欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      1.2二次根式的性質(zhì)教案(浙教版八年級下)

      時間:2019-05-15 03:25:29下載本文作者:會員上傳
      簡介:寫寫幫文庫小編為你整理了多篇相關(guān)的《1.2二次根式的性質(zhì)教案(浙教版八年級下)》,但愿對你工作學習有幫助,當然你在寫寫幫文庫還可以找到更多《1.2二次根式的性質(zhì)教案(浙教版八年級下)》。

      第一篇:1.2二次根式的性質(zhì)教案(浙教版八年級下)

      1.2二次根式的性質(zhì)(1)

      【教學目標】

      1.經(jīng)歷二次根式的性質(zhì):

      ?a?2?a(a≥0),a?a2= ?a(a?0)的發(fā)現(xiàn)過程.???a(a?0)2.了解二次根式的上述兩個性質(zhì).3.會運用上述兩個性質(zhì)進行有關(guān)的計算.【教學重點、難點】

      ?重點:本節(jié)的重點是二次根式性質(zhì):?難點:

      ?a?2?a(a≥0), a?a2 = ?a(a?0)

      ???a(a?0)a?a2 = ?a(a?0)

      ???a(a?0)【教學過程】

      一、引入新課

      1)提問:2的平方根是什么?什么數(shù)的平方是2?(?2)

      得到:(2)2)=2(-2)2=2 2提問:(7)2=?(12)??(?21)??

      2選三個中下游的學生回答,教師鼓勵學生大膽發(fā)言。

      二、新課講授

      1、由上面的提問得到什么樣的結(jié)論?

      ?a?22?a

      2、那么對于上面的性質(zhì),a能小于0嗎?(不能,a必須大于等于0)

      3、提問:

      ?a?2?a(a≥0)

      2??

      2??(?5)???5?? 0??0?? 2

      2請幾個中游的學生回答。(2,2 ;5,5 ;0,0)

      3、議一議:a2 與

      a有什么關(guān)系?

      a

      24、當a≥0時,aa22=?當a<0時,=?

      經(jīng)學生討論后,指定一名學生(程度中下)回答,再指定一名學生點評。

      教師總結(jié):

      =a???a(a?0)??a(a?0)

      5、提問:

      三、講解例題

      1、計算

      (?7)????=?(??3)??22(1)(?10)?(15)

      (2)2?(?2)?2?22

      22?2?按教師提問,學生回答,教師板書解題過程交替進行的方式教學,問題設(shè)計: 1)2)應用哪一個性質(zhì)?具體怎么算? 計算順序應該怎樣?

      第一題選擇中下游學生回答,第二題選擇中上游學生回答。教師總結(jié):計算時應看清符合哪一個性質(zhì)?a是大于0還是小于0? 練習:1)(-5)2?(?4)2?(?2004)2)(2例2 計算3)?(?6)?(2?1)2223242(?)??53532對于此題,學生可能會先算括號里的,講解時可以把兩種方法作比較,以體現(xiàn)二次根式的性質(zhì)。3232的優(yōu)點。在這里應強調(diào)判斷a(?)???535322中a的符號。

      練習:(4?1)2?724(?1)72由學生獨立完成解題過程,指定一名中等水平的學生板演。老師點評板演結(jié)果。完成課本“課內(nèi)練習”

      四、小結(jié)

      師生共同完成:通過今天的學習,你有什么收獲或困惑?

      五、布置作業(yè)

      1.課后作業(yè)題 2.作業(yè)本

      第二篇:八年級數(shù)學《二次根式》

      杰瑞學院《二次根式》專題訓練

      一、細心填一填(每小題3分,共30分)、1、當m時,式子3?m有意義.2、若a<0,則a23、計算:3132?3122=.4、計算:3?1113??,?3335、長方形的一邊的長是2,面積為6,則另一邊的長為.6、若(a?2)2?2?a,則a的取值范圍是_______.7、a?2??3?0,則(a-b)2?________.8、計算:(3?2)2005(3?2)2006?

      9、當?x有最小值.10、觀察下列式子:?111111?2,2??3,3??4?,請你將猜想到的規(guī)律用含自然數(shù)33445

      5n(n≥1)的代數(shù)式表示出來的是.二、精心選一選(每小題3分,共30分)

      11、下列代數(shù)式中,x能取一切實數(shù)的是()A

      1xB.x?1CxDx2?

      412、化簡?32的結(jié)果是()

      A.3B.-3C.±3D.913、若1?x?3,則?x?(x?3)的值是()

      A.-2B.4C.2X-4D.214、若2aa成立,則()?bB.a?0,b?0;C.a?0bD.a?0 bA.a?0,b?0;

      15、若x?x?6?x(x?6),則()

      A.x≥6B.x≥0C.0≤X≤6D.x為一切實數(shù).16、若x,y都是實數(shù),且2x?1??2x?y?0,則xy的值為()

      A、0 B、0.5 C、2D、不能確定

      17、下列四個等式中不成立的是()

      A.2?1?2(3?1)

      (3?1)(?1)?2(?1)??12B.2(2?3)?2?6

      C.(1?2)2?3?22D.(?2)2?3?218、計算:48?23?75的結(jié)果是()

      AB.1C.5D.6?7519、已知x、y為實數(shù),y?x?2?2?x?4,則yx的值等于()

      A.8B.4C.6D.1620、若正三角形的邊長為2cm,則這個正三角形的面積是()

      AB.C.5D.53三、認真做一做(共40分)

      21、化簡或計算(每題5分,共20分)

      (1)45?380(2)

      2? 7

      (3)(3?3)?(4)(2?2)(3?22)822、已知a??2,b?2?

      3(6分),求a2b?ab2的值。

      23、解方程:x?2?23x(6分)

      24、如圖,某水壩的橫斷面是梯形,壩頂寬CD為8米,壩高為20米,斜坡AD的坡比為1:3,斜坡AD的坡比為1:2,求壩底AB的長(精確到0.1米)(8分)

      四、努力試一試(共20分)

      1、如圖,數(shù)軸上表示12的對應點分別為A、B,點B關(guān)于點A的對稱點C,則C點表示

      2、已知m是的整數(shù)部分,n是的小數(shù)部分,則n2-

      3、已知實數(shù)a、b滿足4a?b?11?

