構(gòu)特征,并大大激發(fā)了學(xué)生的學(xué)習(xí)積極性。
同時(shí)課后感覺應(yīng)該引導(dǎo)學(xué)生用文字概括公式的內(nèi)容,從而培養(yǎng)學(xué)生抽象的數(shù)學(xué)思維能力和語言表達(dá)能力。對需要幫助的學(xué)生進(jìn)行針對性的個(gè)別指導(dǎo)較少。對于學(xué)生計(jì)算中存在的問題應(yīng)讓學(xué)生自己糾錯(cuò),教師不應(yīng)全權(quán)代勞。如利用兩數(shù)和的公式計(jì)算環(huán)節(jié),兩位學(xué)生分別講述自己的想法之后,教師應(yīng)該讓全體學(xué)生根據(jù)其方法進(jìn)行計(jì)算,自主驗(yàn)證,即使有些學(xué)生寫不出來,也會因?yàn)榻?jīng)過思考而印象深刻,如果為了節(jié)省時(shí)間教師自己代勞,那樣就不能夠充分體現(xiàn)學(xué)生的主體作用,而且效果也較前者差些。
在今后的教學(xué)中應(yīng)注意從以下幾個(gè)方面改進(jìn):
1、在教學(xué)中要講法則、公式的應(yīng)用,也要講公式的推導(dǎo),使學(xué)生在理解公式,法則道理的基礎(chǔ)上進(jìn)行記憶,比如:我們要借助面積圖形對完全平方公式做直觀說明。
2.必須強(qiáng)調(diào)學(xué)生時(shí)刻把握公式的特征及用途: 特征:左邊是兩個(gè)相同的二項(xiàng)式相乘,右邊是一個(gè)三項(xiàng)式,其中兩項(xiàng)是二項(xiàng)式中每一項(xiàng)的平方和,另一項(xiàng)是二項(xiàng)式中項(xiàng)的乘積的2倍或其相反式。用途:用于解決兩個(gè)完全相同的二項(xiàng)式乘積運(yùn)算.應(yīng)在課堂上大力推行邊啟發(fā)、邊探索、邊歸納,突出以學(xué)生為主體的探索性學(xué)習(xí)原則..既講“法”,又講“理”:在教學(xué)中要講法則、公式的應(yīng)用,也要講公式的推導(dǎo),使學(xué)生在理解公式,法則道理的基礎(chǔ)上進(jìn)行記憶,比如:我們要借助面積圖形對完全平方公式做直觀說明.3.講聯(lián)系、講對比、講特征.學(xué)生在運(yùn)用公式時(shí)出現(xiàn)的錯(cuò)誤,其原因是把完全平方公式和舊知識及分配律弄混淆,要善于排除新舊知識間互相干擾的作用.規(guī)范板書。每節(jié)課的板書盡量堅(jiān)持做到三保留:重要知識點(diǎn)保留,典型例題保留,學(xué)生易錯(cuò)點(diǎn)保留。
第二篇:完全平方公式教學(xué)反思
完全平方公式教學(xué)反思
完全平方公式教學(xué)反思1
本節(jié)課屬于人教版八年級數(shù)學(xué)上冊第十五章《整式乘除與因式分解》第二節(jié)中的內(nèi)容,前一節(jié)已學(xué)習(xí)習(xí)近平方差公式,這一課主要研究完全平方公式的特征及應(yīng)用。教學(xué)關(guān)鍵是引導(dǎo)學(xué)生正確理解完全平方公式的推導(dǎo)過程,幾何背景,并能準(zhǔn)確應(yīng)用完全平方公式解決相關(guān)問題。教學(xué)后我進(jìn)行反思如下:本課的知識要點(diǎn)是經(jīng)歷探索完全平方公式的過程,了解公式的幾何背景,會應(yīng)公式進(jìn)行簡單的計(jì)算,教學(xué)已基本達(dá)到了預(yù)期目標(biāo),能突出重點(diǎn),兼顧難點(diǎn)。本節(jié)課上學(xué)生體會了數(shù)形結(jié)合及轉(zhuǎn)化的數(shù)學(xué)思想,并知道猜想的結(jié)論必須要加以驗(yàn)證;授課思維流暢,知識發(fā)生發(fā)展過渡自然,學(xué)生容易得到一些結(jié)論但在老師的引導(dǎo)下又使問題的探討得以不斷深入,學(xué)生思考積極、氣氛活躍,教學(xué)效果較好。采用以小組自主探究的學(xué)習(xí)方式,同時(shí)各小組展開激烈的比賽。整節(jié)課都在緊張而愉快的氣氛中進(jìn)行。學(xué)生非常活躍。人人都能積極參與。先從代數(shù)式的幾何意義出發(fā),激發(fā)學(xué)生的圖形觀,利用拼圖的方法,使學(xué)生在動(dòng)手的過程中發(fā)現(xiàn)規(guī)律,并通過小組合作,探究歸納公式,然后強(qiáng)調(diào)數(shù)值的計(jì)算,使學(xué)生掌握公式的計(jì)算技巧。從而突出以學(xué)生為主體的探索性學(xué)習(xí)原則。讓學(xué)生自編符合完全平方公式和平方差公式結(jié)構(gòu)的計(jì)算題,從而有效地將兩類公式區(qū)分開,深刻認(rèn)識公式的結(jié)構(gòu)特征,并大大激發(fā)了學(xué)生的學(xué)習(xí)積極性。
