第一篇:初中數(shù)學(xué)概念教學(xué)論文:淺論初中數(shù)學(xué)概念教學(xué)
淺論初中數(shù)學(xué)概念教學(xué)
勐臘二中 周朝旭
摘要:在中學(xué)數(shù)學(xué)教學(xué)中,正確理解數(shù)學(xué)概念是掌握數(shù)學(xué)基礎(chǔ)知識的前提,是學(xué)好定理、公式、法則和數(shù)學(xué)思想的基礎(chǔ),搞清概念是提高解題能力的關(guān)鍵。只要對概念理解的深透,才能在解題中做出正確的判斷。因此,在數(shù)學(xué)教學(xué)過程中,數(shù)學(xué)概念的教學(xué)顯得尤為重要。學(xué)生數(shù)學(xué)能力的發(fā)展取決于他對數(shù)學(xué)概念的牢固掌握與深刻理解與否。
關(guān)鍵詞:數(shù)學(xué)能力、發(fā)展、理解、剖析、揭示
概念是客觀事物本質(zhì)屬性在人們頭腦中的反映。數(shù)學(xué)概念反映現(xiàn)實(shí)世界的空間形式和數(shù)量關(guān)系的本質(zhì)屬性的思維形式。在中學(xué)數(shù)學(xué)教學(xué)中,正確理解數(shù)學(xué)概念是掌握數(shù)學(xué)基礎(chǔ)知識的前提,是學(xué)好定理、公式、法則和數(shù)學(xué)思想的基礎(chǔ),搞清概念是提高解題能力的關(guān)鍵。只要對概念理解的深透,才能在解題中做出正確的判斷。因此,在數(shù)學(xué)教學(xué)過程中,數(shù)學(xué)概念的教學(xué)顯得尤為重要。學(xué)生數(shù)學(xué)能力的發(fā)展取決于他對數(shù)學(xué)概念的牢固掌握與深刻理解與否。而在現(xiàn)實(shí)中,許多學(xué)生對數(shù)學(xué)的學(xué)習(xí),只注重盲目的做習(xí)題,不注重對數(shù)學(xué)概念的掌握,對基本概念含糊不清。做習(xí)題不懂得從基本概念入手,思考解題依據(jù),探索解題方法,而是跟著感覺走。這樣的學(xué)習(xí),必然越學(xué)越糊涂,因而數(shù)學(xué)概念的教學(xué)在整個(gè)數(shù)學(xué)教學(xué)中有其不容忽視的地位與作用。下面僅結(jié)合本人平時(shí)的教學(xué)實(shí)踐,談一點(diǎn)膚淺的認(rèn)識與體會(huì)。
一、概念的引入:
1.從學(xué)生已有的生活經(jīng)驗(yàn)、熟知的具體事例中進(jìn)行引入。如“圓”的概念的引出前,可讓同學(xué)們聯(lián)想生活中見過的年輪、太陽、五環(huán)旗、圓狀跑道等實(shí)物的形狀,再讓同學(xué)用圓規(guī)在紙上畫圓,也可用準(zhǔn)備好的定長的線繩,將一端固定,而另一端帶有鉛筆并繞固定端旋轉(zhuǎn)一周,從而引導(dǎo)同學(xué)們自己發(fā)現(xiàn)圓的形成過程,進(jìn)而總結(jié)出圓的特點(diǎn):圓周上任意一點(diǎn)到圓心的距離相等,從而猜想歸納出“圓”的概念。
2.在復(fù)習(xí)舊概念的基礎(chǔ)上引入新概念。
概念復(fù)習(xí)的起步是在已有的認(rèn)知結(jié)構(gòu)的基礎(chǔ)上進(jìn)行的。因此,在教學(xué)新概念前,如果能對學(xué)生認(rèn)知結(jié)構(gòu)中原有的適當(dāng)概念作一些類比引入新概念,則有利于促進(jìn)新概念的形成。例如:在教學(xué)一元二次方程時(shí),就可以先復(fù)習(xí)一元一次方程,因?yàn)橐辉淮畏匠淌腔A(chǔ),一元二次方程是延伸,復(fù)習(xí)一元一次方程是合乎知識邏輯的。通過比較得出兩種方程都是只含有一個(gè)未知數(shù)的整式方程,差異僅在于未知數(shù)的最高次數(shù)不同。由此,很容易建立起“一元二次方程”的概念。
二、分析概念含義,抓住概念本質(zhì)。
1.揭示含義,突出關(guān)鍵詞。
數(shù)學(xué)概念嚴(yán)謹(jǐn)、準(zhǔn)確、簡練。教師的語言對于學(xué)生感知教材,形成概念有重要的意義,因此要特別注意用詞的嚴(yán)格性和準(zhǔn)確性。教師要用生動(dòng)、形象的語言講清概念的每一個(gè)字、句、符號的意義,特別是關(guān)鍵的字、詞、句,這是指導(dǎo)學(xué)生掌握概念,并認(rèn)識概念的前提。
如:“分解因式”概念:“把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變形叫把這個(gè)多項(xiàng)式分解因式?!痹诮虒W(xué)中學(xué)生往往只注重“積”這個(gè)關(guān)鍵詞,而忽略了“整式”,易造成對分解因式的錯(cuò)誤認(rèn)識。所以在教學(xué)中務(wù)必強(qiáng)調(diào),并與學(xué)生分析這兩處關(guān)鍵詞的含義,加深對概念的理解。
2.分析概念,抓住本質(zhì)。
數(shù)學(xué)概念大多數(shù)是通過描述定義給出他的確切含義,他屬于理性認(rèn)識,但來源于感性認(rèn)識,所以對于這類概念一定要抓住它的本質(zhì)屬性。
如:“互為補(bǔ)角”的概念:“如果兩個(gè)角的和是平角,則這兩個(gè)角互為補(bǔ)角?!逼浔举|(zhì)屬性:(1)必須具備兩個(gè)角之和為180°,一個(gè)角為180°或三個(gè)角為180°都不是互為補(bǔ)角,互補(bǔ)角只就兩個(gè)角而言。(2)互補(bǔ)的兩個(gè)角只是數(shù)量上的關(guān)系,這與兩個(gè)角的位置無關(guān)。通過這兩個(gè)本質(zhì)屬性的分析,學(xué)生對“互為補(bǔ)角”有了全面的理解。
3.剖析變化,深化概念。數(shù)學(xué)概念都是從正面闡述,一些學(xué)生只從文字上理解,以為掌握了概念的本質(zhì),而碰到具體的數(shù)學(xué)問題卻又難以做出正確的判斷。因此,在教學(xué)過程中,必須在學(xué)生正面認(rèn)識概念的基礎(chǔ)上,通過反例或變式從反面去剖析數(shù)學(xué)概念,凸顯對象中隱蔽的本質(zhì)要素,加深學(xué)生對概念理解的全面性。
