第一篇:2013屆高考數(shù)學第一輪立體幾何初步專項復習教案
§3 三視圖
【課時目標】 1.初步認識簡單幾何體的三視圖.2.會畫出空間幾何體的三視圖并會由空間幾何體的三視圖畫出空間幾何體.
1.空間幾何體的三視圖是指__________、__________、__________.
2.三視圖的排列規(guī)則是__________放在主視圖的下方,長度與主視圖一樣,__________放在主視圖的右面,高度與主視圖一樣,寬度與俯視圖的寬度一樣.
3.三視圖的主視圖、俯視圖、左視圖分別是從________、__________、________觀察同一個幾何體,畫出空間幾何體的圖形.
一、選擇題
1.下列說法正確的是()A.任何幾何體的三視圖都與其擺放的位置有關(guān) B.任何幾何體的三視圖都與其擺放的位置無關(guān) C.有的幾何體的三視圖與其擺放的位置無關(guān) D.正方體的三視圖一定是三個全等的正方形
2.如圖所示的一個幾何體,哪一個是該幾何體的俯視圖()
3.如圖所示,下列幾何體各自的三視圖中,有且僅有兩個視圖相同的是()
A.①②
B.①③
C.①④
D.②④ 4.一個長方體去掉一個小長方體,所得幾何體的主視圖與左視圖分別如圖所示,則該幾何體的俯視圖為()
5.實物圖如圖所示.無論怎樣擺放物體,如圖所示中不可能為其主視圖的是()
6.一個長方體去掉一角的直觀圖如圖所示,關(guān)于它的三視圖,下列畫法正確的是()
二、填空題
7.根據(jù)如圖所示俯視圖,找出對應(yīng)的物體.
(1)對應(yīng)________;(2)對應(yīng)________;(3)對應(yīng)________;(4)對應(yīng)________;(5)對應(yīng)________.
8.若一個三棱柱的三視圖如圖所示,則這個三棱柱的高(兩底面之間的距離)和底面邊長分別是________和________.
9.用小正方體搭成一個幾何體,如圖是它的主視圖和左視圖,搭成這個幾何體的小正方體的個數(shù)最多為________個.
三、解答題
10.在下面圖形中,圖(b)是圖(a)中實物畫出的主視圖和俯視圖,你認為正確嗎?如果不正確,請找出錯誤并改正,然后畫出左視圖(尺寸不作嚴格要求).
11.如圖是截去一角的長方體,畫出它的三視圖.
能力提升
12.如圖,螺栓是棱柱和圓柱的組合體,畫出它的三視圖.
13.用小立方體搭成一個幾何體,使它的主視圖和俯視圖如圖所示,搭建這樣的幾何體,最多要幾個小立方體?最少要幾個小立方體?
在繪制三視圖時,要注意以下三點:
1.若兩相鄰物體的表面相交,表面的交線是它們的原分界線,在三視圖中,分界線和可見輪廓都用實線畫出,不可見輪廓用虛線畫出.
2.一個物體的三視圖的排列規(guī)則是:俯視圖放在主視圖的下面,長度和主視圖一樣.左視圖放在主視圖的右面,高度和主視圖一樣,寬度和俯視圖一樣,簡記為“長對正,高平齊,寬相等”.
3.在畫物體的三視圖時應(yīng)注意觀察角度,角度不同,往往畫出的三視圖不同.
§3 三視圖
答案
知識梳理
1.主視圖 左視圖 俯視圖 2.俯視圖 左視圖
3.正前方 正上方 左側(cè) 作業(yè)設(shè)計
1.C [球的三視圖與其擺放位置無關(guān).] 2.C
3.D [在各自的三視圖中,①正方體的三個視圖都相同;②圓錐有兩個視圖相同;③三棱臺的三個視圖都不同;④正四棱錐有兩個視圖相同.] 4.C
[由三視圖中的正、左視圖得到幾何體的直觀圖如圖所示,所以該幾何體的俯視圖為C.] 5.D [A圖可看做該物體槽向前時的主視圖,B圖可看做槽向下時的主視圖,C圖可看做槽向后時的主視圖.] 6.A
7.(1)D(2)A(3)E(4)C(5)B 8.2 4 解析 三棱柱的高同左視圖的高,左視圖的寬度恰為底面正三角形的高,故底邊長為4.
9.7 10.解 圖(a)是由兩個長方體組合而成的,主視圖正確,俯視圖錯誤,俯視圖應(yīng)該畫出不可見輪廓線(用虛線表示),左視圖輪廓是一個矩形,有一條可視的交線(用實線表示),正確畫法如圖所示.
11.解 該圖形的三視圖如圖所示.
12.解 該物體是由一個正六棱柱和一個圓柱組合而成的,主視圖反映正六棱柱的三個側(cè)面和圓柱側(cè)面,左視圖反映正六棱柱的兩個側(cè)面和圓柱側(cè)面,俯視圖反映該物體投影后是一個正六邊形和一個圓(中心重合).它的三視圖如圖所示.
13.解 由于主視圖中每列的層數(shù)即是俯視圖中該列的最大數(shù)字,因此,用的立方塊數(shù)最多的情況是每個方框都用該列的最大數(shù)字,即如圖①所示,此種情況共用小立方塊17塊.
而搭建這樣的幾何體用方塊數(shù)最少的情況是每列只要有一個最大的數(shù)字,其他方框內(nèi)的數(shù)字可減少到最少的1,即如圖②所示,這樣的擺法只需小立方塊11塊.