同時(shí)課后感覺應(yīng)該引導(dǎo)學(xué)生用文字概括公式的內(nèi)容,從而培養(yǎng)學(xué)生抽象的數(shù)學(xué)思維能力和語言表達(dá)能力。對需要幫助的學(xué)生進(jìn)行針對性的個(gè)別指導(dǎo)較少。對于學(xué)生計(jì)算中存在的問題應(yīng)讓學(xué)生自己糾錯(cuò),教師不應(yīng)全權(quán)代勞。如利用兩數(shù)和的公式計(jì)算(a+b)2環(huán)節(jié),兩位學(xué)生分別講述自己的想法之后,教師應(yīng)該讓全體學(xué)生根據(jù)其方法進(jìn)行計(jì)算,自主驗(yàn)證,即使有些學(xué)生寫不出來,也會因?yàn)榻?jīng)過思考而印象深刻,如果為了節(jié)省時(shí)間教師自己代勞,那樣就不能夠充分體現(xiàn)學(xué)生的主體作用,而且效果也較前者差些。
在今后的教學(xué)中應(yīng)注意從以下幾個(gè)方面改進(jìn):1、在教學(xué)中要講法則、公式的應(yīng)用,也要講公式的推導(dǎo),使學(xué)生在理解公式,法則道理的基礎(chǔ)上進(jìn)行記憶,比如:我們要借助面積圖形對完全平方公式做直觀說明。2.必須強(qiáng)調(diào)學(xué)生時(shí)刻把握公式的特征及用途。3.講聯(lián)系、講對比、講特征,要善于排除新舊知識間互相干擾的作用,規(guī)范板書。每節(jié)課的板書盡量堅(jiān)持做到三保留:重要知識點(diǎn)保留,典型例題保留,學(xué)生易錯(cuò)點(diǎn)保留。
完全平方公式教學(xué)反思2
本節(jié)課的教學(xué)已基本達(dá)到了教學(xué)目的。本課的知識要點(diǎn)是經(jīng)歷探索完全平方公式的過程,了解公式的幾何背景,會應(yīng)公式進(jìn)行簡單的計(jì)算。
理解公式的推導(dǎo)過程,了解公式的幾何背景,會應(yīng)用公式進(jìn)行簡單的計(jì)算。并滲透建模、化歸、對稱、數(shù)形結(jié)合、邏輯推理等思想方法。經(jīng)歷探索完全平方公式的過程,培養(yǎng)學(xué)生的發(fā)現(xiàn)能力、求簡意識、應(yīng)用意識、解決問題的能力和創(chuàng)新能力。培養(yǎng)學(xué)生敢于挑戰(zhàn),勇于探索的精神和善于觀察,大膽創(chuàng)新的思想品質(zhì)。作用在于讓其體會公式的發(fā)現(xiàn)和推導(dǎo)過程,理解公式的本質(zhì),并會運(yùn)用公式進(jìn)行簡單的計(jì)算,理解公式中的字母含義,及公式的應(yīng)用。
針對初一學(xué)生的形象思維大于抽象思維,注意力不能持久等年齡特點(diǎn),及本節(jié)課實(shí)際,采用自主探索、啟發(fā)引導(dǎo)、合作交流展開教學(xué)。引導(dǎo)學(xué)生主動(dòng)地進(jìn)行觀察、猜測、驗(yàn)證和交流,讓不同層次的學(xué)生都能主動(dòng)參與并都能得到充分的發(fā)展。邊啟發(fā),邊探索,邊歸納,突出以學(xué)生為主體的探索性學(xué)習(xí)的原則。
完全平方公式教學(xué)反思3
做得較好的方面:
1、本課的知識要點(diǎn)是經(jīng)歷探索完全平方公式的過程,了解公式的幾何背景,會應(yīng)公式進(jìn)行簡單的計(jì)算,教學(xué)已基本達(dá)到了預(yù)期目標(biāo),能突出重點(diǎn),兼顧難點(diǎn)。
2、本節(jié)課上學(xué)生體會了數(shù)形結(jié)合及轉(zhuǎn)化的數(shù)學(xué)思想,并知道猜想的結(jié)論必須要加以驗(yàn)證;授課思維流暢,知識發(fā)生發(fā)展過渡自然,學(xué)生容易得到一些結(jié)論但在老師的引導(dǎo)下又使問題的探討得以不斷深入,學(xué)生思考積極、氣氛活躍,教學(xué)效果較好。
做得不足的方面:
1、應(yīng)該引導(dǎo)學(xué)生用文字概括公式的內(nèi)容,從而培養(yǎng)學(xué)生抽象的數(shù)學(xué)思維能力和語言表達(dá)能力。
2、對需要幫助的學(xué)生進(jìn)行針對性的個(gè)別指導(dǎo)較少。
3、對于學(xué)生計(jì)算中存在的問題應(yīng)讓學(xué)生自己糾錯(cuò),教師不應(yīng)全權(quán)代勞。如利用兩數(shù)和的公式計(jì)算(a+b)2環(huán)節(jié),兩位學(xué)生分別講述自己的想法之后,教師應(yīng)該讓全體學(xué)生根據(jù)其方法進(jìn)行計(jì)算,自主驗(yàn)證,即使有些學(xué)生寫不出來,也會因?yàn)榻?jīng)過思考而印象深刻,如果為了節(jié)省時(shí)間教師自己代勞,那樣就不能夠充分體現(xiàn)學(xué)生的主體作用,而且效果也較前者差些。
完全平方公式教學(xué)反思4
公式法進(jìn)行因式分解,除了逆用平方差公式之外,還有兩個(gè)相對來說較難的公式逆用即完全平方和(或差)公式:(a+b)2=a2+2ab+b2。
逆用完全平方公式進(jìn)行因式分解關(guān)鍵同樣是搞清完全平方公式的結(jié)構(gòu)特點(diǎn):等號左邊是一個(gè)二項(xiàng)式的平方,等號右邊是一個(gè)二次三項(xiàng)式,其中有兩項(xiàng)是公式左邊二項(xiàng)式中每一項(xiàng)的平方,另一項(xiàng)是左邊二項(xiàng)式中那兩項(xiàng)乘積的2倍。或等號右邊記作:首平方,尾平方,2倍之積中間放。
有了前邊學(xué)習(xí)完全平方公式為基礎(chǔ),逆用完全平方公式進(jìn)行因式分解只需要“顛倒使用”即可:等號右邊作為“條件”,左邊作為“結(jié)果”,但對學(xué)生來說,還是相當(dāng)困難的。