      4、國慶佳節(jié),李老師喬遷新居。一大早他就趕到家具城購買家具,當卡車裝滿家具后高4米、寬2.8米。這輛卡車能否通過如圖所示的住宅社區(qū)大門。

      21ab1?(?)的值。b?4a?3?0,求2abab3

      第三篇:二次根式教案

      I.二次根式的定義和概念:

      1、定義:一般地,形如√?。╝≥0)的代數(shù)式叫做二次根式.當a>0時,√a表示a的算數(shù)平方根,√0=0

      2、概念:式子√ā(a≥0)叫二次根式.√?。╝≥0)是一個非負數(shù).II.二次根式√ā的簡單性質(zhì)和幾何意義 1)a≥0;√ā≥0 [ 雙重非負性 ] 2)(√?。2=a(a≥0)[任何一個非負數(shù)都可以寫成一個數(shù)的平方的形式] 3)√(a^2+b^2)表示平面間兩點之間的距離,即勾股定理推論.III.二次根式的性質(zhì)和最簡二次根式 1)二次根式√ā的化簡 a(a≥0)√ā=|a|={-a(a<0)2)積的平方根與商的平方根 √ab=√a·√b(a≥0,b≥0)√a/b=√a /√b(a≥0,b>0)3)最簡二次根式 條件:

      (1)被開方數(shù)的因數(shù)是整數(shù)或字母,因式是整式;

      (2)被開方數(shù)中不含有可化為平方數(shù)或平方式的因數(shù)或因式.如:不含有可化為平方數(shù)或平方式的因數(shù)或因式的有√

      2、√

      3、√a(a≥0)、√x+y等;

      含有可化為平方數(shù)或平方式的因數(shù)或因式的有√

      4、√

      9、√a^

      2、√(x+y)^

      2、√x^2+2xy+y^2等 IV.二次根式的乘法和除法 1 運算法則

      √a·√b=√ab(a≥0,b≥0)√a/b=√a /√b(a≥0,b>0)

      二數(shù)二次根之積,等于二數(shù)之積的二次根.2 共軛因式

      如果兩個含有根式的代數(shù)式的積不再含有根式,那么這兩個代數(shù)式叫做共軛因式,也稱互為有理化根式.V.二次根式的加法和減法 1 同類二次根式

      一般地,把幾個二次根式化為最簡二次根式后,如果它們的被開方數(shù)相同,就把這幾個二次根式叫做同類二次根式.2 合并同類二次根式

      把幾個同類二次根式合并為一個二次根式就叫做合并同類二次根式.3二次根式加減時,可以先將二次根式化為最簡二次根式,再將被開方數(shù)相同的進行合并

      Ⅵ.二次根式的混合運算 1確定運算順序 2靈活運用運算定律 3正確使用乘法公式 4大多數(shù)分母有理化要及時 5在有些簡便運算中也許可以約分,不要盲目有理化 VII.分母有理化 分母有理化有兩種方法 I.分母是單項式

      如:√a/√b=√a×√b/√b×√b=√ab/b II.分母是多項式 要利用平方差公式

      如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-b 如圖

      II.分母是多項式 要利用平方差公式

      如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-b

      第四篇:二次根式教案

      二次根式教案匯編七篇

      二次根式教案 篇1

      【1】二次根式的加減教案

      教材分析:

      本節(jié)內(nèi)容出自九年級數(shù)學上冊第二十一章第三節(jié)的第一課時,本節(jié)在研究最簡二次根式和二次根式的乘除的基礎(chǔ)上,來學習二次根式的加減運算法則和進一步完善二次根式的化簡。本小節(jié)重點是二次根式的加減運算,教材從一個實際問題引出二次根式的加減運算,使學生感到研究二次根式的加減運算是解決實際問題的需要。通過探索二次根式加減運算,并用其解決一些實際問題,來提高我們用數(shù)學解決實際問題的意識和能力。另外,通過本小節(jié)學習為后面學生熟練進行二次根式的加減運算以及加、減、乘、除混合運算打下了鋪墊。

      學生分析:

      本節(jié)課的內(nèi)容是知識的延續(xù)和創(chuàng)新,學生積極主動的投入討論、交流、建構(gòu)中,自主探索、動手操作、協(xié)作交流,全班學生具有較扎實的知識和創(chuàng)新能力,通過自學、小組討論大部分學生能夠達到教學目標,少部分學生有困難,基礎(chǔ)差、自學能力差,因此要提供賞識性評價教學策略,給予個別關(guān)照、心理暗示以及適當?shù)木窦?,克服自卑心理,讓他們逐步樹立自尊心與自信心,從而完成自己的'學習任務。

      設(shè)計理念:

      新課程有效課堂教學明確倡導,學生是學習的主人,在學生自學文本的基礎(chǔ)上動手實踐、自主探究、合作交流,來倡導新的學習觀,讓他們完成二次根式加減知識研究。教師從過去知識的傳授者轉(zhuǎn)變?yōu)閷W生的自主性、探究性、合作性學習活動的設(shè)計者和組織者,與學生零距離接觸共同探究。在教學過程中教師設(shè)置開放的、面向?qū)嶋H的、富有挑戰(zhàn)性的問題情境,使學生在嘗試、探索、思考、交流與合作中培養(yǎng)分析、歸納、總結(jié)的能力,把“要我學”變成“我要學”,通過開放式命題,嘗試從不同角度尋求解決問題的方法,養(yǎng)成良好的學習習慣,掌握學習策略,并根據(jù)活動中示范和指導培養(yǎng)學生大膽闡述并討論觀點,說明所獲討論的有效性,并對推論進行評價。從而營造一個接納的、支持的、寬容的良好氛圍進行學習。

      教學目標知識與技能目標:

      會化簡二次根式,了解同類二次根式的概念,會進行簡單的二次根式的加減法;通過加減運算解決生活的實際問題。

      過程與方法目標:

      通過類比整式加減法運算體驗二次根式加減法運算的過程;學生經(jīng)歷由實際問題引入數(shù)學問題的過程,發(fā)展學生的抽象概括能力。

      情感態(tài)度與價值觀:

      通過對二次根式加減法的探究,激發(fā)學生的探索熱情,讓學生充分參與到數(shù)學學習的過程中來,使他們體驗到成功的樂趣.

      重點、難點:重點:

      合并被開放數(shù)相同的同類二次根式,會進行簡單的二次根式的加減法。

      難點:

      二次根式加減法的實際應用。

      關(guān)鍵問題 :

      了解同類二次根式的概念,合并同類二次根式,會進行二次根式的加減法。

      教學方法:.