如:在學(xué)習(xí)對頂角的概念后,讓學(xué)生做題:(1)下列表示的兩個(gè)角,哪組是對頂角?(a)兩條直線相交,相對的兩個(gè)角(b)頂點(diǎn)相同的兩個(gè)角(c)同一個(gè)角的兩個(gè)鄰補(bǔ)角 前后聯(lián)系,多方印證,加深認(rèn)識。
部分學(xué)生對概念的全面理解不可能一蹴而就,而是要經(jīng)歷:實(shí)踐——認(rèn)識——再實(shí)踐——再認(rèn)識的過程,這是個(gè)“正確”與“錯(cuò)誤”搖擺不定的過程,更是一個(gè)對概念的理解不斷深化的過程。事實(shí)上,學(xué)生在初步學(xué)習(xí)某一數(shù)學(xué)概念之后,對概念的理解并不怎么深刻,而是通過對后續(xù)知識的學(xué)習(xí)讓學(xué)生回過頭來再對概念進(jìn)行加深理解,遵循“循環(huán)反復(fù),螺旋上升”的學(xué)習(xí)原則。
如:學(xué)生剛接觸“二次函數(shù)”的概念時(shí),僅能從形式上判斷某一函數(shù)是否為二次函數(shù)。但當(dāng)他們學(xué)習(xí)了其圖象,研究了圖象的性質(zhì)后就能根據(jù)a得出圖象的開口方向,由a、b確定圖象的對稱軸,由a、b、c給出圖象的頂點(diǎn)坐標(biāo)。這時(shí)對二次函數(shù)的概念自是記憶深刻,能脫口而出了。
三、概念的記憶。
1.并列概念,舉一反三。、如:一元一次方程的概念:“只含有一個(gè)未知數(shù),并且未知數(shù)的指數(shù)為一(次),這樣的方程叫做一元一次方程”,清楚了“元”與“次”的含義,則一元一次方程、二元一次方程、一元一次不等式等概念就水到渠成了。通過縱橫對比,在類比中找特點(diǎn),在聯(lián)想中求共性,把數(shù)學(xué)知識系統(tǒng)化,學(xué)生輕輕松松記概念。
2.易混淆概念,聯(lián)系區(qū)別。
任何一個(gè)概念都有它的內(nèi)涵和外延,外延的大小與內(nèi)涵成反比關(guān)系。內(nèi)涵越多,外延就越??;內(nèi)涵越少,外延就越大。把握概念的內(nèi)涵與外延,能大大增加學(xué)生對概念的明晰度,提高鑒別能力,避免張冠李戴,為此,把所教概念同類似的相關(guān)的概念相比較,分清它們的異同點(diǎn)及聯(lián)系,也就顯得十分重要。如:學(xué)完“軸對稱”與“軸對稱圖形”的概念后,可引導(dǎo)學(xué)生找出兩者之間的聯(lián)系和區(qū)別。聯(lián)系:兩者都有對稱軸,如把成軸對稱的兩個(gè)圖形看成一個(gè)整體,那么這個(gè)整體就是一個(gè)軸對稱圖形,如把一個(gè)軸對稱圖形位于對稱軸兩旁的部分看成兩個(gè)圖形,那么這兩部分成軸對稱。區(qū)別:“軸對稱”是指兩個(gè)圖形成軸對稱,主要指這兩個(gè)圖形特殊的位置關(guān)系;而“軸對稱圖形”僅僅是指一個(gè)圖形,主要指這個(gè)
圖形所具備的特殊形狀。通過這樣的聯(lián)系與區(qū)別,學(xué)生加深了對概念的理解,避免混淆,從而提高學(xué)生認(rèn)知概念的清晰度。
3.從屬概念,圖表體現(xiàn)。
有從屬關(guān)系的概念其外延之間有著互相包含的關(guān)系,在復(fù)習(xí)階段若以圖表的形式表現(xiàn),能使概念系統(tǒng)化、條理化,有利于學(xué)生的記憶和理解。
四、概念的鞏固。
1.利用新概念復(fù)習(xí)就概念。如:在四邊形這一章中:平行四邊形具有四邊形所有性質(zhì),矩形具有平行四邊形所有性質(zhì),菱形、正方形具有平行四邊形的所有性質(zhì),正方形具有矩形、菱形的所有性質(zhì)。這樣鏈鎖式概念教學(xué),既掌握了新概念又加深了對就概念的理解。
2.加強(qiáng)預(yù)習(xí)。在課堂教學(xué)中優(yōu)先考慮概念題的安排,精講精練,講練結(jié)合,合理安排,選題時(shí)注意題目的典型性、多樣性、綜合性和針對性,做到相關(guān)概念結(jié)合練,易混淆概念對比練,主要概念反復(fù)練。
3.對學(xué)生在練習(xí)中,課外作業(yè)中出現(xiàn)的錯(cuò)誤,要抓緊不放,及時(shí)糾正。概念教學(xué)的重點(diǎn)不是記熟概念,而是理解和應(yīng)用概念解決實(shí)際問題。因此,教師要引導(dǎo)每一位學(xué)生清楚的認(rèn)識到所犯錯(cuò)誤是哪一個(gè)概念用錯(cuò)了,或者是將哪一個(gè)概念的關(guān)鍵詞忽略了,今后遇到類似的問題怎么辦。即使是其它方面的錯(cuò)誤也要找出是否概念不清而致錯(cuò),予以分析糾正。
4.每一單元結(jié)束后,要進(jìn)行概念總結(jié)??偨Y(jié)后,要特別注意把同類概念區(qū)別分析清楚,把不同類概念的聯(lián)系分析透徹。概念的形成是一個(gè)由特殊到一般的過程,而概念的運(yùn)用則是一個(gè)由一般到特殊的過程,它們是學(xué)生掌握概念的兩個(gè)階段。
5.運(yùn)用概念去分析問題和解決問題,是教學(xué)過程中的高級階段,在應(yīng)用中求得對概念更深層次的理解,以達(dá)到鞏固的目的,同時(shí)也使學(xué)生認(rèn)識到數(shù)學(xué)概念既是進(jìn)一步學(xué)習(xí)數(shù)學(xué)理論的基礎(chǔ),又是進(jìn)行再認(rèn)識的工具。當(dāng)然應(yīng)用概念應(yīng)由易到難,循序漸進(jìn),有一定的梯度,以符合學(xué)生的認(rèn)知規(guī)律,便于將所掌握的知識轉(zhuǎn)化為能力。
總之,在數(shù)學(xué)概念教學(xué)過程中,教師只要從教材和學(xué)生的實(shí)際出發(fā),面向全體學(xué)生,耐心地幫助學(xué)生掌握邏輯思維的“語言”,逐步提高他們的思維水平,就一定能夠增強(qiáng)數(shù)學(xué)概念教學(xué)的有效性,從而提高數(shù)學(xué)教學(xué)質(zhì)量。
2013年12月
第二篇:初中數(shù)學(xué)概念教學(xué)論文:試論初中數(shù)學(xué)概念教學(xué)