逆用完全平方公式進(jìn)行因式分解的步驟可分三步:
1、寫成“首平方,尾平方,2倍之積中間放”的形式
2、按公式寫出“兩項(xiàng)和的平方”的形式,即因式分解
3、兩項(xiàng)和中能合并同類項(xiàng)的合并。
例題及練習(xí)的呈現(xiàn)次序盡量本著先易后難、先單一后綜合的螺旋上升原則。
1、a、b代表單獨(dú)單項(xiàng)式,如:(1)m2-6m+9(2)4a2-4ab+b2
2、a、b代表多項(xiàng)式,如:(1)(a+2b)2-8a(a+2b)+16a2
(2)4(x+y)2+25-20(x+y)
在此要有“整體思想”的意識,注意:相同部分作為一個(gè)整體然后再套用公式。
3、先提取公因式,再用完全平方和(或差)公式如:
(1)ay2-2a2y+a3
(2)16xy2-9x2y-y2
4、先轉(zhuǎn)化一步,再用完全平方和(或差)公式,如:
(1)-m2+2mn-n2(2)3a2+6a+27
盡管課前進(jìn)行了充分的準(zhǔn)備工作,但是學(xué)生作業(yè)中仍暴露出許多問題,如部分學(xué)生直接感到無從下手。
完全平方公式教學(xué)反思5
這一節(jié)課主要研究完全平方公式的證明方法,關(guān)鍵是引導(dǎo)學(xué)生正確理解完全平方公式的推導(dǎo)過程,以及這兩個(gè)公式的幾何背景。
這節(jié)課我做的比較好的方面:
經(jīng)歷探索完全平方公式的過程,通過拼圖游戲,從形到數(shù)又從數(shù)到形,讓學(xué)生了解公式的幾何背景,學(xué)生體會了數(shù)形結(jié)合的數(shù)學(xué)思想,并知道猜想的結(jié)論必須加以驗(yàn)證,本節(jié)授課思維流暢,知識發(fā)生發(fā)展過程過渡自然,學(xué)生容易得到一些結(jié)論但在老師的引導(dǎo)下又使問題的探討得以不斷深入,學(xué)生思考積極,氣氛活躍,教學(xué)效果較好。
這節(jié)課采用小組自主探究,小組合作的學(xué)習(xí)方式,緊張而愉快,學(xué)生及相互交流的同時(shí)又相互合作,極大的調(diào)動(dòng)了學(xué)生學(xué)習(xí)的熱情同時(shí)我也比較關(guān)注那些積極動(dòng)腦,熱情參與的同學(xué),及時(shí)的給予表揚(yáng)和鼓勵(lì),進(jìn)而促進(jìn)課堂教學(xué)的有效性。
從幾何意義出發(fā),激發(fā)學(xué)生的圖形觀,利用拼圖游戲,使學(xué)生在動(dòng)手的過程中發(fā)現(xiàn)結(jié)論,并通過小組合作,探究歸納公式,從而突出以學(xué)生為主體的的探究性學(xué)習(xí)原則。
這節(jié)課做的不足的方面有對學(xué)生個(gè)別指導(dǎo)較少,應(yīng)到各小組當(dāng)中去積極參與學(xué)生的活動(dòng);學(xué)生拼圖時(shí)間略微有些偏長,對后面的教學(xué)稍有影響,顯的前松后緊。
完全平方公式教學(xué)反思6
1. 本節(jié)課學(xué)生的探究活動(dòng)比較多,教師既要全局把握,又要順其自然,千萬不可拔苗助長,為了后面多做幾道練習(xí)而人為的主觀裁斷時(shí)間安排,其實(shí)公式的探究活動(dòng)本身既是對學(xué)生能力的培養(yǎng),又是對公式的識記過程,而且還可以提高他們的應(yīng)用公式的本領(lǐng).因此,不但不可以省,而且還要充分挖掘,以使不同程度的學(xué)生都有事情做且樂此不疲,更加充分的參與其中.對于這一點(diǎn),教師一定要轉(zhuǎn)變觀念.
2. 在完全平方公式的探求過程中,學(xué)生表現(xiàn)出觀察角度的差異:有些學(xué)生只是側(cè)重觀察某個(gè)單獨(dú)的式子,把它孤立地看,而不知道將幾個(gè)式子聯(lián)系地看;有些學(xué)生則既觀察入微,又統(tǒng)攬全局,表現(xiàn)出了較強(qiáng)的觀察力.教師要善于抓住這個(gè)契機(jī),適當(dāng)對學(xué)生進(jìn)行學(xué)法指導(dǎo),培養(yǎng)他們“既見樹木,又見森林”的優(yōu)良觀察品質(zhì).
3. 對于公式使用的條件既要把握好“度”,又要把握好“方向”.對于公式中的字母取值范圍,不必過分強(qiáng)調(diào)(實(shí)際上,這個(gè)范圍限定的太小了);而對于公式的特點(diǎn),則應(yīng)當(dāng)左右兼顧,特別是公式的左邊,它是正確應(yīng)用公式的前提,卻往往不被重視,結(jié)果造成幾個(gè)類似公式的混淆,給正確解題設(shè)置了障礙.
4. 教無定法,教師應(yīng)根據(jù)本班的實(shí)際情況靈活安排教學(xué)步驟,切實(shí)把關(guān)注學(xué)生的發(fā)展放在首位來考慮,并依此制定合理而科學(xué)的教學(xué)計(jì)劃.如,對于較好的班級,則可以優(yōu)先發(fā)展,采取居高臨下的教學(xué)思路,先整體把握再對比擊破,或是將其納入整體結(jié)構(gòu)系統(tǒng),采取類比的學(xué)習(xí)方式;而對于基礎(chǔ)較薄弱的班級,則應(yīng)以提高學(xué)習(xí)興趣、教會學(xué)習(xí)、培養(yǎng)成功體驗(yàn)為主,千萬不可拔苗助長,以防物極必反.