      1. 引導發(fā)現(xiàn)法:在教師的啟發(fā)引導下,鼓勵學生積極參與,與實際問題相結(jié)合,采用“問題—探索—發(fā)現(xiàn)”的研究模式,讓學生自主探索,合作學習,歸納結(jié)論,掌握規(guī)律。

      2. 類比法:由實際問題導入二次根式加減運算;類比合并同類項合并同類二次根式。

      3.嘗試訓練法:通過學生嘗試,教師針對個別問題進行點撥指導,實現(xiàn)全優(yōu)的教育效果。

      【2】二次根式的加減教案

      教學目標:

      1.知識目標:二次根式的加減法運算

      2.能力目標:能熟練進行二次根式的加減運算,能通過二次根式的加減法運算解決實際問題。

      3.情感態(tài)度:培養(yǎng)學生善于思考,一絲不茍的科學精神。

      重難點分析:

      重點:能熟練進行二次根式的加減運算。

      難點:正確合并被開方數(shù)相同的二次根式,二次根式加減法的實際應用。

      教學關(guān)鍵:通過復習舊知識,運用類比思想方法,達到溫故知新的目的;運用創(chuàng)設(shè)問題激發(fā)學生求知欲;通過學生全面參與學習(分層次要求),達到每個學生在學習數(shù)學上有不同的發(fā)展。

      運用教具:小黑板等。

      教學過程:

      問題與情景

      師生活動

      設(shè)計目的

      活動一:

      情景引入,導學展示

      1.把下列二次根式化為最簡二次根式: , ; , , 。上述兩組二次根式,有什么特點?

      2.現(xiàn)有一塊長7.5dm、寬5dm的木板,能否采用如教科書圖21.3-所示的方式,在這塊木板上截出兩個面積分別是8dm 和18dm 的正方形木板?

      這道題是舊知識的回顧,老師可以找同學直接回答。對于問題,老師要關(guān)注:學生是否能熟練得到正確答案。 教師傾聽學生的交流,指導學生探究。

      問:什么樣的二次根式能進行加減運算,運算到那一步為止。

      由此也可以看到二次根式的加減只有通過找出被開方數(shù)相同的二次根式的途徑,才能進行加減。

      加強新舊知識的聯(lián)系。通過觀察,初步認識同類二次根式。

      引出二次根式加減法則。

      3. A、B層同學自主學習15頁例1、例2、例3,C層同學至少完成例1、例2的學習。

      例1.計算:

      (1) ;

      (2) - ;

      例2. 計算:

      1)

      2)

      例3.要焊接一個如教科書圖21.3—2所示的鋼架,大約需要多少米鋼材(精確到0.1米)?

      活動二:分層練習,合作互助

      1.下列計算是否正確?為什么?

      (1)

      (2) ;

      (3) 。

      2.計算:

      (1) ;

      (2)

      (3)

      (4)

      3.(見課本16頁)

      補充:

      活動三:分層檢測,反饋小結(jié)

      教材17頁習題:

      A層、B層:2、3.

      C層1、2.

      小結(jié):

      這節(jié)課你學到了什么知識?你有什么收獲?

      作業(yè):課堂練習冊第5、6頁。

      自學的'同時抽查部分同學在黑板上板書計算過程。抽2名C層同學在黑板上完成例1板書過程,學生在計算時若出現(xiàn)錯誤,抽2名B層同學訂正。抽2名B層同學在黑板上完成例2板書過程,若出現(xiàn)錯誤,再抽2名A層同學訂正。抽1名A層同學在黑板上完成例3板書過程,并做適當?shù)姆治鲋v解。

      此題是聯(lián)系實際的題目,需要學生先列式,再計算。并將結(jié)果精確到0.1 m, 學生考慮問題要全面,不能漏掉任何一段鋼材。

      老師提示:

      1)解決問題的方案是否得當;2)考慮的問題是否全面。3)計算是否準確。

      A層同學完成16頁練習1、2、3;B層同學完成練習1、2,可選做第3題;C層同學盡量完成練習1、2。多數(shù)同學完成后,讓學生在小組內(nèi)互相檢查,有問題時共同分析矯正或請教老師。也可以抽查部分同學。例如:抽3名C層同學口答練習1;抽4名B層或C層同學在黑板上板書練習第2題;抽1名A層或B層同學在黑板上板書練習第3題后再分析講解。

      點撥:1)對 的化簡是否正確;2)當根式中出現(xiàn)小數(shù)、分數(shù)、字母時,是否能正確處理;

      3)運算法則的運用是否正確

      先測試,再小組內(nèi)互批,查找問題。學生反思本節(jié)課學到的知識,談自己的感受。

      小結(jié)時教師要關(guān)注:

      1)學生是否抓住本課的重點;

      2)對于常見錯誤的認識。

      把學習目標由高到低分為A、B、C三個層次,教學中做到分層要求。

      學生學習經(jīng)歷由淺到深的過程,可以提高學生能力,同時有利于激發(fā)學生的探索知識的欲望。

      二次根式的加減運算融入實際問題中去,提高了學生的學習興趣和對數(shù)學知識的應用意識和能力。

      小組成員互相檢查學生對于新的知識掌握的情況,鞏固學生剛掌握的知識能力。達到共同把關(guān)、合作互助的目的。

      培養(yǎng)學生的計算的準確性,以培養(yǎng)學生科學的精神。

      對課堂的問題及時反饋,使學生熟練掌握新知識。

      每個學生對于知識的理解程度不同,學生回答時教師要多鼓勵學生。

      二次根式教案 篇2

      教學目的:

      1、在二次根式的混合運算中,使學生掌握應用有理化分母的方法化簡和計算二次根式;

      2、會求二次根式的代數(shù)的值;

      3、進一步提高學生的綜合運算能力。

      教學重點:在二次根式的混合運算中,靈活選擇有理化分母的方法化簡二次根式

      教學難點:正確進行二次根式的混合運算和求含有二次根式的代數(shù)式的值

      教學過程:

      一、二次根式的混合運算

      例1 計算:

      分析:(1)題是二次根式的加減運算,可先把前三個二次根式化最簡二次根式,把第四式的分母有理化,然后再進行二次根式的加減運算。

      (2)題是含乘方、加、減和除法的混合運算,應按運算的順序進行計算,先算括號內(nèi)的式子,最后進行除法運算。注意的'計算。

      練習1:P206 / 8--① P207 / 1①②

      例2 計算

      問:計算思路是什么?