第二篇:XX屆高考數(shù)學第一輪不等式專項復習教案
XX屆高考數(shù)學第一輪不等式專項復習教
案
本資料為woRD文檔,請點擊下載地址下載全文下載地址課
件004km.cn 第六章不等式
●網(wǎng)絡(luò)體系總覽
●考點目標定位
.理解不等式的性質(zhì)及應(yīng)用.2.掌握兩個(不擴展到三個)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)的定理,并會簡單地應(yīng)用.3.掌握比較法、分析法、綜合法證明簡單的不等式.4.掌握不等式的解法.5.理解不等式|a|-|b|≤|a±b|≤|a|+|b|.●復習方略指南
本章內(nèi)容在高考中,以考查不等式的性質(zhì)、證明、解法和最值方面的應(yīng)用為重點,多數(shù)是與函數(shù)、方程、三角、數(shù)列、幾何綜合在一起被考查,單獨考查不等式的問題較少,尤其是不等式的證明題.借助不等式的性質(zhì)及證明,主要考查函數(shù)方程思想、等價轉(zhuǎn)化思想、數(shù)形結(jié)合思想及分類討論思想等數(shù)學思想方法.含參數(shù)不等式的解法與討論,不等式與函數(shù)、數(shù)列、三角等內(nèi)容的綜合問題,仍將是今后高考命題的熱點.本章內(nèi)容理論性強,知識覆蓋面廣,因此復習中應(yīng)注意:
.復習不等式的性質(zhì)時,要克服“想當然”和“顯然成立”的思維定勢,要以比較準則和實數(shù)的運算法則為依據(jù).2.不等式的證明方法除比較法、分析法、綜合法外,還有反證法、換元法、判別式法、構(gòu)造法、幾何法,這些方法可作了解,但要控制量和度,切忌喧賓奪主.3.解(證)某些不等式時,要把函數(shù)的定義域、值域和單調(diào)性結(jié)合起來.4.注意重要不等式和常用思想方法在解題中的作用.5.利用平均值定理解決問題時,要注意滿足定理成立的三個條件:一“正”、二“定”、三“相等”.6.對于含有絕對值的不等式(問題),要緊緊抓住絕對值的定義實質(zhì),充分利用絕對值的幾何意義.7.要強化不等式的應(yīng)用意識,同時要注意到不等式與函數(shù)方程的對比與聯(lián)系.6.1不等式的性質(zhì)
●知識梳理
.比較準則:a-b>0a>b;
a-b=0a=b;a-b<0a<b.2.基本性質(zhì):(1)a>bb<a.(2)a>b,b>ca>c.(3)a>ba+c>b+c;a>b,c>da+c>b+d.(4)a>b,c>0ac>bc;a>b,c<0ac<bc;a>b>0,c>d>0ac>bd.(5)a>b>0
>(n∈N,n>1);a>b>0an>bn(n∈N,n>1).3.要注意不等式性質(zhì)成立的條件.例如,重要結(jié)論:a>b,ab>0
<,不能弱化條件得a>b
<,也不能強化條件得a>b>0
<.4.要正確處理帶等號的情況.如由a>b,b≥c或a≥b,b>c均可得出a>c;而由a≥b,b≥c可能有a>c,也可能有a=c,當且僅當a=b且b=c時,才會有a=c.5.性質(zhì)(3)的推論以及性質(zhì)(4)的推論可以推廣到兩個以上的同向不等式.6.性質(zhì)(5)中的指數(shù)n可以推廣到任意正數(shù)的情形.特別提示
不等式的性質(zhì)從形式上可分兩類:一類是“”型;另一類是“”型.要注意二者的區(qū)別.●點擊雙基
.若a<b<0,則下列不等式不能成立的是
A.>
B.2a>2b
c.|a|>|b|
D.()a>()b
解析:由a<b<0知ab>0,因此a?<b?,即>成立;
由a<b<0得-a>-b>0,因此|a|>|b|>0成立.又()x是減函數(shù),所以()a>()b成立.故不成立的是B.答案:B
2.(XX年春季北京,7)已知三個不等式:ab>0,bc-ad>0,->0(其中a、b、c、d均為實數(shù)),用其中兩個不等式作為條件,余下的一個不等式作為結(jié)論組成一個命題,可組成的正確命題的個數(shù)是
A.0
B.1
c.2
D.3
解析:由ab>0,bc-ad>0可得出->0.bc-ad>0,兩端同除以ab,得->0.同樣由->0,ab>0可得bc-ad>0.ab>0.答案:D
3.設(shè)α∈(0,),β∈[0,],那么2α-的范圍是
A.(0,)
B.(-,)
c.(0,π)
D.(-,π)
解析:由題設(shè)得0<2α<π,0≤≤.∴-≤-≤0.∴-<2α-<π.答案:D
4.a>b>0,m>0,n>0,則,,的由大到小的順序是____________.解析:特殊值法即可
答案:>>>
5.設(shè)a=2-,b=-2,c=5-2,則a、b、c之間的大小關(guān)系為____________.解析:a=2-=-<0,∴b>0.c=5-2=->0.b-c=3-7=-<0.∴c>b>a.答案:c>b>a
●典例剖析
【例1】已知-1<a+b<3且2<a-b<4,求2a+3b的取值范圍.剖析:∵a+b,a-b的范圍已知,∴要求2a+3b的取值范圍,只需將2a+3b用已知量a+b,a-b表示出來.可設(shè)2a+3b=x(a+b)+y(a-b),用待定系數(shù)法求出x、y.解:設(shè)2a+3b=x(a+b)+y(a-b),∴解得
∴-<(a+b)<,-2<-(a-b)<-1.∴-<(a+b)-(a-b)<,即-<2a+3b<.評述:解此題常見錯誤是:-1<a+b<3,①
2<a-b<4.②
①+②得1<2a<7.③
由②得-4<b-a<-2.④
①+④得-5<2b<1,∴-<3b<.⑤
③+⑤得-<2a+3b<.思考討論
.評述中解法錯在何處?