完全平方公式教學(xué)反思7
完全平方和(差)公式是某些特殊形式的多項(xiàng)式相乘,只有掌握完全平方和(差)公式的一些本質(zhì)地結(jié)構(gòu)特點(diǎn),才能正確地讓公式更好地幫助我們進(jìn)行簡單計(jì)算。
要學(xué)好這部分,首先要注意掌握:
1、公式本身:(a+b)2=a2+2ab+b2
文字?jǐn)⑹觯簝蓴?shù)和(或差)的平方,等于它們的平方和,加(或減)它們的積2倍。
2、公式的結(jié)構(gòu)特點(diǎn):等號左邊是一個(gè)二項(xiàng)式的平方,等號右邊是一個(gè)二次三項(xiàng)式,其中有兩項(xiàng)是公式左邊二項(xiàng)式中每一項(xiàng)的平方,另一項(xiàng)是左邊二項(xiàng)式中那兩項(xiàng)乘積的2倍?;虻忍栍疫呌涀鳎菏灼椒剑财椒?,2倍之積中間放。
3、公式中字母的廣泛意義:既可以代表任意的數(shù)(正數(shù)、負(fù)數(shù)),又可以代表任意代數(shù)式。注意代表代數(shù)式時(shí),要有“整體思想”的觀念。
其次要注意易錯(cuò)點(diǎn):
1、易錯(cuò)寫:(a+b)2=a2+b2
許多學(xué)生往往認(rèn)為(a+b)2=a2+b2,甚至認(rèn)為(a+b)3=a3+b3,(a+b)4=a4+b4,等等。為了說明這個(gè)問題,我首先利用分地的故事引入,第一個(gè)農(nóng)夫分得a2+b2,第二個(gè)分得(a+b)2,然后讓同學(xué)們對比2個(gè)代數(shù)式,通過各種方法說明這兩者是不同的,比如計(jì)算法,代數(shù)字法,幾何作圖法(聯(lián)系公式的幾何意義),因而加深理解完全平方公式,并借此進(jìn)行強(qiáng)化訓(xùn)練。雖然還有極個(gè)別學(xué)生出現(xiàn)2項(xiàng)的情況,但絕大部分明白了2倍之積中間放的意義。
2、兩個(gè)公式中的符號易混:課堂上進(jìn)行了教學(xué)的改進(jìn),把2個(gè)公式(a+b)2與(a-b)2并作一個(gè)公式來處理。為了避免符號上出現(xiàn)混亂,把2個(gè)公式的符號特點(diǎn)進(jìn)行觀察,得出同號得正,異號得負(fù)的結(jié)論。由此應(yīng)對兩項(xiàng)式的平方的符號問題,也省去了一些變號的煩惱。
3、兩公式靈活運(yùn)用
在一些實(shí)際問題中,有些題目不能直接運(yùn)用公式,需要一步轉(zhuǎn)化才可以。如計(jì)算:
(1)(y-x)(x-y)(2)(x+y)(-x-y)
完全平方公式教學(xué)反思8
學(xué)習(xí)了乘法公式中的完全平方,一個(gè)是兩數(shù)和的平方,另一個(gè)是兩數(shù)差的平方,兩者僅一個(gè)“符號”不同。相乘的結(jié)果是兩數(shù)的平方和,加上(或減去)兩數(shù)的積的2倍,兩者也僅差一個(gè)“符號”不同,運(yùn)用完全平方公式計(jì)算時(shí),要注意:
(1)切勿把此公式與平方差公式混淆,而隨意寫。
(2)切勿把“乘積項(xiàng)”2ab中的2丟掉。
(3)計(jì)算時(shí),要先觀察題目是否符合公式的條件。若不符合,應(yīng)先變形為符合公式的條件的形式,再利用公式進(jìn)行計(jì)算;若不能變?yōu)榉蠗l件的形式,則應(yīng)運(yùn)用乘法法則進(jìn)行計(jì)算。
今后在教學(xué)中,要注意以下幾點(diǎn):
1、讓學(xué)生自編幾道符合平方差公式結(jié)構(gòu)的計(jì)算題,目的是辨認(rèn)題目的結(jié)構(gòu)特征。
2、引入完全平方公式,讓學(xué)生用文字概括公式的內(nèi)容,培養(yǎng)抽象的數(shù)字思維能力。
完全平方公式教學(xué)反思9
在進(jìn)入三中這個(gè)大家庭里,我感受到了這個(gè)大家庭的愛,有來自領(lǐng)導(dǎo),師傅,辦公室同事的指導(dǎo),深感欣慰。由于第一次教授初中數(shù)學(xué),對于備學(xué)生和備教材缺乏全面理解,本節(jié)課的教學(xué)沒有很好的完成教學(xué)目的標(biāo),本課的知識要點(diǎn)是經(jīng)歷探索完全平方公式的過程,了解公式的幾何背景,會應(yīng)用公式進(jìn)行簡單的計(jì)算。理解公式的推導(dǎo)過程,了解公式的幾何背景,會應(yīng)用公式進(jìn)行簡單的計(jì)算。探索完全平方公式的過程,培養(yǎng)學(xué)生的發(fā)現(xiàn)能力、求簡意識、應(yīng)用意識、解決問題的能力和創(chuàng)新能力。培養(yǎng)學(xué)生敢于挑戰(zhàn),勇于探索的精神和善于觀察,大膽創(chuàng)新的思想品質(zhì)。
通過本課,讓學(xué)生體會公式的發(fā)現(xiàn)和推導(dǎo)過程,理解公式的本質(zhì),并會運(yùn)用公式進(jìn)行簡單的計(jì)算,理解公式中的字母含義,及公式的應(yīng)用。
通過本節(jié)課的教學(xué)得到如下收獲:
(1)這節(jié)課倡導(dǎo)了以學(xué)生為主,教師為輔的思想,留足了一定的時(shí)間讓學(xué)生去發(fā)現(xiàn)探索、以及做練習(xí)。
(2)采用了多媒體輔助教學(xué),以較清晰的手段呈現(xiàn)了學(xué)生整個(gè)學(xué)習(xí)過程,讓課堂更加直觀明了,同時(shí)客容量也增大了。
