欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      二次函數(shù)的圖像和性質(zhì)教學(xué)反思

      時間:2019-05-12 20:33:47下載本文作者:會員上傳
      簡介:寫寫幫文庫小編為你整理了多篇相關(guān)的《二次函數(shù)的圖像和性質(zhì)教學(xué)反思》,但愿對你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫還可以找到更多《二次函數(shù)的圖像和性質(zhì)教學(xué)反思》。

      第一篇:二次函數(shù)的圖像和性質(zhì)教學(xué)反思

      二次函數(shù)的圖像和性質(zhì)教學(xué)反思

      這節(jié)課的教學(xué)主要使學(xué)生在原有基礎(chǔ)上,通過類比一次函數(shù)掌握二次函數(shù)圖象和性質(zhì),突出的是探索交流合作的方式。

      在知識學(xué)習(xí)過程中給學(xué)生留有充分的思考與交流的時間和空間,讓學(xué)生經(jīng)歷了畫圖、觀察、猜測、交流、反思等活動,借助圖形教學(xué),形象直觀,體現(xiàn)了數(shù)形結(jié)合思想,激發(fā)了學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生的觀察、分析、歸納、概括能力,提高數(shù)學(xué)課堂教學(xué)的效率和效果,促使學(xué)生主動參與到“做”數(shù)學(xué)的活動中,從而更加深刻地認(rèn)識最簡二次函數(shù)的性質(zhì)。

      對于本節(jié)課,我個人認(rèn)為在教學(xué)思路上還是比較清晰的,重難點把握得還是比較準(zhǔn)確的,復(fù)習(xí)時利用原來學(xué)過的函數(shù)圖像,讓學(xué)生說出增減性,很自然的就引發(fā)出了探究二次函數(shù)性質(zhì)的問題以及利用具體的圖像,學(xué)生比較容易理解和掌握。

      但是,整體來看,課堂容量稍有點偏大,學(xué)生沒有充分的時間進(jìn)行探究。在得出性質(zhì)后,應(yīng)該設(shè)置幾道練習(xí),讓學(xué)生能運(yùn)用新知識,有助于性質(zhì)的掌握。課堂上時間較緊張,題目的設(shè)置還不夠精,也沒有給學(xué)生足夠的思考時間,急于得出答案,造成正確率的下降。二次函數(shù)的性質(zhì)教學(xué)反思--于洋

      2011年10月21日 來源:本站

      二次函數(shù)的性質(zhì)教學(xué)反思

      進(jìn)入二次函數(shù)這一章節(jié)后,難點也就隨之而來了,因為這一章節(jié)中大部分的內(nèi)容都是數(shù)形結(jié)合的知識,學(xué)生在這部分也一直是難點。在學(xué)習(xí)一次函數(shù)的時候,涉及到函數(shù)增減性的問題,當(dāng)時的解決方法是讓學(xué)生動手去做,方法如下:首先做出一次函數(shù)的草圖,然后用左手從圖像的左到右移動,并且要求學(xué)生說出隨著x的增大(手由左向右的移動過程中x是一直在增大的),圖像是升高了還是降低了。最后把話說完整,隨著x的增大y是增大了還是減小了,這種方法在當(dāng)時大部分學(xué)生還是能夠接受的。所以在二次函數(shù)的性質(zhì)這節(jié)課之前我就決定了,還是用動手比劃的方法讓學(xué)生去理解增減性。

      首先,讓學(xué)生理解想求出二次函數(shù)的增減性首先要從二次函數(shù)的一般式轉(zhuǎn)化為頂點式,目的在于通過頂點式就可以直接看出對稱軸,再給學(xué)生充分的時間讓學(xué)生發(fā)現(xiàn),二次函數(shù)與一次函數(shù)的增減性是不同的,一次函數(shù)不用分段去說,而二次函數(shù)要求以對稱軸為分界點分段去說。在這些都準(zhǔn)備好之后,告訴學(xué)生判斷增減性的要點:

      (1)通過函數(shù)的頂點和開口方向,畫出二次函數(shù)的草圖。

      (2)在草圖上標(biāo)出對稱軸,然后用對稱軸把二次函數(shù)的定義域分成兩部分。

      (3)確定其中的一部分,用左手在草圖上從左到右移動,并仔細(xì)觀察圖像是升高了還是降低了,然后再判斷隨著x的增大y是增大了還是減小了,從而確定是增函數(shù)還是減函數(shù)。在用了這樣的方法之后,自我感覺學(xué)生在理解方面的難度不大,學(xué)生的習(xí)題完成情況也較好,但是還有一些自己沒有預(yù)料的問題,比如說學(xué)生把一般式轉(zhuǎn)化為頂點式有問題,在說范圍的時候,學(xué)生不注意對稱軸是什么,而都說成了x>0、x<0等,在下節(jié)課針對于這些點我還會繼續(xù)強(qiáng)調(diào)。