初中數(shù)學(xué)概念教學(xué)論文:試論初中數(shù)學(xué)概念教學(xué) 概念是客觀事物本質(zhì)屬性在人們頭腦中的反映。數(shù)學(xué)概念反映現(xiàn)實(shí)世界的空間形式和數(shù)量關(guān)系的本質(zhì)屬性的思維形式。在中學(xué)數(shù)學(xué)教學(xué)中,正確理解數(shù)學(xué)概念是掌握數(shù)學(xué)基礎(chǔ)知識的前提,是學(xué)好定理、公式、法則和數(shù)學(xué)思想的基礎(chǔ),搞清概念是提高解題能力的關(guān)鍵。只要對概念理解的深透,才能在解題中做出正確的判斷。因此,在數(shù)學(xué)教學(xué)過程中,數(shù)學(xué)概念的教學(xué)顯得尤為重要。學(xué)生數(shù)學(xué)能力的發(fā)展取決于他對數(shù)學(xué)概念的牢固掌握與深刻理解與否。而在現(xiàn)實(shí)中,許多學(xué)生對數(shù)學(xué)的學(xué)習(xí),只注重盲目的做習(xí)題,不注重對數(shù)學(xué)概念的掌握,對基本概念含糊不清。做習(xí)題不懂得從基本概念入手,思考解題依據(jù),探索解題方法,而是跟著感覺走。這樣的學(xué)習(xí),必然越學(xué)越糊涂,因而數(shù)學(xué)概念的教學(xué)在整個(gè)數(shù)學(xué)教學(xué)中有其不容忽視的地位與作用。下面僅結(jié)合本人平時(shí)的教學(xué)實(shí)踐,談一點(diǎn)膚淺的認(rèn)識與體會(huì)。
一、概念的引入:
1.從學(xué)生已有的生活經(jīng)驗(yàn)、熟知的具體事例中進(jìn)行引入。如“圓”的概念的引出前,可讓同學(xué)們聯(lián)想生活中見過的年輪、太陽、五環(huán)旗、圓狀跑道等實(shí)物的形狀,再讓同學(xué)用圓規(guī)在紙上畫圓,也可用準(zhǔn)備好的定長的線繩,將一端固定,而另一端帶有鉛筆并繞固定端旋轉(zhuǎn)一周,從而引導(dǎo)同學(xué)們自己發(fā)現(xiàn)圓的形成過程,進(jìn)而總結(jié)出圓的特點(diǎn):圓周上任
意一點(diǎn)到圓心的距離相等,從而猜想歸納出“圓”的概念。
2.在復(fù)習(xí)舊概念的基礎(chǔ)上引入新概念。
概念復(fù)習(xí)的起步是在已有的認(rèn)知結(jié)構(gòu)的基礎(chǔ)上進(jìn)行的。因此,在教學(xué)新概念前,如果能對學(xué)生認(rèn)知結(jié)構(gòu)中原有的適當(dāng)概念作一些類比引入新概念,則有利于促進(jìn)新概念的形成。例如:在教學(xué)一元二次方程時(shí),就可以先復(fù)習(xí)一元一次方程,因?yàn)橐辉淮畏匠淌腔A(chǔ),一元二次方程是延伸,復(fù)習(xí)一元一次方程是合乎知識邏輯的。通過比較得出兩種方程都是只含有一個(gè)未知數(shù)的整式方程,差異僅在于未知數(shù)的最高次數(shù)不同。由此,很容易建立起“一元二次方程”的概念。
二、分析概念含義,抓住概念本質(zhì)。1.揭示含義,突出關(guān)鍵詞。
數(shù)學(xué)概念嚴(yán)謹(jǐn)、準(zhǔn)確、簡練。教師的語言對于學(xué)生感知教材,形成概念有重要的意義,因此要特別注意用詞的嚴(yán)格性和準(zhǔn)確性。教師要用生動(dòng)、形象的語言講清概念的每一個(gè)字、句、符號的意義,特別是關(guān)鍵的字、詞、句,這是指導(dǎo)學(xué)生掌握概念,并認(rèn)識概念的前提。
如:“分解因式”概念:“把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變形叫把這個(gè)多項(xiàng)式分解因式?!痹诮虒W(xué)中學(xué)生往往只注重“積”這個(gè)關(guān)鍵詞,而忽略了“整式”,易造成對分解因式的錯(cuò)誤認(rèn)識。所以在教學(xué)中務(wù)必強(qiáng)調(diào),并與學(xué)生分析這兩處關(guān)鍵詞的含義,加深對概念的理解。
2.分析概念,抓住本質(zhì)。
數(shù)學(xué)概念大多數(shù)是通過描述定義給出他的確切含義,他屬于理性認(rèn)識,但來源于感性認(rèn)識,所以對于這類概念一定要抓住它的本質(zhì)屬性。
如:“互為補(bǔ)角”的概念:“如果兩個(gè)角的和是平角,則這兩個(gè)角互為補(bǔ)角?!逼浔举|(zhì)屬性:(1)必須具備兩個(gè)角之和為180°,一個(gè)角為180°或三個(gè)角為180°都不是互為補(bǔ)角,互補(bǔ)角只就兩個(gè)角而言。(2)互補(bǔ)的兩個(gè)角只是數(shù)量上的關(guān)系,這與兩個(gè)角的位置無關(guān)。通過這兩個(gè)本質(zhì)屬性的分析,學(xué)生對“互為補(bǔ)角”有了全面的理解。
3.剖析變化,深化概念。
數(shù)學(xué)概念都是從正面闡述,一些學(xué)生只從文字上理解,以為掌握了概念的本質(zhì),而碰到具體的數(shù)學(xué)問題卻又難以做出正確的判斷。因此,在教學(xué)過程中,必須在學(xué)生正面認(rèn)識概念的基礎(chǔ)上,通過反例或變式從反面去剖析數(shù)學(xué)概念,凸顯對象中隱蔽的本質(zhì)要素,加深學(xué)生對概念理解的全面性。
如:在學(xué)習(xí)對頂角的概念后,讓學(xué)生做題:(1)下列表示的兩個(gè)角,哪組是對頂角?(a)兩條直線相交,相對的兩個(gè)角(b)頂點(diǎn)相同的兩個(gè)角(c)同一個(gè)角的兩個(gè)鄰補(bǔ)角 前后聯(lián)系,多方印證,加深認(rèn)識。
部分學(xué)生對概念的全面理解不可能一蹴而就,而是要經(jīng)歷:實(shí)踐——認(rèn)識——再實(shí)踐——再認(rèn)識的過程,這是個(gè)“正確”與“錯(cuò)誤”搖擺不定的過程,更是一個(gè)對概念的理解不斷深化的過程。事實(shí)上,學(xué)生在初步學(xué)習(xí)某一數(shù)學(xué)概念之后,對概念的理解并不怎么深刻,而是通過對后續(xù)知識的學(xué)習(xí)讓學(xué)生回過頭來再對概念進(jìn)行加深理解,遵循“循環(huán)反復(fù),螺旋上升”的學(xué)習(xí)原則。
如:學(xué)生剛接觸“二次函數(shù)”的概念時(shí),僅能從形式上判斷某一函數(shù)是否為二次函數(shù)。但當(dāng)他們學(xué)習(xí)了其圖象,研究了圖象的性質(zhì)后就能根據(jù)a得出圖象的開口方向,由a、b確定圖象的對稱軸,由a、b、c給出圖象的頂點(diǎn)坐標(biāo)。這時(shí)對二次函數(shù)的概念自是記憶深刻,能脫口而出了。