2.該類問題用線性規(guī)劃能解嗎?并試著解決如下問題:
已知函數(shù)f(x)=ax2-c,滿足-4≤f(1)≤-1,-1≤f(2)≤5,求f(3)的最大值和最小值.答案:20-1
【例2】(XX年福建,3)命題p:若a、b∈R,則|a|+|b|>1是|a+b|>1的充分而不必要條件;命題q:函數(shù)y=的定義域是(-∞,-1]∪[3,+∞),則
A.“p或q”為假
B.“p且q”為真
c.p真q假
D.p假q真
剖析:只需弄清命題p、q的真假即可.解:∵|a+b|≤|a|+|b|,若|a|+|b|>1不能推出|a+b|>1,而|a+b|>1一定有|a|+|b|>1,故命題p為假.又函數(shù)y=的定義域為|x-1|-2≥0,∴|x-1|≥2.∴x≤-1或x≥3.∴q為真.答案:D
【例3】比較1+logx3與2logx2(x>0且x≠1)的大小.剖析:由于要比較的兩個數(shù)都是對數(shù),我們聯(lián)系到對數(shù)的性質(zhì),以及對數(shù)函數(shù)的單調(diào)性.解:(1+logx3)-2logx2=logx.當或即0<x<1或x>時,有l(wèi)ogx>0,1+logx3>2logx2.當①或②時,logx<0.解①得無解,解②得1<x<,即當1<x<時,有l(wèi)ogx<0,1+logx3<2logx2.當x=1,即x=時,有l(wèi)ogx=0.∴1+logx3=2logx2.綜上所述,當0<x<1或x>時,1+logx3>2logx2;
當1<x<時,1+logx3<2logx2;
當x=時,1+logx3=2logx2.評述:作差看符號是比較兩數(shù)大小的常用方法,在分類討論時,要做到不重復、不遺漏.深化拓展
函數(shù)f(x)=x2+(b-1)x+c的圖象與x軸交于(x1,0)、(x2,0),且x2-x1>1.當t<x1時,比較t2+bt+c與x1的大小.提示:令f(x)=(x-x1)(x-x2),∴x2+bx+c=(x-x1)(x-x2)+x.把t2+bt+c與x1作差即可.答案:t2+bt+c>x1.●闖關(guān)訓練
夯實基礎(chǔ)
.(XX年遼寧,2)對于0<a<1,給出下列四個不等式:
①loga(1+a)<loga(1+);②loga(1+a)>loga(1+);③a1+a<a1;④a1+a>a.其中成立的是
A.①③
B.①④
c.②③
D.②④
解析:∵0<a<1,∴a<,從而1+a<1+.∴l(xiāng)oga(1+a)>loga(1+).又∵0<a<1,∴a1+a>a.故②與④成立.答案:D
2.若p=a+(a>2),q=2,則
A.p>q
B.p<q
c.p≥q
D.p≤q
解析:p=a-2++2≥4,而-a2+4a-2=-(a-2)2+2<2,∴q<4.∴p>q.答案:A
3.已知-1<2a<0,A=1+a2,B=1-a2,c=,D=則A、B、c、D按從小到大的順序排列起來是____________.解析:取特殊值a=-,計算可得A=,B=,c=,D=.∴D<B<A<c.答案:D<B<A<c
4.若1<α<3,-4<β<2,則α-|β|的取值范圍是____________.解析:∵-4<β<2,∴0≤|β|<4.∴-4<-|β|≤0.∴-3<α-|β|<3.答案:(-3,3)
5.已知a>2,b>2,試比較a+b與ab的大小.解:∵ab-(a+b)=(a-1)(b-1)-1,又a>2,b>2,∴a-1>1,b-1>1.∴(a-1)(b-1)>1,(a-1)(b-1)-1>0.∴ab>a+b.6.設(shè)A=xn+x-n,B=xn-1+x1-n,當x∈R+,n∈N時,求證:A≥B.證明:A-B=(xn+x-n)-(xn-1+x1-n)=x-n(x2n+1-x2n-1-x)
=x-n[x(x2n-1-1)-(x2n-1-1)]=x-n(x-1)(x2n-1-1).由x∈R+,x-n>0,得
當x≥1時,x-1≥0,x2n-1-1≥0;
當x<1時,x-1<0,x2n-1<0,即x-1與x2n-1-1同號.∴A-B≥0.∴A≥B.培養(yǎng)能力
7.設(shè)0<x<1,a>0且a≠,試比較|log3a(1-x)3|與|log3a(1+x)3|的大小.解:∵0<x<1,∴①當3a>1,即a>時,|log3a(1-x)3|-|log3a(1+x)3|=|3log3a(1-x)|-|3log3a(1+x)|
=3[-log3a(1-x)-log3a(1+x)]=-3log3a(1-x2).∵0<1-x2<1,∴-3log3a(1-x2)>0.②當0<3a<1,即0<a<時,|log3a(1-x)3|-|log3a(1+x)3|=3[log3a(1-x)+log3a(1+x)]
=3log3a(1-x2)>0.綜上所述,|log3a(1-x)3|>|log3a(1+x)3|.8.設(shè)a1≈,令a2=1+.(1)證明介于a1、a2之間;
(2)求a1、a2中哪一個更接近于;
(3)你能設(shè)計一個比a2更接近于的一個a3嗎?并說明理由.(1)證明:(-a1)(-a2)=(-a1)?(-1-)=<0.∴介于a1、a2之間.(2)解:|-a2|=|-1-|=||
=|-a1|<|-a1|.∴a2比a1更接近于.(3)解:令a3=1+,則a3比a2更接近于.由(2)知|-a3|=|-a2|<|-a2|.探究創(chuàng)新
9.已知x>-1,n≥2且n∈N*,比較(1+x)n與1+nx的大小.解:設(shè)f(x)=(1+x)n-(1+nx),則(x)=n(1+x)n-1-n=n[(1+x)n-1-1].由(x)=0得x=0.當x∈(-1,0)時,(x)<0,f(x)在(-1,0)上遞減.當x∈(0,+∞)時,(x)>0,f(x)在(0,+∞)上遞增.∴x=0時,f(x)最小,最小值為0,即f(x)≥0.∴(1+x)n≥1+nx.評述:理科學生也可以用數(shù)學歸納法證明.●思悟小結(jié)