      第二篇:二次函數(shù)的圖像和性質(zhì)教學(xué)反思

      二次函數(shù)的圖像和性質(zhì)教學(xué)反思

      本節(jié)的學(xué)習(xí)內(nèi)容是在前面學(xué)過二次函數(shù)的概念和二次函數(shù)y=ax2、y=ax2+h、y=a(x-h)2的圖像和性質(zhì)的基礎(chǔ)上,運(yùn)用圖像變換的觀點把二次函數(shù)y=ax2的圖像經(jīng)過一定的平移變換,而得到二次函數(shù)y=a(x-h)2+k(h≠0,k≠0)的圖像。二次函數(shù)是初中階段所學(xué)的最后一類最重要、圖像性質(zhì)最復(fù)雜、應(yīng)用難度最大的函數(shù),是學(xué)業(yè)達(dá)標(biāo)考試中的重要考查內(nèi)容之一。教材中主要運(yùn)用數(shù)形結(jié)合的方法從學(xué)生熟悉的知識入手進(jìn)行知識探究。這是教學(xué)發(fā)現(xiàn)與學(xué)習(xí)的常用方法,同學(xué)們應(yīng)注意學(xué)習(xí)和運(yùn)用。另外,在本節(jié)內(nèi)容學(xué)習(xí)中同學(xué)們還要注意 “類比”前幾節(jié)的內(nèi)容學(xué)習(xí),在對比中加強(qiáng)聯(lián)系和區(qū)別,從而更深刻的體會二次函數(shù)的圖像和性質(zhì)。

      通過本節(jié)課教學(xué),得出幾點體會:

      1、在教學(xué)中二次函數(shù)圖像的對稱軸,頂點坐標(biāo),開口方向尤其重要,必需特別強(qiáng)調(diào)。

      2、在探究中要積累研究問題的方法并積累經(jīng)驗,學(xué)生在前面已經(jīng)歷過探索、分析和建立兩個變量之間的關(guān)系的過程,學(xué)習(xí)了一次函數(shù)和反比例函數(shù),學(xué)會了用描點法作函數(shù)圖象并據(jù)此分析得出函數(shù)的性質(zhì)。我們可以把研究這些問題的方法應(yīng)用于研究二次函數(shù)的圖象和性質(zhì),并據(jù)此形成研究問題的基本方法。

      3、要使課堂真正成為學(xué)生展示自我的舞臺

      還學(xué)生課堂學(xué)習(xí)的主體地位,教師要把激發(fā)學(xué)生學(xué)習(xí)熱情和獲得學(xué)習(xí)能力放在教學(xué)首位,為學(xué)生提供展示自己聰明才智的機(jī)會,使課

      堂真正成為學(xué)生展示自我的舞臺。充分利用合作交流的形式,能使教師發(fā)現(xiàn)學(xué)生分析問題解決問題的獨(dú)到見解以及思維的誤區(qū),以便指導(dǎo)今后的教學(xué)。但在復(fù)習(xí)與練習(xí)的過程中,我發(fā)現(xiàn)學(xué)生存在著這樣幾個問題。

      1、某些記憶性的知識沒記住。

      2、學(xué)生稍遇到點難題就失去做下去的信心。題目較長時就不愿意仔細(xì)讀,從而失去讀下去的勇氣

      3、學(xué)生的識圖能力、讀題能力與分析問題、解決問題的能力較弱。

      4、解題過程寫得不全面,丟三落四的現(xiàn)象嚴(yán)重。針對上述問題,需要采取的措施與方法是:

      1、根據(jù)實際情況,對于中考升學(xué)有希望的學(xué)生利用課余時間做好他們的思想工作。并對他們進(jìn)行面對面的單獨(dú)輔導(dǎo),增強(qiáng)他們的自信心,以此來提高他們的數(shù)學(xué)成績。