三、概念的記憶。1.并列概念,舉一反三。、如:一元一次方程的概念:“只含有一個(gè)未知數(shù),并且未知數(shù)的指數(shù)為一(次),這樣的方程叫做一元一次方程”,清楚了“元”與“次”的含義,則一元一次方程、二元一次方程、一元一次不等式等概念就水到渠成了。通過縱橫對比,在類比中找特點(diǎn),在聯(lián)想中求共性,把數(shù)學(xué)知識系統(tǒng)化,學(xué)生輕輕松松記概念。
2.易混淆概念,聯(lián)系區(qū)別。
任何一個(gè)概念都有它的內(nèi)涵和外延,外延的大小與內(nèi)涵
成反比關(guān)系。內(nèi)涵越多,外延就越?。粌?nèi)涵越少,外延就越大。把握概念的內(nèi)涵與外延,能大大增加學(xué)生對概念的明晰度,提高鑒別能力,避免張冠李戴,為此,把所教概念同類似的相關(guān)的概念相比較,分清它們的異同點(diǎn)及聯(lián)系,也就顯得十分重要。如:學(xué)完“軸對稱”與“軸對稱圖形”的概念后,可引導(dǎo)學(xué)生找出兩者之間的聯(lián)系和區(qū)別。聯(lián)系:兩者都有對稱軸,如把成軸對稱的兩個(gè)圖形看成一個(gè)整體,那么這個(gè)整體就是一個(gè)軸對稱圖形,如把一個(gè)軸對稱圖形位于對稱軸兩旁的部分看成兩個(gè)圖形,那么這兩部分成軸對稱。區(qū)別:“軸對稱”是指兩個(gè)圖形成軸對稱,主要指這兩個(gè)圖形特殊的位置關(guān)系;而“軸對稱圖形”僅僅是指一個(gè)圖形,主要指這個(gè)圖形所具備的特殊形狀。通過這樣的聯(lián)系與區(qū)別,學(xué)生加深了對概念的理解,避免混淆,從而提高學(xué)生認(rèn)知概念的清晰度。
3.從屬概念,圖表體現(xiàn)。
有從屬關(guān)系的概念其外延之間有著互相包含的關(guān)系,在復(fù)習(xí)階段若以圖表的形式表現(xiàn),能使概念系統(tǒng)化、條理化,有利于學(xué)生的記憶和理解。
四、概念的鞏固。
1.利用新概念復(fù)習(xí)就概念。如:在四邊形這一章中:平行四邊形具有四邊形所有性質(zhì),矩形具有平行四邊形所有性質(zhì),菱形、正方形具有平行四邊形的所有性質(zhì),正方形具有
矩形、菱形的所有性質(zhì)。這樣鏈鎖式概念教學(xué),既掌握了新概念又加深了對就概念的理解。
2.加強(qiáng)預(yù)習(xí)。在課堂教學(xué)中優(yōu)先考慮概念題的安排,精講精練,講練結(jié)合,合理安排,選題時(shí)注意題目的典型性、多樣性、綜合性和針對性,做到相關(guān)概念結(jié)合練,易混淆概念對比練,主要概念反復(fù)練。
3.對學(xué)生在練習(xí)中,課外作業(yè)中出現(xiàn)的錯(cuò)誤,要抓緊不放,及時(shí)糾正。概念教學(xué)的重點(diǎn)不是記熟概念,而是理解和應(yīng)用概念解決實(shí)際問題。因此,教師要引導(dǎo)每一位學(xué)生清楚的認(rèn)識到所犯錯(cuò)誤是哪一個(gè)概念用錯(cuò)了,或者是將哪一個(gè)概念的關(guān)鍵詞忽略了,今后遇到類似的問題怎么辦。即使是其它方面的錯(cuò)誤也要找出是否概念不清而致錯(cuò),予以分析糾正。
4.每一單元結(jié)束后,要進(jìn)行概念總結(jié)??偨Y(jié)后,要特別注意把同類概念區(qū)別分析清楚,把不同類概念的聯(lián)系分析透徹。概念的形成是一個(gè)由特殊到一般的過程,而概念的運(yùn)用則是一個(gè)由一般到特殊的過程,它們是學(xué)生掌握概念的兩個(gè)階段。
5.運(yùn)用概念去分析問題和解決問題,是教學(xué)過程中的高級階段,在應(yīng)用中求得對概念更深層次的理解,以達(dá)到鞏固的目的,同時(shí)也使學(xué)生認(rèn)識到數(shù)學(xué)概念既是進(jìn)一步學(xué)習(xí)數(shù)學(xué)理論的基礎(chǔ),又是進(jìn)行再認(rèn)識的工具。當(dāng)然應(yīng)用概念應(yīng)由易
到難,循序漸進(jìn),有一定的梯度,以符合學(xué)生的認(rèn)知規(guī)律,便于將所掌握的知識轉(zhuǎn)化為能力。
總之,在數(shù)學(xué)概念教學(xué)過程中,教師要從教材和學(xué)生的實(shí)際出發(fā),面向全體學(xué)生,耐心地幫助學(xué)生掌握邏輯思維的“語言”,逐步提高他們的思維水平,定能夠增強(qiáng)數(shù)學(xué)概念教學(xué)的有效性,從而提高數(shù)學(xué)教學(xué)質(zhì)量。
第三篇:初中數(shù)學(xué)概念的教學(xué)
本課題是本人認(rèn)為在教學(xué)過程中概念是教師難教,學(xué)生難學(xué)。又是數(shù)學(xué)知識體系中重要的一環(huán),所以想談?wù)劚救嗽诮虒W(xué)中所學(xué)知識及經(jīng)驗(yàn)總結(jié)的一些粗俗的看法,但由于本人能力有限,有些看法可能較淺,甚至存在不妥,請老師們多多指教。
概念是數(shù)學(xué)知識系統(tǒng)中的基本元素。數(shù)學(xué)概念的建立是解決數(shù)學(xué)問題的前提。學(xué)生運(yùn)用數(shù)學(xué)概念進(jìn)行推理、判斷過程中要得出正確的結(jié)論,首先要正確地掌握概念。這是決定教學(xué)效果的首要因素、基礎(chǔ)因素和貫穿始終的因素。所以,概念教學(xué)在數(shù)學(xué)教學(xué)中有不容忽視的地位。
概念是最基本的思維形式,數(shù)學(xué)中的命題,都是由概念構(gòu)成的;數(shù)學(xué)中的推理和證明,又是由命題構(gòu)成的。因此,數(shù)學(xué)概念的教學(xué),是整個(gè)數(shù)學(xué)教學(xué)的一個(gè)重要環(huán)節(jié);正確地理解數(shù)學(xué)概念,是掌握數(shù)學(xué)知識的前提。
概念的形成實(shí)質(zhì)可分為兩個(gè)階段,從表象通過分析,綜合發(fā)展為抽象的概括,在具體的應(yīng)用中使抽象的概念再得以再現(xiàn)。那么,如何使學(xué)生的表象抽象出本質(zhì)屬性,如何應(yīng)用于實(shí)際呢?