.不等式的性質(zhì)是解、證不等式的基礎(chǔ),對任意兩實數(shù)a、b有a-b>0a>b,a-b=0a=b,a-b<0a<b,這是比較兩數(shù)(式)大小的理論根據(jù),也是學習不等式的基石.2.一定要在理解的基礎(chǔ)上記準、記熟不等式的性質(zhì),并注意解題中靈活、準確地加以應(yīng)用.3.對兩個(或兩個以上)不等式同加(或同乘)時一定要注意不等式是否同向(且大于零).4.對于含參問題的大小比較要注意分類討論.●教師下載中心
教學點睛
.加強化歸意識,把比較大小問題轉(zhuǎn)化為實數(shù)的運算.2.通過復習要強化不等式“運算”的條件.如a>b、c>d在什么條件下才能推出ac>bd.3.強化函數(shù)的性質(zhì)在大小比較中的重要作用,加強知識間的聯(lián)系.拓展題例
【例1】已知f(x)=|log2(x+1)|,m<n,f(m)=f(n).(1)比較m+n與0的大??;
(2)比較f()與f()的大小.剖析:本題關(guān)鍵是如何去掉絕對值號,然后再判斷差的符號.解:(1)∵f(m)=f(n),∴|log2(m+1)|=|log2(n+1)|.∴l(xiāng)og22(m+1)=log22(n+1).∴[log2(m+1)+log2(n+1)][log2(m+1)-log2(n+1)]=0,log2(m+1)(n+1)?log2=0.∵m<n,∴≠1.∴l(xiāng)og2(m+1)(n+1)=0.∴mn+m+n+1=1.∴mn+m+n=0.當m、n∈(-1,0]或m、n∈[0,+∞)時,由函數(shù)y=f(x)的單調(diào)性知x∈(-1,0]時,f(x)為減函數(shù),x∈[0,+∞)時,f(x)為增函數(shù),f(m)≠f(n).∴-1<m<0,n>0.∴m?n<0.∴m+n=-mn>0.(2)f()=|log2|=-log2=log2,f()=|log2|=log2.-==->0.∴f()>f().【例2】某家庭準備利用假期到某地旅游,有甲、乙兩家旅行社提供兩種優(yōu)惠方案,甲旅行社的方案是:如果戶主買全票一張,其余人可享受五五折優(yōu)惠;乙旅行社的方案是:家庭旅游算集體票,可按七五折優(yōu)惠.如果甲、乙兩家旅行社的原價相同,請問該家庭選擇哪家旅行社外出旅游合算?
解:設(shè)該家庭除戶主外,還有x人參加旅游,甲、乙兩旅行社收費總金額分別為y1和y2.一張全票價格為a元,那么y1=a+0.55ax,y2=0.75(x+1)a.∴y1-y2=a+0.55ax-0.75a(x+1)=0.2a(1.25-x).∴當x>1.25時,y1<y2;
當x<1.25時,y1>y2.又因x為正整數(shù),所以當x=1,即兩口之家應(yīng)選擇乙旅行社;
當x≥2(x∈N),即三口之家或多于三口的家庭應(yīng)選擇甲旅行社.課
件004km.cn
第三篇:XX屆高考數(shù)學立體幾何復習教案
XX屆高考數(shù)學立體幾何復習教案
本資料為woRD文檔,請點擊下載地址下載全文下載地址
立體幾何總復習
一、基本符號表示..點A在線m上:Am;
2.點A在面上:A
;
3.直線m在面內(nèi):m
;
4.直線m與面交于點A:m
=A;
5.面與面相交于直線m:=m;
二、點A到面的距離.(第一步:作面的垂線)
①作法:過點A作Ao
于o,連結(jié)線段Ao,即所求。
②求法:
(一)直接法;
(二)等體法(等積法包括:等體積法和等面積法);
(三)換點法。
如圖,三棱錐中,PA⊥AB,PA⊥Ac,AB⊥Ac,PA=Ac=2,AB=1,m為Pc的中點。
(II)求點A到平面PBc的距離.(例2)四棱錐P—ABcD中,PA⊥底面ABcD,AB//cD,AD=cD=1,∠BAD=120°,PA=,∠AcB=
90°。(III)求點B到平面PcD的距離。
(例3)如圖,直三棱柱中,Ac⊥cB,D是棱的中點。(I)求點B到平面的距離.三、兩條異面直線m與n所成角.①作法:平移,讓它們相交.(若mn,則可證出mn所在的平面)
②求法:常用到余弦定理.③兩條異面直線所成角的范圍:
;任意兩
條異面直線所成角的范圍:
.如圖,在中,斜邊.可以通過以直線為軸旋轉(zhuǎn)得到,且二面角是直二面角.動點的斜邊上.(II)當為的中點時,求異面直線與所成角的大?。?/p>
四、線m與面所成角.(第一步:作面的垂線)
①作法:在線m上任取一點P(異于A),作Po
于o,連結(jié)Ao,則Ao為斜線PA在面內(nèi)的攝影,m與面所成的角。
②求法:一般根據(jù)直角三角形來解。
③線面角的范圍:
.已知正四棱柱中,AB=2。(II)求直線與側(cè)面所成的角的正切值.如圖,在中,斜邊.可以通過以直線為軸旋轉(zhuǎn)得到,且二面角是直二面角.動點的斜邊上.(III)求與平面所成角的最大值. 五、二面角(注:若所求的二面角為直二面角,一般轉(zhuǎn)化為求它的補角—銳角).(一)定義法:
①作法:在棱c上取一“好”點P,在兩個半平面內(nèi)分別作c的垂線(射線)m、n,則角即二面角—c—的平面角。
②求法:一般根據(jù)余弦定理。
(二)三垂線法:(第一步:作面的垂線)
①作法:在面或面內(nèi)找一合適的點A,作Ao
于o,過A作ABc于B,則Bo為斜線AB在面內(nèi)的射影,為二面角—c—的平面角。
三垂線法的步驟:
1、作面的垂線;
2、作棱的垂線,并連結(jié)另一邊(平面角的頂點在棱上);
3、計算。
②求法:一般根據(jù)直角三角形來解。
③二面角的取值范圍:
.如圖,三棱錐中,PA⊥AB,PA⊥Ac,AB⊥Ac,PA=Ac=2,AB=1,m為Pc的中點。
(III)求二面角的正切值。
(例2)已知正四棱柱中,AB=2。(III)求二面角的正切值。
(例3)四棱錐P—ABcD中,PA⊥底面ABcD,AB//cD,AD=cD=1,∠BAD=120°,PA=,∠AcB=
90°。(II)求二面角D—Pc—A的大小;