      2、結(jié)合自己的學(xué)習(xí)經(jīng)驗對他們進(jìn)行學(xué)法指導(dǎo)和解題技巧的指導(dǎo)。

      3、根據(jù)不同的學(xué)生情況,搜集典型題讓他們單獨(dú)做,并給予及時的輔導(dǎo)與矯正。

      4、與其它任課教師聯(lián)手一起想對策,指導(dǎo)學(xué)生讀題的方法與分析問題,解決問題的方法。

      5、無論是做練習(xí)還是考試之前,都告訴學(xué)生要認(rèn)真仔細(xì)的讀題,從圖形中獲取信息。

      第三篇:《二次函數(shù)的圖像與性質(zhì)》教學(xué)反思

      《二次函數(shù)的圖像與性質(zhì)》教學(xué)反思

      《二次函數(shù)的圖像與性質(zhì)》教學(xué)反思

      本節(jié)課的學(xué)習(xí)內(nèi)容是在前面學(xué)過一次函數(shù)、反比例函數(shù)的圖像和性質(zhì)的基礎(chǔ)上運(yùn)用已有的學(xué)習(xí)經(jīng)驗探索新知識?!抖魏瘮?shù)的圖像與性質(zhì)

      (一)》是二次函數(shù)性質(zhì)研究的第一步,為后面研究較為復(fù)雜的函數(shù)類型作了必要的鋪墊,具有承上啟下的作用。

      講課中首先一起回顧一次函數(shù)與反比例函數(shù)的圖像與性質(zhì),然后讓學(xué)生動手在坐標(biāo)系中作二次函數(shù)y=x2和y=-x2的圖象,從感性上結(jié)識拋物線.再后又對兩個特殊的二次函數(shù)的圖象和性質(zhì)進(jìn)行了歸納和總結(jié),從理性上再次結(jié)識拋物線.利用幾何畫板揭示了兩個拋物線之間的聯(lián)系,使本節(jié)課的知識得到了升華。

      成功之處:

      1.課前的引課很精彩,幾句簡短的語言使學(xué)生感受數(shù)學(xué)就在我們的身邊,并激起學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.2.對二次函數(shù)圖象的作圖,通過學(xué)生作品的展示、思考、討論、講評起到指導(dǎo)全體學(xué)生的作用.作圖后讓學(xué)生反思自己的作圖過程,加深學(xué)生對作圖的理解,規(guī)范作圖,同時培養(yǎng)學(xué)生嚴(yán)謹(jǐn)治學(xué)的精神.3.二次函數(shù)的圖象和性質(zhì)掌握起來有一定的難度,因此我設(shè)計一系列問題串,讓學(xué)生觀察圖象回答,以突出重點分散難點.同時借助課件的動態(tài)展示能幫助學(xué)生更形象地理解和掌握二次函數(shù)的圖象和性質(zhì),也為今后探討其他類函數(shù)的性質(zhì)提供思路.4.在教學(xué)中注重多種學(xué)習(xí)信息的捕捉,引導(dǎo)學(xué)生從圖與形,表達(dá)式、表格、圖像等多角度地去分析理解數(shù)學(xué)知識,使學(xué)生對拋物線有一個豐滿的認(rèn)識。

      5.幾何畫板很好的展示了兩個函數(shù)之間的關(guān)系,動態(tài)的演示有助于理解難點,是這節(jié)課的亮點。

      不足之處:

      1.在學(xué)生作圖教學(xué)時,課堂上有一部分學(xué)生沒有進(jìn)行完,此處給學(xué)生的時間少一些.2.作圖展示時只說明了有問題的部分而沒有展示優(yōu)秀的部分,無法使學(xué)生獲得成功的喜悅。3.在探索二次函數(shù)的圖象和性質(zhì)的活動中,沒有讓學(xué)生有更多的思考交流和評價的過程,限制了學(xué)生思維的發(fā)展.通過這節(jié)課,我認(rèn)為要使課堂真正成為學(xué)生展示自我的舞臺,還學(xué)生課堂的主體地位,教師要把激發(fā)學(xué)生學(xué)習(xí)熱情和獲得學(xué)習(xí)能力放在教學(xué)首位,為學(xué)生提供展示自己的舞臺,充分利用合作交流的形式,使教師幫助學(xué)生不斷積累學(xué)習(xí)經(jīng)驗,完善學(xué)習(xí)的過程,最終使“要我學(xué)”變?yōu)椤拔乙獙W(xué)”。