一.概念的引入
數(shù)學(xué)概念的引入一般有以下四種方式:
1.聯(lián)系實(shí)際事物或?qū)嵨?,模型介紹,對概念作唯物的解釋
恩格斯指出:“數(shù)和形的概念不是從其他任何地方,而是從現(xiàn)實(shí)世界中得來的。”數(shù)學(xué)來源于客觀世界,應(yīng)用于客觀世界。離開了客觀存在,離開了從現(xiàn)實(shí)世界得來的感覺經(jīng)驗(yàn),數(shù)學(xué)概念就成了無源之水,無本之木,而只是主觀自生的靠不住的東西。從這個(gè)意義上來說,形成準(zhǔn)確概念的首要條件,是使學(xué)生獲得十分豐富(不是零碎不全)和合乎實(shí)際(不是錯(cuò)覺)的感覺材料。因此,在數(shù)學(xué)概念的教學(xué)中,要密切聯(lián)系數(shù)學(xué)概念的現(xiàn)實(shí)原型,引導(dǎo)學(xué)生分析日常生活和生產(chǎn)實(shí)際中常見的事例,讓學(xué)生觀察有關(guān)的事物、圖示、模型的同時(shí),獲得對所研究對象的感性認(rèn)識,逐步認(rèn)識本質(zhì),建立概念。
就拿我在教學(xué)中舉例來說,在講平面直角坐標(biāo)系時(shí),可以用電影票上的排號引入?!柏?fù)數(shù)”可用零上幾度與零下幾度、前進(jìn)幾米與后退幾米、收入多少元與支出多少元等等這些相反意義的量來引入,這些都是身邊的實(shí)例,同時(shí)也可以結(jié)合圖示的直觀進(jìn)行分析,讓學(xué)生看到也感到,數(shù)學(xué)就是來源于生活。
恰當(dāng)?shù)芈?lián)系數(shù)學(xué)概念的原型,可以豐富學(xué)生的感性認(rèn)識,有利于理解概念的實(shí)際內(nèi)容;同時(shí)也有助于學(xué)生體會(huì)學(xué)習(xí)新概念的目的意義,弄清每一概念是從什么問題提出的,又是為了解決什么問題的,從而激發(fā)學(xué)習(xí)新概念的主動(dòng)性和積極性。
2.用類比的方法引入概念
類比不僅是思維的一種重要形式,也是引入概念的一種重要方法。就拿我在教學(xué)中舉例來說:在講分式的基本性質(zhì)的引入,我就是通過具體例子引導(dǎo)學(xué)生回憶以前小學(xué)中分?jǐn)?shù)通分、約分的依據(jù)——分?jǐn)?shù)的基本性質(zhì),再用類比的方法得出的。這樣的引入不僅回憶舊知識,同時(shí)容易接受和掌握新知識。3.在學(xué)生原有的基礎(chǔ)上引入新概念
概念的定義當(dāng)中,有一種定義方式叫屬加種差定義。種概念的內(nèi)涵在屬概念的定義當(dāng)中已被揭露出來。所以只要抓住種概念的本質(zhì)特征(即種差)進(jìn)行講授便可以建立起新概念,比如在引導(dǎo)學(xué)生學(xué)習(xí)四邊形后,只要把平行四邊形的條件特殊后便可引入菱形、矩形、正方形。需要注意的是盡管同一數(shù)學(xué)概念可以有多種不同的定義,但在同一數(shù)學(xué)體系中,一般只能采用一個(gè)定義。事物方面的本質(zhì)屬性,可以由所給的定義推出,作為性質(zhì)定理處理。這樣分析后,讓學(xué)生在大腦中形成這些概念間的聯(lián)系與區(qū)別,對知識的掌握很有條理性。
4.從數(shù)學(xué)的本身內(nèi)在需要引入概念
在學(xué)生的歷程中,以及人類史上數(shù)學(xué)的發(fā)展,概念都是在不斷的需求中引進(jìn)的。比如人類起初沒有數(shù)的概念,便用結(jié)繩的辦法記數(shù),當(dāng)有了自然數(shù)的概念后,記數(shù)問題解決了,可是在減法中自然數(shù)不能滿足,便引入負(fù)數(shù)。當(dāng)作除法時(shí),整數(shù)不夠用了,便引入了分?jǐn)?shù),使數(shù)擴(kuò)展為有理數(shù)。但進(jìn)一步學(xué)習(xí),計(jì)算邊長為1的正方形的對角線時(shí)就不是有理數(shù)了,又引入了無理數(shù)。通過這樣的講述,讓學(xué)生切身的體會(huì)到了,數(shù)學(xué)確實(shí)來源于生活,又服務(wù)于生活。這樣的一步步需求一步步滿足,不斷地激發(fā)學(xué)生的求知欲。
二.概念的形成
概念是反映客觀事物本質(zhì)屬性的思維形式。是人們在長期的生產(chǎn)實(shí)踐中,抓住事物的本質(zhì)屬性而總結(jié)出來的。在給學(xué)生講課中,在引入階段教師必須對概念的形成過程,對概念的本質(zhì)屬性剖析徹底,然后用定義將其揭示出來,這樣學(xué)生才能知其然,更能知其所以然。
1.注重概念的形成過程
注重概念的形成過程,符合學(xué)生的認(rèn)知規(guī)律。在教學(xué)過程中忽視概念的形成過程,把形成概念的生動(dòng)過程變?yōu)楹唵蔚摹皸l文加例題”,對概念的理解是極為不利的。注重概念的形成過程可以完整的、本質(zhì)的、內(nèi)在的揭示概念的本質(zhì)屬性,使學(xué)生對理解概念具備思想基礎(chǔ),同時(shí)能培養(yǎng)學(xué)生從具體到抽象的思維方法。
例如:我在初中數(shù)學(xué)教學(xué)中,講授單項(xiàng)式的概念的建立,展示知識的形成過程如下:
(1)讓學(xué)生列代數(shù)式:
① 表示正方形的邊長,則正方形的周長是________;
② 表示長方形的長和寬,則長方形的面積是________;
③ 表示正方體的棱長,則正方體的體積是________;
④ 表示一個(gè)數(shù),則它的相反數(shù)是________;
⑤某行政單位原有工作人員 人,現(xiàn)精簡機(jī)構(gòu),減少25%的工作人員,則精簡________人;
⑥某商場國慶七折優(yōu)惠銷售,則定價(jià) 元的商品售價(jià)________元。
(2)讓學(xué)生說出所列代數(shù)式的意義;
(3)讓學(xué)生觀察所列代數(shù)式包含哪些運(yùn)算,有何運(yùn)算特征。揭示各例的共同特征是含有“乘法”運(yùn)算,表示“積”;
(4)引導(dǎo)學(xué)生抽象概括單項(xiàng)式的概念。講解“單獨(dú)一個(gè)數(shù)或一個(gè)字母也是單項(xiàng)式”的補(bǔ)充規(guī)定,強(qiáng)調(diào)學(xué)生引起注意。
這樣的講授師生互動(dòng)性強(qiáng),充分調(diào)動(dòng)了學(xué)生的積極性和主動(dòng)性,由淺入深的展示了單項(xiàng)式概念的整個(gè)形成過程,既不枯燥乏味,又學(xué)了新東西,很符合新課標(biāo)的要求,體現(xiàn)了素質(zhì)教育的新理念。
2.抓住概念的本質(zhì)特征
數(shù)學(xué)中的概念大多數(shù)是通過描述給出它的確切含義。對于這類概念要抓住它的本質(zhì)屬性,通過歸納排除定義的非本質(zhì)屬性。對概念的深化認(rèn)識必須從概念的內(nèi)涵和外延上作深入的分析。剖析概念的內(nèi)涵就是抓住概念的本質(zhì)特征。
以三角函數(shù)為例,談一下我在教學(xué)中的認(rèn)識。主要抓住正弦函數(shù)進(jìn)行剖析。正弦函數(shù)的概念涉及到比的意義、角的大小、點(diǎn)的坐標(biāo)、距離公式、相似三角形、函數(shù)概念等知識。正弦函數(shù)的值本質(zhì)上是一個(gè)“比值”。(1)正弦函數(shù),實(shí)質(zhì)上就是一個(gè)“比”,是一個(gè)數(shù)值;
(2)這個(gè)比是在 的終邊上任取一點(diǎn),那么這個(gè)“比”就是:,其中 ;
(3)這個(gè)“比”的比值隨 的確定而確定。這里提出這樣的問題讓學(xué)生思考: “既然點(diǎn) 是角 終邊上任取的一點(diǎn),為什么說這個(gè)比值是確定的?”因而需運(yùn)用相似三角形原理,闡明點(diǎn) 不論選在終邊上的什么地方,比值都是相等的;
(4)由于 的絕對值小于或等于,所以這個(gè)比值不超過1。
經(jīng)過對正弦函數(shù)概念的本質(zhì)屬性分析之后,應(yīng)指出: 的終邊上任一點(diǎn) 一旦確定,就涉及到 這三個(gè)量,任取其中的兩個(gè)就可以確定一個(gè)比值,這樣的比值只有六個(gè)。因此基本三角函數(shù)只有六個(gè),這便是三角函數(shù)的外延。初中階段只學(xué)習(xí)四個(gè)。
在做上述分析時(shí),還要緊扣函數(shù)這一基本概念,從中找出自變量、函數(shù)以及它們的對應(yīng)法則。這里自變量是,函數(shù)是“比”,這個(gè)“比”之所以叫做 的函數(shù),關(guān)鍵在于對于 的每一個(gè)確定的值,都有確定的比值與之相對應(yīng)。有了這樣的分析,學(xué)生對正弦函數(shù)的理解就比較深刻了。
3.抓住概念間的聯(lián)系與區(qū)別
數(shù)學(xué)概念不是孤立的,存在著橫關(guān)系和縱關(guān)系。橫關(guān)系表現(xiàn)為并列關(guān)系,應(yīng)利用對原有概念的理解,區(qū)分易混淆的概念;縱關(guān)系表現(xiàn)為從屬關(guān)系,啟發(fā)學(xué)生進(jìn)行系統(tǒng)歸納,能讓學(xué)生明確概念的聯(lián)系與區(qū)別。
例如:點(diǎn)到直線的距離概念,應(yīng)與兩點(diǎn)間距離概念比較,找出共同點(diǎn)和不同點(diǎn)。共同點(diǎn):這兩個(gè)距離都指相應(yīng)的兩點(diǎn)間的線段的長;不同點(diǎn):相應(yīng)的兩點(diǎn)取法不同。對于同種概念的比較,通過分析,抓住其本質(zhì)特征,以求對概念的透徹了解。
4.舉正、反例,弄清楚概念的內(nèi)涵與外延
在形成概念的抽象規(guī)定前,主要是為了讓學(xué)生獲得概念的內(nèi)涵,所出現(xiàn)的實(shí)際例子中的一些概念本質(zhì)無關(guān)的性質(zhì),會(huì)對概念的建立起著干擾作用。因此在這階段的教學(xué)中,要想降低學(xué)生的心理干擾,有必要從概念的外延的角度分析概念。讓學(xué)生從較難的實(shí)例中分離出概念的本質(zhì)。例如:講了因式分解后,要舉例子讓學(xué)生識別,下列變形是否是因式分解?(1);
(2);
(3);
(4)
再如:講了圓周角概念后,及時(shí)利用圖形舉例,加以剖析,這樣促使學(xué)生直觀地抓住概念的本質(zhì)。例如下列各角是否是圓周角?