(例4)已知:四棱錐P—ABcD的底面ABcD是邊長為1的正方形,PD⊥底面ABcD,且PD=1。(III)求二面角B—PA—c的余弦值.(例5)如圖,直三棱柱中,Ac⊥cB,D是棱的中點。(II)求二面角的大小。
六、三垂線定理.(第一步:作面的垂線)
.定理:PA為斜線,Po
于o,oA為射影,m,AomPAm.2.逆定理:PA為斜線,Po
于o,oA為射影,m,PAm
Aom.已知正四棱柱中,AB=2。(I)求證:.七、線面平行()..定義:
2.判定定理:
3.性質(zhì)定理:
(例1)已知:四棱錐P—ABcD的底面ABcD是邊長為1的正方形,PD⊥底面ABcD,且PD=1。(I)求證:Bc//平面PAD.八、線面垂直()..定義:
2.判定定理:
3.性質(zhì)定理:
(例1)四棱錐P—ABcD中,PA⊥底面ABcD,AB//cD,AD=cD=1,∠BAD=120°,PA=,∠AcB=
90°。(I)求證:Bc⊥平面PAc;
(例2)已知:四棱錐P—ABcD的底面ABcD是邊長為1的正方形,PD⊥底面ABcD,且PD=1。(II)若E、F分別為PB、AD的中點,求證:EF⊥平面PBc.九、面面平行()..定義:
2.判定定理:
3.性質(zhì)定理:
十、面面垂直()..定義:
2.判定定理:
3.性質(zhì)定理:
如圖,三棱錐中,PA⊥AB,PA⊥Ac,AB⊥Ac,PA=Ac=2,AB=1,m為Pc的中點。
(I)求證:平面PcB⊥平面mAB.如圖,在中,斜邊.可以通過以直線為軸旋轉(zhuǎn)得到,且二面角是直二面角.動點的斜邊上.(I)求證:平面平面;
十一、有關(guān)對角線..平行四邊形:
對角線平分.2.菱形:
對角線垂直且平分.3.矩形:
對角線相等且平分.4.正方形:
對角線相等且垂直且平分.十二、平移的方法..三角形(或梯形)的中位線:
且等于底邊(上下兩底之和)的一半.2.平行四邊形:對邊
且相等.3.等比例線段:
十三、重要輔助線的添加方法..見到中點,考慮:①中位線;②
;③
.2.見到平行四邊形(菱形、矩形、正方形同理),考慮:①連結(jié)對角線;②對邊平行且相等.十四、求三角形面積的通用方法.十五、三棱錐的任何一個面都可以作為底面,方便使用等體法.十六、立體幾何解題策略(附加:在做立體幾何大題時,后以文經(jīng)常用到前一問的結(jié)論,平時注意)..由已知想性質(zhì);
2.由結(jié)論想判定;
3.由需要做輔助線或輔助平面.十七、有關(guān)棱柱.棱柱——————————直棱柱—————————正棱柱..兩底面平行;
+1.側(cè)棱垂直于底面
+1.底面是正多邊形
2.側(cè)棱平行
十八、有關(guān)棱錐.棱錐——————————正棱錐..一面一點一連;
+1.底面是正多邊形;
2.頂點在底面的射影正好是底面正多邊形的中心.
第四篇:XX屆高考數(shù)學第一輪不等式的證明專項復習教案_1
XX屆高考數(shù)學第一輪不等式的證明專項
復習教案
本資料為woRD文檔,請點擊下載地址下載全文下載地址
6.3不等式的證明
(二)●知識梳理
.用綜合法證明不等式:利用不等式的性質(zhì)和已證明過的不等式以及函數(shù)的單調(diào)性導出待證不等式的方法叫綜合法,概括為“由因?qū)Ч?2.用分析法證明不等式:從待證不等式出發(fā),分析并尋求使這個不等式成立的充分條件的方法叫分析法,概括為“執(zhí)果索因”.3.放縮法證明不等式.4.利用單調(diào)性證明不等式.5.構(gòu)造一元二次方程利用“Δ”法證明不等式.6.數(shù)形結(jié)合法證明不等式.7.反證法、換元法等.特別提示
不等式證明方法多,證法靈活,其中比較法、分析法、綜合法是基本方法,要熟練掌握,其他方法作為輔助,這些方法之間不能截然分開,要綜合運用各種方法.●點擊雙基
.(XX年春季北京,8)若不等式(-1)na<2+對任意n∈N*恒成立,則實數(shù)a的取值范圍是
A.[-2,)
B.(-2,)
c.[-3,)
D.(-3,)
解析:當n為正偶數(shù)時,a<2-,2-為增函數(shù),∴a<2-=.當n為正奇數(shù)時,-a<2+,a>-2-.而-2-為增函數(shù),-2-<-2,∴a≥-2.故a∈[-2,).答案:A
2.(XX年南京市質(zhì)檢題)若<<0,則下列結(jié)論不正確的是
A.a2<b2
B.ab<b2
c.+>2
D.|a|+|b|>|a+b|
解析:由<<0,知b<a<0.∴A不正確.答案:A
3.分析法是從要證的不等式出發(fā),尋求使它成立的 A.充分條件
B.必要條件
c.充要條件
D.既不充分又不必要條件
答案:A
4.(理)在等差數(shù)列{an}與等比數(shù)列{bn}中,a1=b1>0,an=bn>0,則am與bm的大小關(guān)系是____________.解析:若d=0或q=1,則am=bm.若d≠0,畫出an=a1+(n-1)d與bn=b1?qn-1的圖象,易知am>bm,故am≥bm.答案:am≥bm
(文)在等差數(shù)列{an}與等比數(shù)列{bn}中,a1=b1>0,a2n+1=b2n+1>0(n=1,2,3,…),則an+1與bn+1的大小關(guān)系是____________.解析:an+1=≥==bn+1.答案:an+1≥bn+1
5.若a>b>c,則+_______.(填“>”“=”“<”)
解析:a>b>c,(+)(a-c)=(+)[(a-b)+(b-c)]
≥2?2=4.∴+≥>.答案:>
●典例剖析
【例1】設(shè)實數(shù)x、y滿足y+x2=0,0<a<1.求證:loga(ax+ay)<loga2+.剖析:不等式左端含x、y,而右端不含x、y,故從左向右變形時應(yīng)消去x、y.證明:∵ax>0,ay>0,∴ax+ay≥2=2.∵x-x2=-(x-)2≤,0<a<1,∴ax+ay≥2=2a.∴l(xiāng)oga(ax+ay)<loga2a=loga2+.評述:本題的證題思路可由分析法獲得.要證原不等式成立,只要證ax+ay≥2?a即可.