      答:先把第一人的括號內(nèi)的式子通分,把第二個括號內(nèi)的式子的分母有理化,再進行計算。

      二、求代數(shù)式的值。 注意兩點:

      (1)如果已知條件為含二次根式的式子,先把它化簡;

      (2)如果代數(shù)式是含二次根式的式子,應先把代數(shù)式化簡,再求值。

      例3 已知,求的值。

      分析:多項式可轉(zhuǎn)化為用與表示的式子,因此可根據(jù)已知條件中的及的值。求得與的值。在計算中,先把及的式了有理化分母??墒褂嬎愫啽?。

      例4 已知,求的值。

      觀察代數(shù)式的特點,請說出求這個代數(shù)式的值的思路。

      答:所求的代數(shù)式中,相減的兩個式子的分母都含有二次根式,為化去它們的分母中的根號,可以分別先把各自的分母有理化或進行]通分,把這個代數(shù)式化簡后,再求值。

      三、小結(jié)

      1、對于二次根式的混合混合運算。應根據(jù)二次根式的加、減、乘除和乘方運算的順序進行,即先進行乘方運算,再進行乘、除運算,最后進行加、減運算。如果有括號,先進行括號內(nèi)的式子的運算,運算結(jié)果要化為最簡二次根式。

      2、在代數(shù)式求值問題中,如果已知條件所求式子中有含二次根式(或分式)的式子,應先把它們化簡,然后再求值。

      3、在進行二次根式的混合運算時,要根據(jù)題目特點,靈活選擇解題方法,目的在于使計算更簡捷。

      四、作業(yè)

      P206 / 7 P206 / 8---②③

      二次根式教案 篇3

      第十六章 二次根式

      代數(shù)式用運算符號把數(shù)和表示數(shù)的字母連接起來的式子叫代數(shù)式①式子中不能出現(xiàn)“=,≠,≥,≤,<,>”;②單個的數(shù)字或單個的字母也是代數(shù)式

      5.5(解析:這類題保證被開方數(shù)是最小的完全平方數(shù)即可得出結(jié)論.20=22×5,所以正整數(shù)的最小值為5.)

      6.(1)(x+)(x-) (2)n(n+)2(n-)2(解析:關(guān)鍵是逆用2=a(a≥0)將3變成()2.(1)x2-3=(x+)(x-).(2)n5-6n3+9n=n(n4-6n2+9)=n(n2-3)2=n(n+)2(n-)2.)

      7.解:(1) . (2)寬:3 ;長:5 .

      8.解:(1) =. (2)(3)2=32×()2=18. (3)=(-2)2×=. (4)-=-=-3π. (5) = =.

      9.解:原式=-=-.∵x=6,∴x+1>0,x-8<0.∴原式=x+1-=x+1+x-8=2x-7=12-7=5.

      10.解析:在利用=|a|=化簡二次根式時,當根號內(nèi)的因式移到根號外面時,一定要注意原來根號里面的符號,這也是化簡時最容易出錯的地方.

      解:乙的解答是錯誤的.因為當a=時,=5,a-<0,所以 ≠a-,而應是 =-a.

      本節(jié)課通過“觀察——歸納——運用”的模式,讓學生對知識的形成與掌握變得簡單起來,將一個一個知識點落實到位,適當增加了拓展性的練習,層層遞進,使不同的學生得到了不同的發(fā)展和提高.

      在探究二次根式的性質(zhì)時,通過“提問——追問——討論”的形式展開,保證了活動有一定的針對性,但是學生發(fā)揮主體作用不夠.

      在探究完成二次根式的性質(zhì)1后,總結(jié)學習方法,再放手讓學生自主探究二次根式的性質(zhì)2.既可以提高學習效率,又可以培養(yǎng)學生自學能力.

      練習(教材第4頁)

      1.解:(1)()2=3. (2)(3)2=32×()2=9×2=18.

      2.解:(1)=0.3. (2) =. (3)-=-π. (4)=10-1=.

      習題16.1(教材第5頁)

      1.解:(1)欲使有意義,則必有a+2≥0,∴a≥-2,∴當a≥-2時,有意義. (2)欲使有意義,則必有3-a≥0,∴a≤3,∴當a≤3時,有意義. (3)欲使有意義,則必有5a≥0,∴a≥0,∴當a≥0時,有意義. (4)欲使有意義,則必有2a+1≥0,∴a≥-,∴當a≥-時,有意義.

      2.解:(1)()2=5. (2)(-)2=()2=0.2. (3)=. (4)(5)2=52×()2=25×5=125. (5)==10. (6)=72×=49×=14. (7) =. (8)- =- =-.

      3.解:(1)設(shè)圓的半徑為R,由圓的`面積公式得S=πR2,所以R2=,所以R=± .因為圓的半徑不能是負數(shù),所以R=-不符合題意,舍去,故R= ,即面積為S的圓的半徑為 . (2)設(shè)較短的邊長為2x,則它的鄰邊長為3x.由長方形的面積公式得2x3x=S,所以x=±,因為x=-不符合題意,舍去,所以x=,所以2x=2=,3x=3=,即這個長方形的相鄰兩邊的長分別為和.

      4.解:(1)32. (2)()2. (3)()2. (4)0.52. (5). (6)02.

      5.解:由題意可知πr2=π22+π32,∴r2=13,∴r=±.∵r=-不符合題意,舍去,∴r=,即r的值是.

      6.解:設(shè)AB=x,則AB邊上的高為4x,由題意,得x4x=12,則x2=6,∴x=±.∵x=-不符合題意,舍去,∴x=.故AB的長為.

      7.解:(1)∵x2+1>0恒成立,∴無論x取任何實數(shù),都有意義. (2)∵(x-1)2≥0恒成立,∴無論x取任何實數(shù),都有意義. (3)∵即x>0,∴當x>0時, 在實數(shù)范圍內(nèi)有意義. (4)∵即x>-1,∴當x>-1時,在實數(shù)范圍內(nèi)有意義.

      8.解:設(shè)h=t2, 則由題意,得20=×22,解得=5,∴h=5t2,∴t= (負值已舍去).當h=10時,t= =,當h=25時,t= =.故當h=10和h=25時,小球落地所用的時間分別為 s和 s.