(1)(2)(3)(4)
這樣,講授概念后及時(shí)地舉出正、反例或與該知識容易走入誤區(qū)的有關(guān)例子,有效地讓學(xué)生加深理解,從而正確運(yùn)用概念做題。這也是我在教學(xué)中深有體會(huì)的一點(diǎn)小經(jīng)驗(yàn)。
5.揭示概念中的每一詞、句的真實(shí)含義
有的概念敘述簡練,寓意深刻;有的用式子表示,比較抽象。對于這類概念的教學(xué),只有在具體操作中認(rèn)真理解每一詞、句,深刻揭示其真實(shí)含義,才能讓學(xué)生深刻的把握概念。
如:在學(xué)習(xí)了不等式的解后,有這樣一道題:試寫出幾個(gè)不等式 <16的解。有的學(xué)生得到了這樣的結(jié)果:12<16;13<16。而仔細(xì)分析不等式的解的概念是使不等式成立的未知數(shù)的取值范圍,它一般是一個(gè)或幾個(gè)數(shù)值范圍的無窮多個(gè)數(shù),反映在數(shù)軸上,則是無數(shù)個(gè)點(diǎn)的集合。而12<16;13<16是具體的不等式,不夠成它的解。
6.注重概念的比較
有比較才能鑒別。數(shù)學(xué)中有很多概念是相似的,很容易混淆。對于容易混淆或難以理解的概念,應(yīng)運(yùn)用分析比較的方法,指出它們的相同點(diǎn)和不同點(diǎn),有助于學(xué)生抓住概念的本質(zhì)。
有些概念從表面上看好象差不多。例如:乘方與冪,平方和與和的平方,數(shù)與數(shù)字,大于與不小于,正數(shù)與非負(fù)數(shù),直角與 等學(xué)生常常分辨不清。教學(xué)時(shí)要幫助學(xué)生從概念的內(nèi)涵和外延上區(qū)分,找出它們的異同。如“乘方”與“冪”這兩個(gè)概念,可以比較它們的內(nèi)涵,前者是指求若干個(gè)相同因數(shù)的積的運(yùn)算,后者是指乘方的結(jié)果; 既表示乘方運(yùn)算的式子,讀作 的 次方,也表示乘方運(yùn)算的結(jié)果,讀作 的 次冪。又如“直角”與“ ”這兩個(gè)概念,可以比較它們的外延,前者是指角的名稱,后者是指角度或弧度的量數(shù)。再如“都不”與“不都”這兩個(gè)詞語,可以從內(nèi)涵和外延的結(jié)合上進(jìn)行比較。“都不”是對所考察對象的全體的否定,只指一種情形; “不都”是對“都”的否定,它與“至少一個(gè)”不具有某種屬性是同一個(gè)意思,一般包括多種可能情形。比如,“ 都不為零”就是 ;而“ 不都為零”與“ 至少一個(gè)不為零”是同義詞,它包含三種可能情形:。
這些概念看似很容易混淆,但經(jīng)過仔細(xì)分析,我們還是很容易掌握其本質(zhì)的。這些也是教學(xué)要求務(wù)必掌握的。更是考題中的必考知識點(diǎn)?;谶@種情況,教師對其分析比較的深刻,是很有必要的。這樣才有助于學(xué)生更牢固、更深刻的體會(huì)各個(gè)概念。
7.分析概念的矛盾運(yùn)動(dòng)
數(shù)學(xué)概念的內(nèi)涵和外延不是一成不變的,它是在社會(huì)實(shí)踐中不斷發(fā)展、不斷充實(shí)、逐步完備的。教學(xué)時(shí)要把概念的確定性和靈活性辨證地統(tǒng)一起來,恰當(dāng)分析概念的矛盾運(yùn)動(dòng)。
有些概念發(fā)展后,與原概念有不同的涵義。例如,指數(shù)概念的發(fā)展:當(dāng) 為正整數(shù)時(shí),;而當(dāng) 時(shí),(); 為負(fù)整數(shù)時(shí),如(為正整數(shù)),則(); 為分?jǐn)?shù)時(shí),如(為正整數(shù)),則,();對于這類概念,教學(xué)時(shí)一方面要指出概念擴(kuò)充的必要性,更重要的是要指出原來的概念和擴(kuò)充后的概念之間的質(zhì)的差異。這樣,才能使學(xué)生獲得清晰明確的概念。
三.概念的鞏固和發(fā)展
由于數(shù)學(xué)概念具有高度的抽象性,這就為牢固掌握它帶來了一定的難度,再加上數(shù)學(xué)概念較多,不易于記憶,因此
1.鞏固概念的教學(xué)就顯得很重要
例如,我在教學(xué)中是這樣做的,在給出正弦函數(shù)概念之后,為了讓學(xué)生從本質(zhì)上掌握這一概念讓他們回答下列題目:
(1)在 中,為直角,如果,那么 的對邊與斜邊的比值是多少?;
(2)如圖,,求 的值;(3)如圖,在 中,為直角,則 =________,=________,=________。
2.在運(yùn)用中進(jìn)一步理解概念
比如,我聽過一節(jié)習(xí)題課,是老師講授完函數(shù)概念后,進(jìn)而學(xué)習(xí)一次函數(shù)、正比例函數(shù)及二次函數(shù),為了讓學(xué)生對比記憶掌握就要求學(xué)生做以下習(xí)題:
練習(xí)1 下列各函數(shù)中,哪些是一次函數(shù),哪些是正比例函數(shù),哪些是二次函數(shù)?(1);(2);(3);
(4);(5);(6)
練習(xí)2 已知函數(shù),當(dāng) 是怎樣的數(shù)時(shí),它是正比例函數(shù),一次函數(shù),二次函數(shù)?
練習(xí)3 當(dāng) 是什么值時(shí),函數(shù) 是關(guān)于 的一次函數(shù)?