【例2】已知a、b、c∈R+,且a+b+c=1.求證:
(1+a)(1+b)(1+c)≥8(1-a)(1-b)(1-c).剖析:在條件“a+b+c=1”的作用下,將不等式的“真面目”隱含了,給證明不等式帶來困難,若用“a+b+c”換成“1”,則還原出原不等式的“真面目”,從而抓住實質(zhì),解決問題.證明:∵a、b、c∈R+且a+b+c=1,∴要證原不等式成立,即證[(a+b+c)+a]?[(a+b+c)+b][(a+b+c)+c]≥8[(a+b+c)-a]?[(a+b+c)-b]?[(a+b+c)-c].也就是證[(a+b)+(c+a)][(a+b)+(b+c)]?[(c+a)+(b+c)]≥8(b+c)(c+a)(a+b).①
∵(a+b)+(b+c)≥2>0,(b+c)+(c+a)≥2>0,(c+a)+(a+b)≥2>0,三式相乘得①式成立.故原不等式得證.【例3】已知a>1,n≥2,n∈N*.求證:-1<.證法一:要證-1<,即證a<(+1)n.令a-1=t>0,則a=t+1.也就是證t+1<(1+)n.∵(1+)n=1+c
+…+c()n>1+t,即-1<成立.證法二:設(shè)a=xn,x>1.于是只要證>x-1,即證>n.聯(lián)想到等比數(shù)列前n項和1+x+…+xn-1=,①
倒序xn-1+xn-2+…+1=.②
①+②得2?=(1+xn-1)+(x+xn-2)+…+(xn-1+1)
>2+2+…+2>2n.∴>n.思考討論
本不等式是與自然數(shù)有關(guān)的命題,用數(shù)學歸納法可以證嗎?讀者可嘗試一下.●闖關(guān)訓練
夯實基礎(chǔ)
.已知a、b是不相等的正數(shù),x=,y=,則x、y的關(guān)系是
A.x>y
B.y>x
c.x>y
D.不能確定
解析:∵x2=(+)2=(a+b+2),y2=a+b=(a+b+a+b)>(a+b+2)=x2,又x>0,y>0.∴y>x.答案:B
2.對實數(shù)a和x而言,不等式x3+13a2x>5ax2+9a3成立的充要條件是____________.解析:(x3+13a2x)-(5ax2+9a3)
=x3-5ax2+13a2x-9a3
=(x-a)(x2-4ax+9a2)
=(x-a)[(x-2a)2+5a2]>0.∵當x≠2a≠0時,有(x-2a)2+5a2>0.由題意故只需x-a>0即x>a,以上過程可逆.答案:x>a
3.已知a>b>c且a+b+c=0,求證:<a.證明:要證<a,只需證b2-ac<3a2,即證b2+a(a+b)<3a2,即證(a-b)(2a+b)>0,即證(a-b)(a-c)>0.∵a>b>c,∴(a-b)?(a-c)>0成立.∴原不等式成立.4.已知a+b+c=0,求證:ab+bc+ca≤0.證法一:(綜合法)∵a+b+c=0,∴(a+b+c)2=0.展開得ab+bc+ca=-,∴ab+bc+ca≤0.證法二:(分析法)要證ab+bc+ca≤0,∵a+b+c=0,故只需證ab+bc+ca≤(a+b+c)2,即證a2+b2+c2+ab+bc+ca≥0,亦即證[(a+b)2+(b+c)2+(c+a)2]≥0.
而這是顯然的,由于以上相應(yīng)各步均可逆,∴原不等式成立.證法三:∵a+b+c=0,∴-c=a+b.∴ab+bc+ca=ab+(b+a)c=ab-(a+b)2
=-a2-b2-ab=-[(a+)2+]≤0.
∴ab+bc+ca≤0.培養(yǎng)能力
5.設(shè)a+b+c=1,a2+b2+c2=1且a>b>c.求證:-<c<0.證明:∵a2+b2+c2=1,∴(a+b)2-2ab+c2=1.∴2ab=(a+b)2+c2-1=(1-c)2+c2-1=2c2-2c.∴ab=c2-c.又∵a+b=1-c,∴a、b是方程x2+(c-1)x+c2-c=0的兩個根,且a>b>c.令f(x)=x2+(c-1)x+c2-c,則
6.已知=1,求證:方程ax2+bx+c=0有實數(shù)根.證明:由=1,∴b=.∴b2=(+c)2=+2ac+2c2=4ac+(-c)2≥4ac.∴方程ax2+bx+c=0有實數(shù)根.7.設(shè)a、b、c均為實數(shù),求證:++≥++.證明:∵a、b、c均為實數(shù),∴(+)≥≥,當a=b時等號成立;
(+)≥≥,當b=c時等號成立;
(+)≥≥.