      9.解:(1)由題意知18-n≥0且為整數(shù),則n≤18,n為自然數(shù)且為整數(shù),∴符合條件的n的所有可能的值為2,9,14,17,18. (2)∵24n≥0且是整數(shù),n為正整數(shù),∴符合條件的n的最小值是6.

      10.解:V=πr2×10,r= (負值已舍去),當V=5π時, r= =,當V=10π時,r= =1,當V=20π時,r= =.

      如圖所示,根據(jù)實數(shù)a,b在數(shù)軸上的位置,化簡:+.

      〔解析〕 根據(jù)數(shù)軸可得出a+b與a-b的正負情況,從而可將二次根式化簡.

      解:由數(shù)軸可得:a+b<0,a-b>0,

      ∴+=|a-b|+|a+b|=a-b-(a+b)=-2b.

      [解題策略] 結(jié)合數(shù)軸得出字母的取值范圍,再化簡二次根式,此題體現(xiàn)了數(shù)形結(jié)合的思想.

      已知a,b,c為三角形的三條邊,則+= .

      〔解析〕 根據(jù)三角形三邊的關(guān)系,先判斷a+b-c與b-a-c的符號,再去根號、絕對值符號并化簡.因為a,b,c為三角形的三條邊,所以a+b-c>0,b-a-c<0,所以原式=(a+b-c)+[-(b-a-c)]=a+b-c-b+a+c=2a.故填2a.

      [解題策略] 此類化簡問題要特別注意符號問題.

      化簡:.

      〔解析〕 題中并沒有明確字母x的取值范圍,需要分x≥3和x<3兩種情況考慮.

      解:當x≥3時,=|x-3|=x-3;

      當x<3時,=|x-3|=-(x-3)=3-x.

      [解題策略] 化簡時,先將它化成|a|,再根據(jù)絕對值的意義分情況進行討論.

      5

      O

      M

      二次根式教案 篇4

      【 學習目標 】

      1、知識與技能:了解二次根式的概念,能求根號內(nèi)字母范圍,理解二次根式的雙重非負性,并能應用它解決相關(guān)問題。

      2、過程與方法:進一步體會分類討論的數(shù)學思想。

      3、情感、態(tài)度與價值觀:通過小組合作學習,體驗在合作探索中學習數(shù)學的樂趣。

      【 學習重難點 】

      1、重點:準確理解二次根式的概念,并能進行簡單的計算。

      2、難點:準確理解二次根式的雙重非負性。

      【 學習內(nèi)容 】課本第2— 3頁

      【 學習流程 】

      一、課前準備(預習學案見附件1)

      學生在家中認真閱讀理解課本中相關(guān)內(nèi)容的知識,并根據(jù)自己的理解完成預習學案。

      二、課堂教學

      (一)合作學習階段。

      教師出示課堂教學目標及引導材料,各學習小組結(jié)合本節(jié)課學習目標,根據(jù)課堂引導材料中得內(nèi)容,以小組合作的形式,組內(nèi)交流、總結(jié),并記錄合作學習中碰到的問題。組內(nèi)各成員根據(jù)課堂引導材料的要求在小組合作的前提下認真完成課堂引導材料。教師在巡視中觀察各小組合作學習的情況,并進行及時的引導、點撥,對普遍存在的問題做好記錄。

      (二)集體講授階段。(15分鐘左右)

      1. 各小組推選代表依次對課堂引導材料中的問題進行解答,不足的本組成員可以補充。

      2. 教師對合作學習中存在的普遍的不能解決的.問題進行集體講解。

      3. 各小組提出本組學習中存在的困惑,并請其他小組幫助解答,解答不了的由教師進行解答。

      (三)當堂檢測階段

      為了及時了解本節(jié)課學生的學習效果,及對本節(jié)課進行及時的鞏固,對學生進行當堂檢測,測試完試卷上交。

      (注:合作學習階段與集體講授階段可以根據(jù)授課內(nèi)容進行適當調(diào)整次序或交叉進行)

      三、課后作業(yè)(課后作業(yè)見附件2)

      教師發(fā)放根據(jù)本節(jié)課所學內(nèi)容制定的針對性作業(yè),以幫助學生進一步鞏固提高課堂所學。

      四、板書設(shè)計

      課題:二次根式(1)

      二次根式概念 例題 例題

      二次根式性質(zhì)

      反思:

      二次根式教案 篇5

      一、復習引入

      學生活動:請同學們完成下列各題:

      1.計算

      (1)(2x+y)·zx(2)(2x2y+3xy2)÷xy

      二、探索新知

      如果把上面的x、y、z改寫成二次根式呢?以上的運算規(guī)律是否仍成立呢?仍成立.

      整式運算中的`x、y、z是一種字母,它的意義十分廣泛,可以代表所有一切,當然也可以代表二次根式,所以,整式中的運算規(guī)律也適用于二次根式.

      例1.計算:

      (1)(+)×(2)(4-3)÷2分析:剛才已經(jīng)分析,二次根式仍然滿足整式的運算規(guī)律,所以直接可用整式的運算規(guī)律.

      解:(1)(+)×=×+×=+=3+2解:(4-3)÷2=4÷2-3÷2=2-例2.計算

      (1)(+6)(3-)(2)(+)(-)

      分析:剛才已經(jīng)分析,二次根式的多項式乘以多項式運算在乘法公式運算中仍然成立.

      解:(1)(+6)(3-)

      =3-2+18-6=13-3(2)(+)(-)=()2-()2

      =10-7=3

      三、鞏固練習

      課本P20練習1、2.

      四、應用拓展

      例3.已知=2-,其中a、b是實數(shù),且a+b≠0,

      化簡+,并求值.

      分析:由于(+)(-)=1,因此對代數(shù)式的化簡,可先將分母有理化,再通過解含有字母系數(shù)的一元一次方程得到x的值,代入化簡得結(jié)果即可?

      二次根式教案 篇6

      教學目的

      1.使學生掌握最簡二次根式的定義,并會應用此定義判斷一個根式是否為最簡二次根式;

      2.會運用積和商的算術(shù)平方根的性質(zhì),把一個二次根式化為最簡二次根式。

      教學重點

      最簡二次根式的定義。

      教學難點

      一個二次根式化成最簡二次根式的方法。

      教學過程

      一、復習引入

      1.把下列各根式化簡,并說出化簡的根據(jù):

      2.引導學生觀察考慮:

      化簡前后的根式,被開方數(shù)有什么不同?