在講授這三類函數(shù)的運(yùn)用過程中,作為教師應(yīng)指導(dǎo)學(xué)生運(yùn)用這三類函數(shù)的概念進(jìn)行分析,讓學(xué)生積極主動(dòng)地辨析,認(rèn)清這三類函數(shù)的固有的本質(zhì)特征,促使學(xué)生更深刻地理解并引導(dǎo)學(xué)生自我糾正理解中的錯(cuò)位,使學(xué)生頭腦中初步獲得的知識得到加深和鞏固。
以上所談數(shù)學(xué)概念的教學(xué),是我結(jié)合所學(xué)知識的總結(jié),同時(shí)我在教學(xué)中也是這么實(shí)踐和運(yùn)用的,得到了本學(xué)科老師的指點(diǎn)和一些認(rèn)可,更收到了很好的教學(xué)效果,深受學(xué)生們的好評。
關(guān)于數(shù)學(xué)概念的教學(xué),一直是教學(xué)研究中的一個(gè)重要課題,本文只是學(xué)習(xí)《中學(xué)數(shù)學(xué)教材教法》、《教育學(xué)》、《教育心理學(xué)》及結(jié)合將近兩年時(shí)間的教學(xué),淺談一些自己在教學(xué)中的認(rèn)識和看法與大家共享,對有些概念的教學(xué)不一定適用,況且教學(xué)一直是因人而異,因材施教。因此,在教學(xué)實(shí)踐中,應(yīng)不斷加強(qiáng)教學(xué)研究,加強(qiáng)學(xué)術(shù)交流,不斷提高數(shù)學(xué)概念的教學(xué)質(zhì)量,這更是執(zhí)教者的共同奮斗目標(biāo)。
參考文獻(xiàn):
趙振威 《中學(xué)數(shù)學(xué)教材教法》(修訂二版)第一分冊 華東師范大學(xué)出版社
陳中永 《教育學(xué)》 遠(yuǎn)方出版社
王道俊 王漢瀾 《教育學(xué)心理學(xué)》 人民教育出版社
第四篇:初中數(shù)學(xué)概念教學(xué)反思
初中數(shù)學(xué)概念教學(xué)反思(1)
王彤
作為一名初中數(shù)學(xué)教師,怎樣教好概念課,這是我一直探究的問題,但是沒有找到解決的方法;自從成立初中學(xué)概念教學(xué)微型課題后;使我弄清了概念課的教學(xué)環(huán)節(jié):問題解決,引入事例→提出問題,感受特征→適時(shí)命名,學(xué)生定義→提煉總結(jié),規(guī)范定義→定義辨析,練習(xí)鞏固。使我懂得了教師應(yīng)根據(jù)數(shù)學(xué)概念內(nèi)容和學(xué)生實(shí)際,提出問題,創(chuàng)造情景,啟發(fā)學(xué)生積極、主動(dòng)思考,培養(yǎng)學(xué)生獨(dú)立思考、自主學(xué)習(xí)的能力, 注重學(xué)生合作探究,引導(dǎo)學(xué)法、培養(yǎng)習(xí)慣。通過一組實(shí)例,先啟動(dòng)學(xué)生自主的觀察---感受特征,再合作交流歸納---定義,然后教師引導(dǎo)---規(guī)范出新的概念;并把類比的數(shù)學(xué)思想落到實(shí)處---引導(dǎo)學(xué)生對已學(xué) 概念和新概念進(jìn)行概念類比、內(nèi)涵對比、外延類比、結(jié)構(gòu)類比等,使學(xué)生在類比和自主學(xué)習(xí)與合作探究中學(xué)習(xí)、理解、掌握所學(xué)概念的本質(zhì)。這樣,既體現(xiàn)了知識的形成過程,又激發(fā)了學(xué)生學(xué)習(xí)的積極性,同時(shí)極大的發(fā)揮了學(xué)生的主體作用和教師的主導(dǎo)作用。
第五篇:論文——初中數(shù)學(xué)概念教學(xué)實(shí)例探究
初中數(shù)學(xué)論文
初中數(shù)學(xué)概念教學(xué)實(shí)例探究
學(xué)科 :初中數(shù)學(xué)
姓名: 王敏
學(xué)校:早廟學(xué)校
電話: ***
初中數(shù)學(xué)概念教學(xué)實(shí)例探究
【摘要】 數(shù)學(xué)概念作為初中數(shù)學(xué)的基礎(chǔ),是構(gòu)成數(shù)學(xué)教學(xué)的基本要素,通過概念教學(xué),可提高學(xué)生的數(shù)學(xué)思維能力與綜合素質(zhì)。老師們從教學(xué)實(shí)踐中提出了很多切實(shí)可行的教學(xué)策略,但視角太過于局限,沒有新意。在新的數(shù)學(xué)課程標(biāo)準(zhǔn)下,筆者覺得有必要更新觀念,本文將概念的形成﹑理解﹑領(lǐng)悟﹑鞏固和應(yīng)用這幾個(gè)方面進(jìn)行實(shí)證探究。
一﹑從學(xué)生的生活實(shí)例中形成數(shù)學(xué)概念。
數(shù)學(xué)概念的形成,必須與學(xué)生生活實(shí)際相結(jié)合,才能促進(jìn)學(xué)生對概念的感性認(rèn)識,以觀察、比較、分析等方法,找到概念的本質(zhì)特征,更直觀、具體地理解概念。在初中數(shù)學(xué)的概念教學(xué)中,教師應(yīng)善用“直觀教學(xué)法”,讓原本抽象、復(fù)雜的數(shù)學(xué)概念變成看得見、想得到甚至摸得著的實(shí)實(shí)在在東西,讓學(xué)生認(rèn)識到數(shù)學(xué)就在自己的身邊,既加深對概念的理解,也利于提高學(xué)習(xí)興趣,增強(qiáng)學(xué)習(xí)的主動(dòng)性與積極性。
【教學(xué)案例片段】 滬科版八年級下冊第19章《勾股定理》。
情境一:給出四個(gè)三角形和一個(gè)正方形,讓學(xué)生動(dòng)手操作,拼圖的方式來證明勾股定理。
情境二:古埃及的勞動(dòng)人民用結(jié)繩的方式得到直角(屏幕顯示一條有13個(gè)結(jié)等分成12份的繩子)要求學(xué)生在課前每人準(zhǔn)備一截繩子以備課堂用。教師兩個(gè)問題設(shè)置為動(dòng)手操作探究題,從而引出了課題。這些生活實(shí)例的引入,吸引的不只是學(xué)生的注意力,調(diào)動(dòng)學(xué)生積極性,更主要的是對學(xué)生人生觀、價(jià)值觀的重塑,讓學(xué)生更加愿意主動(dòng)探究科學(xué)的真理。二﹑從實(shí)踐活動(dòng)中理解數(shù)學(xué)概念。
數(shù)學(xué)概念、性質(zhì)、定理等具有高度的抽象性和概括性,如果讓學(xué)生直接理解,肯定會(huì)存在很大困難,所以在數(shù)學(xué)教學(xué)中,教師應(yīng)該為學(xué)生提供一些實(shí)物、模型、教具、教學(xué)軟件等豐富的學(xué)習(xí)材料,讓學(xué)生有充分的時(shí)間對具體事物進(jìn)行操作,使他們獲得學(xué)習(xí)新知識所需要的具體經(jīng)驗(yàn)。通過自己的思維活動(dòng)來形成對概念的理解,而不是通過機(jī)械的重復(fù),記住教師講述的那些關(guān)于概念、性質(zhì)的現(xiàn)成解釋,這樣學(xué)生所獲得的知識才是全面的、清晰的、牢固的?!窘虒W(xué)案例片段】 滬科版七年級上冊第1章《有理數(shù)》。