三個不等式相加即得++≥++,當且僅當a=b=c時等號成立.探究創(chuàng)新
8.已知a、b、c、d∈R,且a+b=c+d=1,ac+bd>1.求證:a、b、c、d中至少有一個是負數(shù).證明:假設(shè)a、b、c、d都是非負數(shù),∵a+b=c+d=1,∴(a+b)(c+d)=1.∴ac+bd+bc+ad=1≥ac+bd.這與ac+bd>1矛盾.所以假設(shè)不成立,即a、b、c、d中至少有一個負數(shù).●思悟小結(jié)
.綜合法就是“由因?qū)Ч保瑥囊阎坏仁匠霭l(fā),不斷用必要條件替換前面的不等式,直至推出要證的結(jié)論.2.分析法就是“執(zhí)果索因”,從所證不等式出發(fā),不斷用充分條件替換前面的不等式,直至找到成立的不等式.3.探求不等式的證法一般用分析法,敘述證明過程用綜合法較簡,兩法結(jié)合在證明不等式中經(jīng)常遇到.4.構(gòu)造函數(shù)利用單調(diào)性證不等式或構(gòu)造方程利用“Δ≥0”證不等式,充分體現(xiàn)相關(guān)知識間的聯(lián)系.●教師下載中心
教學點睛
.在證明不等式的過程中,分析法和綜合法是不能分離的,如果使用綜合法證明不等式難以入手時,常用分析法探索證題途徑,之后用綜合法的形式寫出它的證明過程,以適應(yīng)學生習慣的思維規(guī)律.有時問題證明難度較大,常使用分析綜合法,實現(xiàn)兩頭往中間靠以達到證題目的.2.由于高考試題不會出現(xiàn)單一的不等式的證明題,常常與函數(shù)、數(shù)列、三角、方程綜合在一起,所以在教學中,不等式的證明除常用的三種方法外,還需介紹其他方法,如函數(shù)的單調(diào)性法、判別式法、換元法(特別是三角換元)、放縮法以及數(shù)學歸納法等.拓展題例
【例1】已知a、b為正數(shù),求證:
(1)若+1>,則對于任何大于1的正數(shù)x,恒有ax+>b成立;
(2)若對于任何大于1的正數(shù)x,恒有ax+>b成立,則+1>.分析:對帶條件的不等式的證明,條件的利用常有兩種方法:①證明過程中代入條件;②由條件變形得出要證的不等式.證明:(1)ax+=a(x-1)++1+a≥2+1+a=(+1)2.∵+1>b(b>0),∴(+1)2>b2.(2)∵ax+>b對于大于1的實數(shù)x恒成立,即x>1時,[ax+]min>b,而ax+=a(x-1)++1+a≥2+1+a=(+1)2,當且僅當a(x-1)=,即x=1+>1時取等號.故[ax+]min=(+1)2.則(+1)2>b,即+1>b.評述:條件如何利用取決于要證明的不等式兩端的差異如何消除.【例2】求證:≤+.剖析:|a+b|≤|a|+|b|,故可先研究f(x)=(x≥0)的單調(diào)性.證明:令f(x)=(x≥0),易證f(x)在[0,+∞)上單調(diào)遞增.|a+b|≤|a|+|b|,∴f(|a+b|)≤f(|a|+|b|),即≤=≤.思考討論
.本題用分析法直接去證可以嗎?2.本題當|a+b|=0時,不等式成立;
當|a+b|≠0時,原不等式即為≤.再利用|a+b|≤|a|+|b|放縮能證嗎?讀者可以嘗試一下!
第五篇:初三數(shù)學第一輪復習教案統(tǒng)計初步教案精品
初三數(shù)學第一輪復習教案
代數(shù)部分 第七章:統(tǒng)計初步
教學目的:
1、了解總體、個體、樣本、樣本容量等概念。
2、理解平均數(shù)的意義,了解總體平均數(shù)和樣本平均數(shù)的意義,掌握平均數(shù)的計算公式,理解加權(quán)平均數(shù)的概念,掌握它的計算公式,會用樣本平均數(shù)估計總體平均數(shù)。
3、理解眾數(shù)、中位數(shù)的意義,掌握它們的求法
4、了解樣本方差??傮w方差。樣本標準差的意義,會計算樣本方差和標準差,會利用方差或標準差比較兩組樣本數(shù)據(jù)的波動情況。
5、理解頻數(shù)、頻率的概念,了解頻率分布的意義和作用,掌握整理數(shù)據(jù)的步驟和方法,會對數(shù)據(jù)進行合理的分組,列出樣本頻率分布表,畫出頻率分布直方圖。知識點:
一、總體和樣本:
在統(tǒng)計時,我們把所要考察的對象的全體叫做總體,其中每一考察對象叫做個體。從總體中抽取的一部分個體叫做總體的一個樣本,樣本中個體的數(shù)目叫做樣本容量。
二、反映數(shù)據(jù)集中趨勢的特征數(shù)
1、平均數(shù)
(1)x1,x2,x3,?,xn的平均數(shù),x?1(x1?x2???xn)
n
(2)加權(quán)平均數(shù):如果n個數(shù)據(jù)中,x1出現(xiàn)f1次,x2出現(xiàn)f2次,……,xk出現(xiàn)fk次(這里f1?f2???fk?n),則x?