      第四篇:二次函數(shù)圖像教學(xué)反思

      《二次函數(shù)y=ax2的圖像》教學(xué)反思

      教師的任務(wù)不僅在于教數(shù)學(xué),更主要的是創(chuàng)設(shè)情境,激勵學(xué)生憑借自己的能力去獲取數(shù)學(xué)知識,理解數(shù)學(xué)的道理,構(gòu)建數(shù)學(xué)思想.因此,在教學(xué)中,我們應(yīng)鼓勵學(xué)生通過獨(dú)立思考或合作學(xué)習(xí)研究,“發(fā)現(xiàn)”或“再創(chuàng)造”出數(shù)學(xué)知識。

      一、教學(xué)背景分析:

      1、教材分析:二次函數(shù)的知識是看中學(xué)數(shù)學(xué)學(xué)習(xí)的重要內(nèi)容之一,它是從生活實際問題中抽象出的數(shù)學(xué)知識,又是在解決實際問題時廣泛應(yīng)用的數(shù)學(xué)工具,無論是在生活中還是在運(yùn)用二次函數(shù)知識的方法上,都具有重要意義的教學(xué)內(nèi)容。因此,搞好二次函數(shù)的圖像和性質(zhì)的教學(xué),對學(xué)生能力的培養(yǎng)有重要的奠基意義。

      2、教學(xué)內(nèi)容分析:本節(jié)課二次函數(shù)的圖像的第一課時,主要是研究最簡單的二次函數(shù)的圖像的畫法,從而總結(jié)出它的性質(zhì)。這既是對學(xué)生進(jìn)行理性思維的培養(yǎng),又是進(jìn)行抽象思維的培養(yǎng),具有較高的數(shù)學(xué)教育價值。因此學(xué)好本節(jié)內(nèi)容對以后的學(xué)習(xí)也很重要。我確定本節(jié)課的重點是:根據(jù)圖像觀察、分析出二次函數(shù)的性質(zhì)。

      3、學(xué)生情況分析:本節(jié)課的教學(xué)對象是職高一年級級學(xué)生,在此之前他們對一次函數(shù)的圖像和性質(zhì)有一定的基礎(chǔ),但他們的觀察能力,概括能力還比較弱,因此我確定本節(jié)課的難點是繼續(xù)滲透數(shù)形結(jié)合的數(shù)學(xué)思想方法。

      二、教學(xué)目標(biāo)的確定:

      我根據(jù)數(shù)學(xué)課程標(biāo)準(zhǔn)中關(guān)于“二次函數(shù)的圖像”的教學(xué)要求,結(jié)合學(xué)生的實際情況,從以下三個方面確定了本節(jié)課的教學(xué)目標(biāo):

      知識與技能:

      (1)會用描點法畫出二次函數(shù)y=ax2的圖像。

      (2)根據(jù)圖像觀察、分析出二次函數(shù)的性質(zhì)。

      (3)進(jìn)一步理解二次函數(shù)和拋物線的有關(guān)知識。

      過程與方法:通過畫函數(shù)圖像,總結(jié)性質(zhì),滲透由特殊到一般的辨證唯物主義觀點。滲透數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)觀察能力和分析問題的能力。

      情感態(tài)度:培養(yǎng)學(xué)生勇于探索創(chuàng)新及實事求是的科學(xué)精神。

      三、教學(xué)方法與手段:

      教學(xué)方法主要采用問題導(dǎo)學(xué)、小組討論與反饋練習(xí)相結(jié)合的方法,通過教

      師設(shè)置問題,引導(dǎo)學(xué)生獨(dú)立思考,通過總結(jié)二次函數(shù)的性質(zhì)組織學(xué)生小組討論,為較差學(xué)生提供得到幫助的機(jī)會,通過反饋練習(xí)了解學(xué)生情況,及時分析和矯正,提高課堂教學(xué)效果。

      教學(xué)手段采用分層教學(xué)與學(xué)案相結(jié)合的方法。通過分層提問,使不同的學(xué)生獲得不同的收獲,通過學(xué)案的設(shè)計幫助學(xué)生檢測學(xué)習(xí)情況,反思學(xué)習(xí)過程,不斷提高學(xué)習(xí)效果。

      四、教學(xué)過程的反思:

      優(yōu)點:

      1、上課一開始,我就注重對所學(xué)過的平面直角坐標(biāo)系的有關(guān)知識、平面內(nèi)如何確定點的坐標(biāo)、以及各象限內(nèi)點的坐標(biāo)特征和關(guān)于y軸對稱點的坐標(biāo)特征的復(fù)習(xí)。使學(xué)生在畫二次函數(shù)圖像時描點找得很快、很準(zhǔn)確。在講解拋物線的概念時,出示了同學(xué)們很感興趣的姚明投籃的照片,激發(fā)了學(xué)生的學(xué)習(xí)興趣。為了得出a不同對拋物線圖像和性質(zhì)的影響,在學(xué)生畫完三個圖像后,教師采用“問題導(dǎo)學(xué)”式教學(xué)方法,設(shè)置問題情境,引導(dǎo)學(xué)生自主進(jìn)行觀察、發(fā)現(xiàn)、歸納、反思等數(shù)學(xué)活動,得出二次函數(shù)y=ax2的圖像和性質(zhì),在教學(xué)中,由學(xué)生自己動手,通過列表、描點、連線繪制出二次函數(shù)的圖像,培養(yǎng)了學(xué)生動手動腦的習(xí)慣和綜合分析歸納的能力。

      2、小組合作學(xué)習(xí),發(fā)現(xiàn)其中的規(guī)律。鼓勵學(xué)生相互交流自己的想法,并說明理由。如在畫出圖像后,提問學(xué)生“我們可以從圖中觀察到什么”。滲透了數(shù)形結(jié)合的思想,培養(yǎng)了學(xué)生觀察、綜合分析的能力,增加了學(xué)習(xí)的自信心和學(xué)習(xí)的能力。在合作學(xué)習(xí)中,也培養(yǎng)了他們善于與人交流,合作,肯于負(fù)責(zé)任的良好個性品質(zhì)。

      3、教師適時地總結(jié)、深化,提高認(rèn)識水平。教師在不斷地總結(jié)中滲透數(shù)學(xué)思想方法,抓住時機(jī)培養(yǎng)學(xué)生思維的深刻性。如這幾個基本函數(shù)的學(xué)習(xí)上一節(jié)課經(jīng)歷了從實例抽象概括出函數(shù)概念,本節(jié)課由函數(shù)的解析式畫出函數(shù)的圖像,總結(jié)出函數(shù)的性質(zhì),再利用所學(xué)知識解決有關(guān)問題。在師生的共同討論中,深化所學(xué)知識,培養(yǎng)學(xué)生具備反省思維的能力。

      4、課堂教學(xué)中充分體現(xiàn)了教師和學(xué)生的“雙主作用”,其中“問題導(dǎo)學(xué)”的教學(xué)模式起了重要作用。只有教師創(chuàng)造性的教,學(xué)生才能創(chuàng)造性地學(xué),一旦學(xué)生的學(xué)習(xí)活動充滿創(chuàng)造性的時候,學(xué)習(xí)過程便充滿美的魅力,成為學(xué)生積極進(jìn)取、自我完善的過程。

      不足:對y=-x2的讀法,教師讀的不規(guī)范,沒有注意小的細(xì)節(jié)。在總結(jié)二

      次函數(shù)性質(zhì)時,對于開口寬度,我在備課時用a的絕對值來表示的,a為負(fù)數(shù)時與a為正數(shù)時正好相反,一個學(xué)生說對了,但不是老師要的答案,我當(dāng)時沒有多想,就說他說的不對。忽略了不同的說法。另外老師提出問題后,給學(xué)生去分析、歸納、總結(jié)的時間還不夠,因此本節(jié)課中教師有包辦現(xiàn)象。

      五、得到的啟示:

      反思這節(jié)課,從課前準(zhǔn)備到課堂實施再到課后作業(yè)效果和檢測,我得到如下啟示:

      1、對教材的處理要靈活,要考慮到前后知識的聯(lián)系。

      2、學(xué)生是變化的,要能及時準(zhǔn)確的了解學(xué)生情況。

      3、要不斷探索和完善自己的教學(xué)方法和手段,向其他老師學(xué)習(xí)。

      4、不斷提高學(xué)生學(xué)習(xí)興趣,不斷提高課堂實效。

      5、加強(qiáng)個別輔導(dǎo)。指導(dǎo)學(xué)生

      第五篇:二次函數(shù)的性質(zhì)和圖像教學(xué)設(shè)計

      《二次函數(shù)的性質(zhì)和圖像》教學(xué)設(shè)計

      一、設(shè)計理念:

      本節(jié)課遵循“探索—研究——運(yùn)用“亦即“觀察——思維——遷移”的三個層次要素,側(cè)重學(xué)生的“思”、“探”、“究”的自主學(xué)習(xí),由舊知識類比得新知識,自主探究二次函數(shù)圖象及其性質(zhì)。學(xué)生動腦思和究,動手探。教師的“誘”要在點上,在精不用多。通過本節(jié)學(xué)習(xí),學(xué)生更進(jìn)一步的掌握二次函數(shù)性質(zhì)及其圖象特征。