如在講“有理數(shù)的乘方”時(shí),我從“折紙問題”開展教學(xué),提出問題:“有一張厚度為0.1㎜的紙,將它們對折一次,厚度為0.1×2㎜,對折10次,厚度是多少毫米?對折20次厚度是多少?”在學(xué)生動(dòng)手折疊紙張進(jìn)行計(jì)算厚度的過程中,大部分學(xué)生計(jì)算對折10次時(shí)的厚度就顯得很為難,他們表現(xiàn)出渴求尋找一種簡便的或新的運(yùn)算途徑的欲望,此時(shí),教師適時(shí)引出“乘方”的概念,用乘方表示算式0.1×220比用20個(gè)連乘簡潔明了得多,其值為104.8576米,比30層樓(每層3米)還要高。學(xué)生通過這種主動(dòng)參與教學(xué)活動(dòng),加深了對“乘方”概念的理解,從而提高了教學(xué)效果。
這種概念的引入注重知識的形成方式,主要反映學(xué)生學(xué)習(xí)數(shù)學(xué)概念過程中真實(shí)的思維活動(dòng),其中活動(dòng)階段是學(xué)生理解概念的一個(gè)必要條件,通過活動(dòng)讓學(xué)生親自體驗(yàn),感受直觀背景和概念間的關(guān)系;探究階段是學(xué)生對活動(dòng)進(jìn)行思考,概括過程通過掌握概念,可將已經(jīng)獲得的知識更加形象化、具體化,有利于形成數(shù)學(xué)思維,同時(shí)提高實(shí)際運(yùn)用能力。三﹑從新舊知識的聯(lián)系中領(lǐng)悟概念
概念學(xué)習(xí),如果不注意聯(lián)系相關(guān)聯(lián)的概念,將許多有聯(lián)系的概念孤立的保留在學(xué)生的頭腦中,就無法引發(fā)認(rèn)知結(jié)構(gòu)的重組。新、舊概念之間存在的關(guān)系有相容關(guān)系和不相容關(guān)系,在概念引入時(shí),注重溝通它們之間的聯(lián)系,可促使新概念的本質(zhì)特征在學(xué)生頭腦中得到精確分化,使相關(guān)概念系統(tǒng)化,為形成概念體系作準(zhǔn)備。
【教學(xué)案例片段】 滬科版七年級下冊第7章《一元一次不等式及不等式組》?;顒?dòng)導(dǎo)入: 探究交流一:
(1)﹑解方程:2(x+5)=3(x-4)。
同時(shí)回憶解一元一次方程的一般步驟和依據(jù)。
(2)﹑類比解方程解不等式:2(x+5)<3(x-4)。解:去括號,得2x+10<3x-12 移項(xiàng),得 2x-3x<-12-10 合并同類項(xiàng),得 -x<-22 系數(shù)化為1,得 x>22 探究交流二: 解不等式:請你歸納總結(jié):
(1)﹑解一元一次不等式的依據(jù)和一般步驟是什么?(2)﹑各步驟有哪些注意事項(xiàng)?
解一元一次不等式的依據(jù)是不等式的性質(zhì). 解一元一次不等式的一般步驟是: 去分母,去括號,移項(xiàng),合并同類項(xiàng),系數(shù)化為1.
比較:解一元一次不等式和解一元一次方程 有哪些相同和不同之處? 相同之處: 基本步驟相同:去分母,去括號,移項(xiàng),合并同類項(xiàng),系數(shù)化為1. 基本思想相同:都是運(yùn)用化歸思想,將一元一次方程 或一元一次不等式變形為最簡形式。不同之處:(1)解法依據(jù)不同:解一元一次不等式的依據(jù)是不 等式的性質(zhì),解一元一次方程的依據(jù)是等式的性質(zhì).(2)最簡形式不同,一元一次不等式的最簡形式是 x>a或x 學(xué)生通過聯(lián)系新舊知識,把新的概念納入原有的概念體系中去,找到概念間的縱橫聯(lián)系,達(dá)到概念間的溝通,構(gòu)建了概念系統(tǒng),形成認(rèn)知網(wǎng)絡(luò)。四﹑從數(shù)學(xué)實(shí)例中鞏固概念 鞏固是概念教學(xué)的重要環(huán)節(jié)。心理學(xué)原理認(rèn)為:概念一旦獲得,如不及時(shí)鞏固,就會(huì)被遺忘。鞏固概念,首先應(yīng)在初步形成概念后,引導(dǎo)學(xué)生正確復(fù)述。這里絕不是簡單地要求學(xué)生死記硬背,而是讓學(xué)生在復(fù)述過程中把握概念的重點(diǎn)、要點(diǎn)、本質(zhì)特征,同時(shí),應(yīng)注重應(yīng)用概念的變式練習(xí)。恰當(dāng)運(yùn)用變式,能使思維不受消極定勢的束縛,實(shí)現(xiàn)思維方向的靈活轉(zhuǎn)換,使思維呈發(fā)散狀態(tài)。 【教學(xué)案例片段】 滬科版七年級上冊第1章《有理數(shù)》。 如“有理數(shù)”與“無理數(shù)”的概念教學(xué)中,可舉出如“π與3.14159”為例,通過這樣的訓(xùn)練,能有效地排除外在形式的干擾,對“有理數(shù)”與“無理數(shù)”的理解更加深刻。最后,鞏固時(shí)還要通過適當(dāng)?shù)恼蠢颖容^,把所教概念同類似的、相關(guān)的概念比較,分清它們的異同點(diǎn),并注意適用范圍,小心隱含“陷阱”,4?xx?1?。32幫助學(xué)生從中反省,以激起對知識更為深刻的正面思考,使獲得的概念更加精確、穩(wěn)定和易于遷移。五﹑從變式中應(yīng)用概念 變式教學(xué)對新概念教學(xué)的促進(jìn)作用: 概念,在數(shù)學(xué)課中的比例較大。能否正確理解概念,是學(xué)生學(xué)好數(shù)學(xué)的關(guān)鍵。概念通常比較抽象,學(xué)生感覺枯燥,學(xué)習(xí)起來索然無味,對抽象概念的理解就顯困難。通過變式等手段,不僅能有效的解決這一難題,使學(xué)生渡過難關(guān),而且還可加深學(xué)生對概念內(nèi)涵和外延的更深層次的理解。 【教學(xué)案例片段】 滬科版七年級下冊第9章《分式》。 如在講分式的意義時(shí),一個(gè)分式的值為零,是指分式的分子為零而分母不為零,因此對于分式X?3的值為零時(shí),在得到答案x=-3時(shí)。實(shí)際上學(xué)生對“分子2X?1為零而分母不為零”這個(gè)條件還不是很清晰,難以辨析出學(xué)生是否考慮了“分母不為零”這個(gè)條件,此時(shí)可以做如下變形: X?3變式1:當(dāng)X_____時(shí),分式的值為零(此時(shí)X??3)2X-1 X?3變式2: 當(dāng)X_____時(shí),分式的值為零(此時(shí)X??3)X- 3所以說,運(yùn)用變式教學(xué),不僅能加深學(xué)生對新知識的理解、解決難點(diǎn),還能對概念內(nèi)涵和外延的更深層次的理解,增加課堂思維量,提高課堂教學(xué)有效性。 綜上幾點(diǎn)的思考,初中數(shù)學(xué)概念教學(xué)應(yīng)從學(xué)生的實(shí)際生活﹑已有的知識經(jīng)驗(yàn)﹑從學(xué)生的認(rèn)識規(guī)律出發(fā)。使學(xué)生樂于學(xué)習(xí)﹑勤于探究,發(fā)展學(xué)生的思維能力,促進(jìn)他們的全面發(fā)展和個(gè)性發(fā)展,從而提高數(shù)學(xué)教學(xué)質(zhì)量。