(3)平均數(shù)的簡化計算:
當一組數(shù)據(jù)x1,x2,x3,?,xn中各數(shù)據(jù)的數(shù)值較大,并且都與常數(shù)a接近時,設(shè)
1(x1f1?x2f2???xkfk)nx1?a,x2?a,x3?a,?,xn?a的平均數(shù)為x'則:x?x'?a。
2、中位數(shù):將一組數(shù)據(jù)接從小到大的順序排列,處在最中間位置上的數(shù)據(jù)叫做這組數(shù)據(jù)的中位數(shù),如果數(shù)據(jù)的個數(shù)為偶數(shù)中位數(shù)就是處在中間位置上兩個數(shù)據(jù)的平均數(shù)。
3、眾數(shù):在一組數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)。一組數(shù)據(jù)的眾數(shù)可能不止一個。
三、反映數(shù)據(jù)波動大小的特征數(shù):
1、方差:
(x1?x)2?(x2?x)2???(xn?x)
2(l)x1,x2,x3,?,xn的方差,S?
n22x?x2???xn2
(2)簡化計算公式:S?1?x(x1,x2,x3,?,xn為較小的整數(shù)
n222時用這個公式要比較方便)
(3)記x1,x2,x3,?,xn的方差為S,設(shè)a為常數(shù),x1?a,x2?a,x3?a,?,xn?a的方差為S`,則S=S`。
注:當x1,x2,x3,?,xn各數(shù)據(jù)較大而常數(shù)a較接近時,用該法計算方差較簡便。
2、標準差:方差(S)的算術(shù)平方根叫做標準差(S)。
注:通常由方差求標準差。
四、頻率分布
1、有關(guān)概念
(1)分組:將一組數(shù)據(jù)按照統(tǒng)一的標準分成若干組稱為分組,當數(shù)據(jù)在100個以內(nèi)時,通常分成5-12組。
(2)頻數(shù):每個小組內(nèi)的數(shù)據(jù)的個數(shù)叫做該組的頻數(shù)。各個小組的頻數(shù)之和等于數(shù)據(jù)總數(shù)n。
(3)頻率:每個小組的頻數(shù)與數(shù)據(jù)總數(shù)n的比值叫做這一小組的頻率,各小組頻率之和為l。
(4)頻率分布表:將一組數(shù)據(jù)的分組及各組相應(yīng)的頻數(shù)、頻率所列成的表格叫做頻率分布表。
(5)頻率分布直方圖:將頻率分布表中的結(jié)果,繪制成的,以數(shù)據(jù)的各分點為橫坐標,以頻率除以組距為縱坐標的直方圖,叫做頻率分布直方圖。
圖中每個小長方形的高等于該組的頻率除以組距。
每個小長方形的面積等于該組的頻率。
所有小長方形的面積之和等于各組頻率之和等于1。
樣本的頻率分布反映樣本中各數(shù)據(jù)的個數(shù)分別占樣本容量n的比例的大小,總體分布反映總體中各組數(shù)據(jù)的個數(shù)分別在總體中所占比例的大小,一般是用樣本的頻率分布去估計總體的頻率分布。
2、研究頻率分布的方法;得到一數(shù)據(jù)的頻率分布和方法,通常是先整理數(shù)據(jù),后畫出頻率分布直方圖,其步驟是:
(1)計算最大值與最小值的差;(2)決定組距與組數(shù);(3)決定分點;(4)列領(lǐng)率分布表;(5)繪頻率分布直方圖。22222例題:
例
1、某養(yǎng)魚戶搞池塘養(yǎng)魚,放養(yǎng)鱔魚苗20000尾,其成活率為70%,隨意撈出10尾魚,稱得每尾的重量如下(單位:千克)0.
8、0.
9、1.
2、1.
3、0.
8、1.l、1.0、1.
2、0.
8、0.9
根據(jù)樣本平均數(shù)估計這塘魚的總產(chǎn)量是多少千克?
分析:先算出樣本的平均數(shù),以樣本平均數(shù)乘以20000,再乘以70%。
解:略
[規(guī)律總結(jié)]求平均數(shù)有三種方法,即當所給數(shù)據(jù)比較分散時,一般用平均數(shù)的概念來求;著所給數(shù)據(jù)較大且都在某一數(shù)a上下波動時,通常采用簡化公式;若所給教據(jù)重復出現(xiàn)時,通常采用加權(quán)平均數(shù)公式來計算。
例
2、一次科技知識競賽,兩次學生成績統(tǒng)計如下
已經(jīng)算得兩個組的人均分都是80分,請根據(jù)你所學過的統(tǒng)計知識進一步判斷這兩個組成績誰優(yōu)誰次,并說明理由
解:(l)甲組成績的眾數(shù)90分,乙組成績的眾數(shù)為70分,從眾數(shù)比較看,甲組成績好些。
(2)算得S甲=172,S乙?256
所以甲組成績較乙組波動要小。
(3)甲、乙兩組成績的中位數(shù)都是80分,甲組成績在中位數(shù)以上的有33人,乙組成績在中位數(shù)以上的有26人,從這一角度看甲組的成績總體要好。
(4)從成績統(tǒng)計表看,甲組成績高于80分的人數(shù)為20人,乙組成績高于80分的人數(shù)為24人,所以,乙組成績集中在高分段的人數(shù)多,同時,乙組得滿分的人數(shù)比甲組得滿分的人數(shù)多6人,從這一角度看,乙組的成績較好。
[規(guī)律總結(jié)]明確方差或標準差是衡量一組數(shù)據(jù)的波動的大小的,恰當選用方差的三個計算公式,應(yīng)抓住三個公式的特征,根據(jù)題中數(shù)據(jù)的特點選用計算公式。
例
3、到從某學校3600人中抽出50名男生,取得他們的身高(單位cm),數(shù)據(jù)如下:181 181 179 177 177 177 176 175 175 175 175 174 174 174 174 173 173 173 173 172 172 172 172 172 171 171 171 170 170 169 l69 168 167
167 167 166 l66 l66 166 166 165 165
165
163 163 162 161 160 158 157
1、計算頻率,并畫出頻率分布直方圖
2、上指出身高在哪一組內(nèi)的男學生人數(shù)所占的比最大
3.請估計這些初三男學生身高在166.5cm以下的約有多少人? 22
解:
1、各組頻率依次是:0.08,0.22,0.22,0.36,0.12
2、從頻率分布表(或圖)中,可見身高在171.5—176.5組內(nèi)男學生人數(shù)所占的比最大。
3、這個地方男學生身高166.5側(cè)以下的約為3000?(0.08?0.22)?900(人)
[規(guī)律總結(jié)]要掌握獲得一組數(shù)據(jù)的頻率分布的五大步驟,掌握整理數(shù)據(jù)的步驟和方法。會對數(shù)據(jù)進行合理的分組。