(3)讓學(xué)生體會了數(shù)形結(jié)合及轉(zhuǎn)化的'數(shù)學(xué)思想,并知道猜想的結(jié)論必須要加以驗(yàn)證。
本節(jié)課采用了以小組自主探究的學(xué)習(xí)方式,整節(jié)課都在緊張而愉快的氣氛中進(jìn)行,學(xué)生活躍,能積極參與。教學(xué)中,比較關(guān)注學(xué)生的情感態(tài)度,對那些積極動(dòng)腦,熱情參與的同學(xué),都給予了鼓勵(lì)和表揚(yáng),促使學(xué)生的情感和興趣始終保持最佳狀態(tài),進(jìn)而提高課堂教學(xué)的有效性。
完全平方公式教學(xué)反思10
這一課主要研究完全平方公式的特征及應(yīng)用。教學(xué)關(guān)鍵是引導(dǎo)學(xué)生正確理解完全平方公式的推導(dǎo)過程,幾何背景,并能準(zhǔn)確應(yīng)用完全平方公式解決相關(guān)問題。
這節(jié)課我做得較好的方面:
1、本課的知識要點(diǎn)是經(jīng)歷探索完全平方公式的過程,了解公式的幾何背景,會應(yīng)公式進(jìn)行簡單的計(jì)算,教學(xué)已基本達(dá)到了預(yù)期目標(biāo),能突出重點(diǎn),兼顧難點(diǎn)。
2、本節(jié)課上學(xué)生體會了數(shù)形結(jié)合及轉(zhuǎn)化的數(shù)學(xué)思想,并知道猜想的結(jié)論必須要加以驗(yàn)證;授課思維流暢,知識發(fā)生發(fā)展過渡自然,學(xué)生容易得到一些結(jié)論但在老師的引導(dǎo)下又使問題的探討得以不斷深入,學(xué)生思考積極、氣氛活躍,教學(xué)效果較好。
3、采用以小組自主探究的學(xué)習(xí)方式,同時(shí)各小組展開激烈的比賽。整節(jié)課都在緊張而愉快的氣氛中進(jìn)行。學(xué)生非?;钴S。人人都能積極參與。教學(xué)中,我比較關(guān)注學(xué)生的情感態(tài)度,對那些積極動(dòng)腦,熱情參與的同學(xué),都給予了鼓勵(lì)和表揚(yáng)。促使學(xué)生的情感和興趣始終保持最佳狀態(tài),進(jìn)而提高課堂教學(xué)的有效性。
4、先從代數(shù)式的幾何意義出發(fā),激發(fā)學(xué)生的圖形觀,利用拼圖的方法,使學(xué)生在動(dòng)手的過程中發(fā)現(xiàn)規(guī)律,并通過小組合作,探究歸納公式,然后強(qiáng)調(diào)數(shù)值的計(jì)算,使學(xué)生掌握公式的計(jì)算技巧。從而突出以學(xué)生為主體的探索性學(xué)習(xí)原則。
5、讓學(xué)生自編符合完全平方公式和平方差公式結(jié)構(gòu)的計(jì)算題,從而有效地將兩類公式區(qū)分開,深刻認(rèn)識公式的結(jié)構(gòu)特征,并大大激發(fā)了學(xué)生的學(xué)習(xí)積極性。
這節(jié)課我做得做得不足的方面:
1、應(yīng)該引導(dǎo)學(xué)生用文字概括公式的內(nèi)容,從而培養(yǎng)學(xué)生抽象的數(shù)學(xué)思維能力和語言表達(dá)能力。
2、對需要幫助的學(xué)生進(jìn)行針對性的個(gè)別指導(dǎo)較少。
3、對于學(xué)生計(jì)算中存在的問題應(yīng)讓學(xué)生自己糾錯(cuò),教師不應(yīng)全權(quán)代勞。如利用兩數(shù)和的公式計(jì)算(a+b)2環(huán)節(jié),兩位學(xué)生分別講述自己的想法之后,教師應(yīng)該讓全體學(xué)生根據(jù)其方法進(jìn)行計(jì)算,自主驗(yàn)證,即使有些學(xué)生寫不出來,也會因?yàn)榻?jīng)過思考而印象深刻,如果為了節(jié)省時(shí)間教師自己代勞,那樣就不能夠充分體現(xiàn)學(xué)生的主體作用,而且效果也較前者差些。
再教設(shè)計(jì):
1、在教學(xué)中要講法則、公式的應(yīng)用,也要講公式的推導(dǎo),使學(xué)生在理解公式,法則道理的基礎(chǔ)上進(jìn)行記憶,比如:我們要借助面積圖形對完全平方公式做直觀說明。
2、講聯(lián)系、講對比、講特征。學(xué)生在運(yùn)用公式時(shí)出現(xiàn)的(a+b)2=a2+b2的錯(cuò)誤,其原因是把完全平方公式和舊知識(ab)2=a2b2及分配律弄混淆,要善于排除新舊知識間互相干擾的作用。
3、規(guī)范板書。每節(jié)課的板書盡量堅(jiān)持做到三保留:重要知識點(diǎn)保留,典型例題保留,學(xué)生易錯(cuò)點(diǎn)保留。
完全平方公式教學(xué)反思11
這課主要研究完全平方公式的特征及應(yīng)用。教學(xué)關(guān)鍵是引導(dǎo)學(xué)生正確理解完全平方公式的推導(dǎo)過程,幾何背景,并能準(zhǔn)確應(yīng)用完全平方公式解決相關(guān)問題。
這節(jié)課我做得較好的方面:
1、本課的知識要點(diǎn)是經(jīng)歷探索完全平方公式的過程,了解公式的幾何背景,會應(yīng)公式進(jìn)行簡單的計(jì)算,教學(xué)已基本達(dá)到了預(yù)期目標(biāo),能突出重點(diǎn),兼顧難點(diǎn)。