      化簡前的被開方數(shù)有分數(shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號外。

      3.啟發(fā)學生回答:

      二次根式,請同學們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡二次根式?

      二、講解新課

      1.總結(jié)學生回答的內(nèi)容后,給出最簡二次根式定義:

      滿足下列兩個條件的二次根式叫做最簡二次根式:

      (1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;

      (2)被開方數(shù)中不含能開得盡的'因數(shù)或因式。

      最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個因式的指數(shù)小于2;特別注意被開方數(shù)應化為因式連乘積的形式。

      2.練習:

      下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:

      3.例題:

      例1 把下列各式化成最簡二次根式:

      例2 把下列各式化成最簡二次根式:

      4.總結(jié)

      把二次根式化成最簡二次根式的根據(jù)是什么?應用了什么方法?

      當被開方數(shù)為整數(shù)或整式時,把被開方數(shù)進行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號外面去。

      當被開方數(shù)是分數(shù)或分式時,根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。

      此方法是先根據(jù)分式的基本性質(zhì)把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡。

      三、鞏固練習

      1.把下列各式化成最簡二次根式:

      2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。

      二次根式教案 篇7

      一、教學目標

      1。使學生知道什么是最簡二次根式,遇到實際式子能夠判斷是不是最簡二次根式。

      2。使學生掌握化簡一個二次根式成最簡二次根式的方法。

      3。使學生了解把二次根式化簡成最簡二次根式在實際問題中的應用。

      二、教學重點和難點

      1。重點:能夠把所給的二次根式,化成最簡二次根式。

      2。難點:正確運用化一個二次根式成為最簡二次根式的方法。

      三、教學方法

      通過實際運算的例子,引出最簡二次根式的概念,再通過解題實踐,總結(jié)歸納化簡二次根式的方法。

      四、教學手段

      利用投影儀。

      五、教學過程

      (一)引入新課

      提出問題:如果一個正方形的面積是0。5m2,那么它的邊長是多少?能不能求出它的.近似值?

      了。這樣會給解決實際問題帶來方便。

      (二)新課

      由以上例子可以看出,遇到一個二次根式將它化簡,為解決問題創(chuàng)

      這兩個二次根式化簡前后有什么不同,這里要引導學生從兩個方面考慮,一方面是被開方數(shù)的因數(shù)化簡后是否是整數(shù)了,另一方面被開方數(shù)中還有沒有開得盡方的因數(shù)。

      總結(jié)滿足什么樣的條件是最簡二次根式。即:滿足下列兩個條件的二次根式,叫做最簡二次根式:

      1。被開方數(shù)的因數(shù)是整數(shù),因式是整式。

      2。被開方數(shù)中不含能開得盡方的因數(shù)或因式。

      例1 指出下列根式中的最簡二次根式,并說明為什么。

      分析:

      說明:這里可以向?qū)W生說明,前面兩小節(jié)化簡二次根式,就是要求化成最簡二次根式。前面二次根式的運算結(jié)果也都是最簡二次根式。

      例2 把下列各式化成最簡二次根式:

      說明:引導學生觀察例2題中二次根式的特點,即被開方數(shù)是整式或整數(shù),再啟發(fā)學生總結(jié)這類題化簡的方法,先將被開方數(shù)或被開方式分解因數(shù)或分解因式,然后把開得盡方的因數(shù)或因式開出來,從而將式子化簡。

      例3 把下列各式化簡成最簡二次根式:

      說明:

      1。引導學生觀察例題3中二次根式的特點,即被開方數(shù)是分數(shù)或分式,再啟發(fā)學生總結(jié)這類題化簡的方法,先利用商的算術(shù)平方根的性質(zhì)把它寫成分式的形式,然后利用分母有理化化簡。

      2。要提問學生

      問題,通過這個小題使學生明確如何使用化簡中的條件。

      通過例2、例3總結(jié)把一個二次根式化成最簡二次根式的兩種情況,并引導學生小結(jié)應該注意的問題。

      注意:

      ①化簡時,一般需要把被開方數(shù)分解因數(shù)或分解因式。

      ②當一個式子的分母中含有二次根式時,一般應該把它化簡成分母中不含二次根式的式子,也就是把它的分母進行有理化。

      (三)小結(jié)

      1。滿足什么條件的根式是最簡二次根式。

      2。把一個二次根式化成最簡二次根式的主要方法。

      (四)練習

      1。指出下列各式中的最簡二次根式:

      2。把下列各式化成最簡二次根式:

      六、作業(yè)

      教材P。187習題11。4;A組1;B組1。

      七、板書設(shè)計

      第五篇:二次根式的性質(zhì)教學反思

      二次根式的性質(zhì)教學反思

      二次根式的性質(zhì)教學反思1

      本節(jié)課的重點二次根式的兩個性質(zhì),并會用性質(zhì)化簡一些二次根式。 針對教學目標,本堂課設(shè)計了四個主要的教學環(huán)節(jié):

      第一環(huán)節(jié)、師生合作,通過復習算術(shù)平方根的概念,運用歸納、猜想的思想方法,得出二次根式的第一條性質(zhì),隨后進行了相關(guān)的練習,加強了學生對概念的理解。

      第二環(huán)節(jié)、小組合作學習,運用類比、歸納、猜想的思想方法,得出二次根式的第二條性質(zhì)。之后,設(shè)計了一個“我來考考你的環(huán)節(jié)”,讓學生自己根據(jù)性質(zhì)2,仿照書本課內(nèi)練習1,給同伴出題,這一簡單的舉措,激發(fā)了學生的學習興趣,調(diào)動了課堂氣氛。

      第三環(huán)節(jié)、學生自主完成例1,然后在小組內(nèi)探討存在的問題并解決問題。對于例2,在學習過程中,學生對于a是非負數(shù)的二次根式?jīng)]有困難,但是對于根號里面a是負數(shù)的二次根式,學習起來還是有困難的,所以在這里應該舉例示范,讓學生討論如何解答。這里不要快,要一步步來,等學生都明白其中的道理后,再進行相應的練習,如果出現(xiàn)問題,再進行點評,這樣下來,學生就可以掌握二次根式的.化簡了,但是由于時間關(guān)系,我緊緊叫了一個學生上黑板板書,沒有做到一題多解,今后多在這方面努力。