2、本節(jié)課上學(xué)生體會了數(shù)形結(jié)合及轉(zhuǎn)化的數(shù)學(xué)思想,并知道猜想的結(jié)論必須要加以驗(yàn)證;授課思維流暢,知識發(fā)生發(fā)展過渡自然,學(xué)生容易得到一些結(jié)論但在老師的引導(dǎo)下又使問題的探討得以不斷深入,學(xué)生思考積極、氣氛活躍,教學(xué)效果較好。
3、整節(jié)課都在緊張而愉快的氣氛中進(jìn)行。學(xué)生非?;钴S。人人都能積極參與。教學(xué)中,我比較關(guān)注學(xué)生的情感態(tài)度,對那些積極動(dòng)腦,熱情參與的同學(xué),都給予了鼓勵(lì)和表揚(yáng)。促使學(xué)生的情感和興趣始終保持最佳狀態(tài),進(jìn)而提高課堂教學(xué)的有效性。
4、先從代數(shù)式的幾何意義出發(fā),激發(fā)學(xué)生的圖形觀,利用拼圖的方法,使學(xué)生在動(dòng)手的過程中發(fā)現(xiàn)規(guī)律,并通過小組合作,探究歸納公式,然后強(qiáng)調(diào)數(shù)值的計(jì)算,使學(xué)生掌握公式的計(jì)算技巧。從而突出以學(xué)生為主體的探索性學(xué)習(xí)原則。
本節(jié)課有待完善的地方:
1、對需要幫助的學(xué)生進(jìn)行針對性的個(gè)別指導(dǎo)較少。
2、對于學(xué)生計(jì)算中存在的問題應(yīng)讓學(xué)生自己糾錯(cuò),教師不應(yīng)全權(quán)代勞。如利用兩數(shù)和的公式計(jì)算環(huán)節(jié),兩位學(xué)生分別講述自己的想法之后,教師應(yīng)該讓全體學(xué)生根據(jù)其方法進(jìn)行計(jì)算,自主驗(yàn)證,即使有些學(xué)生寫不出來,也會因?yàn)榻?jīng)過思考而印象深刻,如果為了節(jié)省時(shí)間教師自已代勞,那樣就不能夠充分體現(xiàn)學(xué)生的主體作用,而且效果也較前者差些。
再教設(shè)計(jì):
1、在教學(xué)中要講法則、公式的應(yīng)用,也要講公式的推導(dǎo),使學(xué)生在理解公式,法則道理的基礎(chǔ)上進(jìn)行記憶,要借助面積圖形對完全平方公式做直觀說明。
2、講聯(lián)系、講對比、講特征。學(xué)生在運(yùn)用公式時(shí)出現(xiàn)的(a+b)2=a2 +b2的錯(cuò)誤,其原因是把完全平方公式和舊知識積的乘方弄混淆,要善于排除新舊知識間互相干擾的作用。
3、規(guī)范板書。每節(jié)課的板書盡量堅(jiān)持做到三保留:重要知識點(diǎn)保留,典型例題保留,學(xué)生易錯(cuò)點(diǎn)保留。
完全平方公式教學(xué)反思12
小班化教學(xué)的理論已經(jīng)學(xué)習(xí)交流了很長一段時(shí)間,大家都在自己的工作實(shí)踐中進(jìn)行嘗試,也取得了一些效果。通過本次上公開課,對小班化教學(xué)又有了一點(diǎn)新的認(rèn)識,反思如下。
從思想上注重學(xué)生的主動(dòng)參與。本節(jié)課我講的內(nèi)容是完全平方公式,在課堂上完成完全平方公式的推導(dǎo)應(yīng)用,完全平方公式的面積表示。如果單純從教學(xué)內(nèi)容上看,用傳統(tǒng)的授課方式,很容易讓學(xué)生記住公式會用公式。但是,如果注重學(xué)生的參與的話,在公式推導(dǎo)尤其是面積的表達(dá)上,放給學(xué)生自己,花費(fèi)的時(shí)間很長。這樣做雖然看起來教學(xué)效率偏低,但實(shí)際上在整個(gè)過程中,學(xué)生是全身心的投入進(jìn)去了,自己是學(xué)習(xí)的主體,符合小班化教學(xué)的思想。本節(jié)課的主動(dòng)參與還體現(xiàn)在公式的運(yùn)用上,讓學(xué)生出錯(cuò),讓學(xué)生嘗試,讓學(xué)生從錯(cuò)誤中反思,從而學(xué)會正確的應(yīng)用。這是本節(jié)課里,比較符合小班化理念的做法。
本節(jié)課里自認(rèn)為不是很理想的一些做法。比如教態(tài)比較嚴(yán)肅,有時(shí)顯得比較急躁。還有,學(xué)生的學(xué)習(xí)效果不是特別理想,學(xué)習(xí)的效率有待于進(jìn)一步提高。
第三篇:《完全平方公式》的教學(xué)反思
《完全平方公式》教學(xué)反思
焦
《完全平方公式》這節(jié)課我設(shè)計(jì)了七個(gè)教學(xué)環(huán)節(jié):復(fù)習(xí)回顧舊知識、新知探究、知識應(yīng)用、當(dāng)堂訓(xùn)練、課堂小結(jié)、拓展提升、布置作業(yè).我覺得本堂課的成功之處在于學(xué)生的探究活動(dòng)效果頗好。本節(jié)課我設(shè)置了一系列的問題串,讓學(xué)生運(yùn)用多項(xiàng)式乘法法則計(jì)算進(jìn)行自主探究,再經(jīng)過觀察算式歸納發(fā)現(xiàn)新知識大膽猜想,并經(jīng)過推理驗(yàn)證,再借助圖形直觀獲得感性認(rèn)識,真正獲得新知,總結(jié)出完全平方和公式。將猜想變?yōu)楣?,然后觀察并熟記公式特征,類比完全平方和探究完全平方差公式。然后歸納完全平方公式并運(yùn)用公式進(jìn)行計(jì)算,使學(xué)生掌握公式的計(jì)算技巧。整堂課突出以學(xué)生為主體的探索性學(xué)習(xí)原則。整節(jié)課都在緊張而愉快的氣氛中進(jìn)行。學(xué)生非常活躍。人人都能積極參與。