      第四環(huán)節(jié)、運用性質(zhì)化簡含有字母的二次根式。這一環(huán)節(jié),加深了學生對二次根式兩個性質(zhì)的理解。

      課后作業(yè)的布置,由于要用到開方,所以,我讓學生背會1-30的平方分別等于多少,這樣在以后的學習中會用得到,可以提高計算速度。

      二次根式的性質(zhì)教學反思2

      在二次根式這一章的學習中,重點是是掌握二次根式的運算,教學的關(guān)鍵是理解二次根式的性質(zhì),這塊教學內(nèi)容是在第十二章實數(shù)的基礎(chǔ)上,著重研究二次根式。在本章教學中,存在以下問題:

      1、在教學設(shè)計中,仍然存在著對學情分析不足,主要是過高估計學生的學習能力,一方面每節(jié)課設(shè)計的教學內(nèi)容過多,經(jīng)常一節(jié)課結(jié)束后還有不少內(nèi)容沒有完成,另一方面對以前學過的知識的復習工作做的不夠,導致后續(xù)的新知識的學習遇到不少麻煩。如對二次根式的性質(zhì)的應用時,考慮到以前已經(jīng)學過,自以為學生不存在困難,就沒有重點分析,結(jié)果導致不少學生在二次根式的化簡過程中因此而出錯。

      2、九年級數(shù)學是新教材,在教學過程中,我的教學理念還沒有及時更新,有時對新老教材的`區(qū)別關(guān)注不夠,從而導致教學不到位。在二次根式的化簡中,老教材比較重視對具體數(shù)的化簡,對字母的要求不高,一般都確保二次根式有意義,而新教材特別要求引導學生注意二次根式中字母的取值范圍,要求培養(yǎng)學生嚴謹?shù)膶W習態(tài)度和推斷字母取值范圍的能力。剛開始對這一要求理解不到位,沒有對學生提出明確要求,也沒有重視對典型錯誤的分析。

      3、在促進學生探索求知和有效學習方面還存在明顯不足。新的教學理念要求教師在課堂教學中注意引導學生探究學習,在我的課堂教學中,經(jīng)常為了完成教學任務而忽視這方面的引導。在本章中,其實有許多內(nèi)容可以進行這方面的嘗試。如判斷二次根式中字母的取值范圍、選取有理化因式、選擇不同的運算途徑等都可以讓學生進行探究和歸納。在二次根式的運算中我就直接告訴學生:加減運算時利用公式,乘除時利用公式和,結(jié)果大部分學生并不接受。若能讓學生在探究的基礎(chǔ)上歸納出方法,學習的效果會提高很多,學習的能力也會不斷提高。

      4、在學生的學習方面,也有值得反思的地方我班的學生在老師指導下學習數(shù)學方面的積極性并不差,但自主學習方面還存在著不足。遇到困難有畏難情緒、對老師的依賴性太強、作業(yè)只求完成率而不講質(zhì)量、學習的競爭意識和自我要求明顯缺乏。這些都有待于在今后的教學中進行教育和引導,加強改進,提高教學實效。

      二次根式的性質(zhì)教學反思3

      1.在實際授課中,通過以下步驟讓學生認識、理解、并掌握本節(jié)知識:

      (1)讓學生回顧了算術(shù)平方根與平方根的概念,并且通過一個思考欄目的四道題,得出二次根式的定義后又復習了算術(shù)平方根具有雙重非負性;

      (2)通過練習掌握如何判斷一個式子是否是二次根式的條件,并經(jīng)過例1掌握二次根式在實數(shù)范圍內(nèi)有意義的條件;

      (3)通過練習讓學生得出二次根式的兩個性質(zhì),體會從特殊到一般的思維過程,進而掌握公式的一般推導方法;……,本節(jié)課大部分時間都是引導學生邊學邊做,讓學生經(jīng)歷了整個學習過程。

      2.在學習過程中,突出了引導學生自己得出結(jié)論,特別是二次根式的兩個性質(zhì),在做完思考題之后,學生自己就初步得出了結(jié)論,而且通過其他學生的補充越來越完善。

      3. 讓學生自己找出性質(zhì)1和性質(zhì)2的區(qū)別與聯(lián)系,雖然不夠系統(tǒng)和完整,但通過這樣的訓練,培養(yǎng)了學生總結(jié)規(guī)律的能力。

      4.在實際教學中,仍然存在著對課堂時間把握不精確的問題,出現(xiàn)了前松后緊的現(xiàn)象,以致有深度的練習沒時間完成,結(jié)束的也比較倉促。在今后教學中,應注意時間的'掌控。

      5.在引導學生探索求知和互動學習方面還有欠缺。新的教學理念要求教師在課堂教學中注意引導學生探究學習,在我的課堂教學中,對學生探索求知進行了引導,并且鼓勵大家自己得出結(jié)論,但在互動方面做的還不夠,大部分學生都是獨立思考,很少與同學合作交流,今后的教學中應多培養(yǎng)學生合作交流的意識,這樣有助于他們今后的生活和學習。

      二次根式的性質(zhì)教學反思4

      本節(jié)課主要內(nèi)容是學習二次根式的定義和性質(zhì),重點是對二次根式的性質(zhì)1和性質(zhì)的理解及應用2.難點是性質(zhì)1和性質(zhì)2的區(qū)別與聯(lián)系.

      上完本節(jié)課后,我的反思如下:

      1.由于本節(jié)課是蘇科版九年級上冊第21章的內(nèi)容,是一節(jié)新授課。在備課時我就按照目標讓學生明白、過程讓學生經(jīng)歷、結(jié)論讓學生討論、規(guī)律讓學生總結(jié)的指導原則進行認真?zhèn)湔n,尤其對例題與練習題也進行了精心的挑選,按照由易到難由簡入繁的順序安排,并且認真制作了課件,便于學生對重點內(nèi)容的理解和難點的解決.

      2.在實際授課中,在讓學生明白了本節(jié)學習目標后,通過以下步驟讓學生認識、理解、并掌握本節(jié)知識:(1)讓學生回顧了算術(shù)平方根與平方根的概念,并且通過一個思考欄目的四道題,得出二次根式的定義后又復習了算術(shù)平方根具有雙重非負性;(2)通過練習掌握如何判斷一個式子是否是二次根式的條件,并經(jīng)過例1掌握二次根式在實數(shù)范圍內(nèi)有意義的條件;(3)通過練習讓學生得出二次根式的兩個性質(zhì),體會從特殊到一般的思維過程,進而掌握公式的`一般推導方法;……,本節(jié)課大部分時間都是引導學生邊學邊做,讓學生經(jīng)歷了整個學習過程。

      3.在學習過程中,突出了引導學生自己得出結(jié)論,特別是二次根式的兩個性質(zhì),在做完思考題之后,學生自己就初步得出了結(jié)論,而且通過其他學生的補充越來越完善。

      4.讓學生自己找出性質(zhì)1和性質(zhì)2的區(qū)別與聯(lián)系,雖然不夠系統(tǒng)和完整,但通過這樣的訓練,培養(yǎng)了學生總結(jié)規(guī)律的能力。

      5.在實際教學中,仍然存在著對課堂時間把握不精確的問題,出現(xiàn)了前松后緊的現(xiàn)象,以致有深度的練習沒時間完成,結(jié)束的也比較倉促。在今后教學中,應注意時間的掌控。

      6.在引導學生探索求知和互動學習方面還有欠缺。新的教學理念要求教師在課堂教學中注意引導學生探究學習,在我的課堂教學中,對學生探索求知進行了引導,并且鼓勵大家自己得出結(jié)論,但在互動方面做的還不夠,大部分學生都是獨立思考,很少與同學合作交流,今后的教學中應多培養(yǎng)學生合作交流的意識,這樣有助于他們今后的生活和學習。

      通過這節(jié)課,使我的教學技能得到了很好的鍛煉,我在今后的教學中,將繼續(xù)學習好的一面,對不足之處進行改善,爭取使自己的教學水平得到提高。

      二次根式的性質(zhì)教學反思5

      1、在實際授課中,通過以下步驟讓學生認識、理解、并掌握本節(jié)知識:

      (1)讓學生回顧了算術(shù)平方根與平方根的概念,并且通過一個思考欄目的四道題,得出二次根式的定義后又復習了算術(shù)平方根具有雙重非負性;

      (2)通過練習掌握如何判斷一個式子是否是二次根式的條件,并經(jīng)過例1掌握二次根式在實數(shù)范圍內(nèi)有意義的條件;

      (3)通過練習讓學生得出二次根式的兩個性質(zhì),體會從特殊到一般的思維過程,進而掌握公式的一般推導方法;……,本節(jié)課大部分時間都是引導學生邊學邊做,讓學生經(jīng)歷了整個學習過程。

      2、在學習過程中,突出了引導學生自己得出結(jié)論,特別是二次根式的兩個性質(zhì),在做完思考題之后,學生自己就初步得出了結(jié)論,而且通過其他學生的補充越來越完善。

      3、讓學生自己找出性質(zhì)1和性質(zhì)2的區(qū)別與聯(lián)系,雖然不夠系統(tǒng)和完整,但通過這樣的訓練,培養(yǎng)了學生總結(jié)規(guī)律的能力。

      4、在實際教學中,仍然存在著對課堂時間把握不精確的問題,出現(xiàn)了前松后緊的現(xiàn)象,以致有深度的練習沒時間完成,結(jié)束的也比較倉促。在今后教學中,應注意時間的掌控。

      5、在引導學生探索求知和互動學習方面還有欠缺。新的教學理念要求教師在課堂教學中注意引導學生探究學習,在我的'課堂教學中,對學生探索求知進行了引導,并且鼓勵大家自己得出結(jié)論,但在互動方面做的還不夠,大部分學生都是獨立思考,很少與同學合作交流,今后的教學中應多培養(yǎng)學生合作交流的意識,這樣有助于他們今后的生活和學習。

      下載1.2二次根式的性質(zhì)教案(浙教版八年級下)word格式文檔
      下載1.2二次根式的性質(zhì)教案(浙教版八年級下).doc
      將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
      點此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔相關(guān)法律責任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進行舉報,并提供相關(guān)證據(jù),工作人員會在5個工作日內(nèi)聯(lián)系你,一經(jīng)查實,本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        二次根式及其性質(zhì)(第一課時)說課稿

        二次根式及其性質(zhì)(第一課時) 一、 教材 “二次根式”是《課程標準》“數(shù)與代數(shù)”的重要內(nèi)容。本章是在前面所學知識的基礎(chǔ)上,進一步研究二次根式的概念,性質(zhì),和運算。本章內(nèi)容與......

        《16.1 二次根式的性質(zhì)》教學設(shè)計

        《16.1 二次根式的性質(zhì)》教學設(shè)計 一.教學目標 (1)經(jīng)歷探索二次根式的性質(zhì)的過程,并理解其意義; (2)會運用二次根式的性質(zhì)進行二次根式的化簡; (3)了解代數(shù)式的概念. 二、教學重點:二次......

        人教版八年級數(shù)學下冊16.1二次根式教案

        二次根式 教學目標 1.使學生進一步理解二次根式的意義及基本性質(zhì),并能熟練地化簡含二次根式的式子; 2.熟練地進行二次根式的加、減、乘、除混合運算. 教學重點和難點 重點:含二次......

        八年級下冊二次根式教學設(shè)計

        教學目標:掌握二次根式的概念;根據(jù)二次根式的概念掌握被開方數(shù)的取值范圍。教學重難點:重點:二次根式的概念以及二次根式有意義的條件;難點:根據(jù)要求求滿足條件的字母的取值范圍。......

        最簡二次根式教案

        教學目的1.使學生掌握最簡二次根式的定義,并會應用此定義判斷一個根式是否為最簡二次根式;2.會運用積和商的算術(shù)平方根的性質(zhì),把一個二次根式化為最簡二次根式。教學重點最簡......

        “二次根式的除法”教案

        “二次根式的除法”教案 教學目的: 知識與技能:使學生掌握二次根式的除法;使學生會用商的算術(shù)平方根的性質(zhì)及二次根式的除法化簡二次根式;使學生掌握分母有理化知識,并能利用它進......

        9上21.2《二次根式性質(zhì)》教學反思

        教學反思 21.2.1 二次根式性質(zhì) 1、成功之處 ①從整堂課來看,效果比較好,學生從未知到已知,并且進行了消化。整堂課始終把學生擺在第一位,讓他們主動去學習。真正把課堂交給學生,......

        《二次根式的定義和性質(zhì)》教學反思

        《二次根式的定義和性質(zhì)》(1)教學反思 1.在實際授課中,通過以下步驟讓學生認識、理解、并掌握本節(jié)知識:(1)讓學生回顧了算術(shù)平方根與平方根的概念,并且通過一個思考欄目的四道題,得......