這節(jié)課上學(xué)生體會了數(shù)形結(jié)合及轉(zhuǎn)化的數(shù)學(xué)思想,并知道猜想的結(jié)論必須要加以驗(yàn)證;授課思維流暢,知識發(fā)生發(fā)展過渡自然,學(xué)生容易得到一些結(jié)論但在老師的引導(dǎo)下又使問題的探討得以不斷深入,學(xué)生思考積極、氣氛活躍,教學(xué)效果較好。
這節(jié)課引導(dǎo)學(xué)生用文字概括公式的內(nèi)容,從而培養(yǎng)學(xué)生抽象的數(shù)學(xué)思維能力和語言表達(dá)能力。強(qiáng)調(diào)學(xué)生時(shí)刻把握公式的特征 :左邊是兩個(gè)相同的二項(xiàng)式相乘,右邊是一個(gè)三項(xiàng)式,其中兩項(xiàng)是二項(xiàng)式中每一項(xiàng)的平方和,另一項(xiàng)是二項(xiàng)式中項(xiàng)的乘積的2倍或其相反式。引用“首平方,尾平方,首尾兩倍中間放”順口溜熟記。激發(fā)學(xué)生的學(xué)習(xí)積極性。
在拓展提升的習(xí)題中,我選取了逆用完全平方公式解決問題,發(fā)展學(xué)生思維,將運(yùn)用公式簡化數(shù)的平方的運(yùn)算,題有一定深度,但只要有運(yùn)用意識、創(chuàng)新意識學(xué)生就能靈活解答,學(xué)生接受挑戰(zhàn),并獲得了成功的喜悅。
我覺得不足之處是,應(yīng)在課堂上讓學(xué)生自編符合完全平方公式和平方差公式結(jié)構(gòu)的計(jì)算題,從而有效地將兩類公式區(qū)分開,深刻認(rèn)識公式的結(jié)構(gòu)特征。
在今后的教學(xué)中應(yīng)注意從以下幾個(gè)方面改進(jìn):
1、在教學(xué)中要盡可能創(chuàng)設(shè)情境,給學(xué)生充足的時(shí)間讓學(xué)生去探究發(fā)現(xiàn)新知,學(xué)會歸納,加以驗(yàn)證后再應(yīng)用。
2、習(xí)題要分層,當(dāng)堂訓(xùn)練鞏固基礎(chǔ),拓展提升,使不同程度的學(xué)生都有事情做且樂此不疲,更加充分的參與其中,從而實(shí)現(xiàn)“人人學(xué)有價(jià)值的數(shù)學(xué),人人都能獲得必須的數(shù)學(xué),不同的人在數(shù)學(xué)上得到不同的發(fā)展?!睂τ谶@一點(diǎn),教師一定要轉(zhuǎn)變觀念.學(xué)無止境,教無定法。我要不斷探索、不斷反思,敢于創(chuàng)新,不斷提高自己的教育教學(xué)水平。
第四篇:14.2.2完全平方公式教學(xué)反思
《14.2.2完全平方公式》教學(xué)反思
《14.2.2完全平方公式》一節(jié),是初中代數(shù)的一個(gè)重要組成部分,是學(xué)生在已經(jīng)掌握單項(xiàng)式乘法、多項(xiàng)式乘法及平方差公式基礎(chǔ)上的拓展,對以后學(xué)習(xí)因式分解、解一元二次方程、配方法、勾股定理及圖形面積計(jì)算都有舉足輕重的作用。
因此本課我設(shè)計(jì)了舊知回顧、新知探究、新知?dú)w納、例題應(yīng)用、深入理解、當(dāng)堂檢測、課堂小結(jié)幾個(gè)環(huán)節(jié)。目的是讓學(xué)生通過自學(xué)、探究、觀察、歸納、應(yīng)用幾個(gè)層面理解并掌握完全平方公式,并能應(yīng)用完全平方公式技巧解題。課后各位老師針對本課給予我很多寶貴的建議,例如;在講解例題時(shí),應(yīng)對照公式去分析,強(qiáng)調(diào)公式的特征,這樣便于學(xué)生的理解和記憶;在做題中對于學(xué)生出現(xiàn)的錯(cuò)誤,要及時(shí)更正,對于出現(xiàn)錯(cuò)誤多的地方或是出現(xiàn)錯(cuò)誤次數(shù)多的地方,應(yīng)及時(shí)變式練習(xí),使學(xué)生徹底學(xué)會如何計(jì)算。在教學(xué)過程中,要體現(xiàn)以教師為主導(dǎo)學(xué)生為主體原則,讓學(xué)生融入課堂,發(fā)揮學(xué)生的主觀能動(dòng)性,可以采取小組的方式生生互教,調(diào)動(dòng)學(xué)生積極性。
通過準(zhǔn)備本課、講授本課、聽評本課,使我不斷發(fā)現(xiàn)自己在教學(xué)中的缺點(diǎn)和不足,在今后的教學(xué)中,我要加強(qiáng)自身專業(yè)素質(zhì),汲取各位領(lǐng)導(dǎo)老師給予我的寶貴建議,認(rèn)真?zhèn)浜妹恳还?jié)課,認(rèn)真反思每一節(jié)課的優(yōu)缺點(diǎn),爭取做的更好。
第五篇:完全平方公式(二)教學(xué)反思
完全平方公式(2)教學(xué)反思
觀山湖區(qū)第六中學(xué)
余大華
本次課我執(zhí)教的是北師大版七年級數(shù)學(xué)下冊《完全平方公式》中的內(nèi)容,前一節(jié)已學(xué)習(xí)了完全平方公式,這一課主要研究完全平方公式的應(yīng)用。教學(xué)關(guān)鍵是引導(dǎo)學(xué)生正確理解完全平方公式的巧妙運(yùn)用,并能準(zhǔn)確應(yīng)用完全平方公式解決相關(guān)問題。教學(xué)后我進(jìn)行反思如下:
本節(jié)課上學(xué)生體會了數(shù)形結(jié)合及轉(zhuǎn)化的數(shù)學(xué)思想,并知道猜想的結(jié)論必須要加以驗(yàn)證;授課思維流暢,知識發(fā)生發(fā)展過渡自然,學(xué)生容易得到一些結(jié)論但在老師的引導(dǎo)下又使問題的探討得以不斷深入,學(xué)生思考積極、氣氛活躍,教學(xué)效果較好。采用以小組自主探究的學(xué)習(xí)方式,同時(shí)各小組展開激烈的比賽。整節(jié)課都在緊張而愉快的氣氛中進(jìn)行。學(xué)生非?;钴S。人人都能積極參與。先從代數(shù)式的幾何意義出發(fā),激發(fā)學(xué)生的圖形觀,利用拼圖的方法,使學(xué)生在動(dòng)手的過程中發(fā)現(xiàn)規(guī)律,并通過小組合作,探究歸納公式,然后強(qiáng)調(diào)數(shù)值的計(jì)算,使學(xué)生掌握公式的計(jì)算技巧。從而突出以學(xué)生為主體的探索性學(xué)習(xí)原則。讓學(xué)生自編符合完全平方公式和平方差公式結(jié)構(gòu)的計(jì)算題,從而有效地將兩類公式區(qū)分開,深刻認(rèn)識公式的結(jié)構(gòu)特征,并大大激發(fā)了學(xué)生的學(xué)習(xí)積極性。
同時(shí)課后感覺應(yīng)該引導(dǎo)學(xué)生用文字概括公式的內(nèi)容,從而培養(yǎng)學(xué)生抽象的數(shù)學(xué)思維能力和語言表達(dá)能力。對需要幫助的學(xué)生進(jìn)行針對性的個(gè)別指導(dǎo)較少。對于學(xué)生計(jì)算中存在的問題應(yīng)讓學(xué)生自己糾錯(cuò),教師不應(yīng)全權(quán)代勞。如利用兩數(shù)和的公式計(jì)算環(huán)節(jié),兩位學(xué)生分別講述自己的想法之后,教師應(yīng)該讓全體學(xué)生根據(jù)其方法進(jìn)行計(jì)算,自主驗(yàn)證,即使有些學(xué)生寫不出來,也會因?yàn)榻?jīng)過思考而印象深刻,如果為了節(jié)省時(shí)間教師自己代勞,那樣就不能夠充分體現(xiàn)學(xué)生的主體作用,而且效果也較前者差些。
本節(jié)課的缺憾是在新知運(yùn)用這一環(huán)節(jié)中,教師根據(jù)學(xué)生出題情況,抽取兩題重點(diǎn)講解;學(xué)生出的題不全面教師給與補(bǔ)充,然后以小組為單位來完成。而小組展示這一環(huán)節(jié)沒有按時(shí)完成。上完課后,我不知道沒有按教案所設(shè)計(jì)的完成的真正原因。課后,我不僅自己認(rèn)真的看了錄像,還和學(xué)生們又共同看了一遍。原因之一:用文字語言敘述完全平方公式用了8分鐘的時(shí)間。本節(jié)課我先后三次讓學(xué)生用文字語言敘述完全平方公式,即兩數(shù)和的完全平方公式、兩數(shù)差的完全平方公式、兩個(gè)公式和在一起敘述。參與的學(xué)生好、中、差均有,并且達(dá)到10人次。原因之二:學(xué)生自己編題用去3分鐘時(shí)間。而我在另一個(gè)班上課時(shí),新知運(yùn)用這一環(huán)節(jié)中題目完全是由教師給出的。
如何用數(shù)學(xué)的語言既精煉又準(zhǔn)確地來描述數(shù)學(xué)內(nèi)容,這件事在我以前的教學(xué)中做得還不夠扎實(shí)?!缎抡n標(biāo)》指出:學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者與合作者。動(dòng)手實(shí)踐、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式!這些都需要學(xué)生具備一定的自我表達(dá)能力作為前提。指導(dǎo)學(xué)生怎么說,先說什么,后說什么,怎樣說的既精煉又準(zhǔn)確,我將不斷探所。
在今后的教學(xué)中應(yīng)具體注意從以下幾個(gè)方面改進(jìn):
1.在教學(xué)中要講法則、公式的應(yīng)用,也要講公式的推導(dǎo),使學(xué)生在理解公式,法則道理的基礎(chǔ)上進(jìn)行記憶。
2.必須強(qiáng)調(diào)學(xué)生時(shí)刻把握公式的特征及用途:
⑴特征:左邊是兩個(gè)相同的二項(xiàng)式相乘,右邊是一個(gè)三項(xiàng)式,其中兩項(xiàng)是二項(xiàng)式中每一項(xiàng)的平方和,另一項(xiàng)是二項(xiàng)式中項(xiàng)的乘積的2倍或其相反式。
⑵用途:用于解決兩個(gè)完全相同的二項(xiàng)式乘積運(yùn)算.應(yīng)在課堂上大力推行邊啟發(fā)、邊探索、邊歸納,突出以學(xué)生為主體的探索性學(xué)習(xí)原則..既講“法”,又講“理”:在教學(xué)中要講法則、公式的應(yīng)用,也要講公式的推導(dǎo),使學(xué)生在理解公式,法則道理的基礎(chǔ)上進(jìn)行記憶,比如:我們要借助面積圖形對完全平方公式做直觀說明.3.講聯(lián)系、講對比、講特征.學(xué)生在運(yùn)用公式時(shí)出現(xiàn)的錯(cuò)誤,其原因是把完全平方公式和舊知識及分配律弄混淆,要善于排除新舊知識間互相干擾的作用.規(guī)范板書。每節(jié)課的板書盡量堅(jiān)持做到三保留:重要知識點(diǎn)保留,典型例題保留,學(xué)生易錯(cuò)點(diǎn)保留。