      二、學(xué)情分析:

      學(xué)生在初中學(xué)習(xí)中,已有二次函數(shù)的基礎(chǔ),了解二次函數(shù)圖象及其相關(guān)性質(zhì),接受起來較快?;诖?,教師應(yīng)在學(xué)生原有基礎(chǔ)上拓寬知識面,引入新概念,幫助學(xué)生加深并提高對二次函數(shù)的認(rèn)識。

      三、教學(xué)目標(biāo)

      (一)、知識目標(biāo)

      1、使學(xué)生掌握研究二次函數(shù)的一般方法——配方法。進(jìn)一步掌握二次函數(shù)y=ax2+bx+c(a)的圖象的頂點坐標(biāo),對稱軸方程,單調(diào)區(qū)間和最值的求法。

      2、會用描點法畫出二次函數(shù)圖像,能通過圖像認(rèn)識二次函數(shù)的性質(zhì)

      3、通過具體例子,在探索二次函數(shù)圖像和性質(zhì)的過程中,學(xué)會利用配方法將數(shù)字系數(shù)的二次函數(shù)表達(dá)式表示成:y=a(x-h)^2+k的形式,從而確定二次函數(shù)圖像的頂點和對稱軸。

      4、通過一般式與頂點式的互化過程,了解互化的必要性。培養(yǎng)學(xué)生認(rèn)識“事物都是相互聯(lián)系、相互制約”的辯證唯物主義觀點。

      5、在經(jīng)歷“觀察、猜測、探索、驗證、應(yīng)用”的過程中,滲透從“形”到“數(shù)”和從“數(shù)”到“形”的轉(zhuǎn)化,培養(yǎng)了學(xué)生的轉(zhuǎn)化、遷移能力,實現(xiàn)感性到理性的升華。

      (二)、情感目標(biāo)

      1、通過主動操作、合作交流、自主評價,改進(jìn)學(xué)生的學(xué)習(xí)方式及學(xué)習(xí)質(zhì)量,激發(fā)學(xué)生的興趣,喚起好奇心與求知欲,點燃起學(xué)生智慧的火花,使學(xué)生積極思維,勇于探索,主動獲取知識。

      2、讓學(xué)生在猜想與探究的過程中,體驗成功的快樂,培養(yǎng)他們主動參與的意識、協(xié)同合作的意識、勇于創(chuàng)新和實踐的科學(xué)精神。

      (三)、能力目標(biāo)

      1、擬通過本節(jié)課的學(xué)習(xí),培養(yǎng)學(xué)生的觀察能力、探索能力、數(shù)形結(jié)合能力、歸納概括能力,綜合培養(yǎng)學(xué)生的思維能力及創(chuàng)新能力。

      2、培養(yǎng)學(xué)生運(yùn)用運(yùn)動變化的觀點來分析、探討問題的意識。教學(xué)重點:二次函數(shù)的性質(zhì)

      教學(xué)難點:研究二次函數(shù)圖象和性質(zhì)的重要方法——配方法。

      對于任何一個二次函數(shù),只要通過配方變形為:(x-h)2 + k的形式,就可以知道函數(shù)的圖象特征和有關(guān)性質(zhì)。通過本節(jié)課的學(xué)習(xí),學(xué)生從理論上加深了對函數(shù)的理解,也可利用所學(xué)知識解決日常生活中常見的實際問題,提高自身分析問題,聯(lián)系實際的能力,從而達(dá)到學(xué)習(xí)目的。

      四、教學(xué)過程:

      (一)、復(fù)習(xí)

      1、二次函數(shù)定義、表達(dá)式。

      2、求二次函數(shù)y= a(x-h)2+ k(a0)的對稱軸和頂點坐標(biāo)。(教師通過多媒體展示問題,通過對舊知識的回顧為新知識的學(xué)習(xí)做好認(rèn)知鋪墊,學(xué)生思考后回答)

      (二)、導(dǎo)入新課

      1、教師展示問題,要求在同一坐標(biāo)系中做出下列函數(shù)圖象:y=-3x2 ,y=-2x2 ,y=-x2 , y=3x2 ,y=2x2 ,y= x2.回答下列問題:

      問題一 :函數(shù)y= ax2 的單調(diào)性、奇偶性、最值與圖象開口方向、對稱性、頂點?

      問題二:函數(shù)圖象隨a 值變化,如何變化? 問題三:y= ax2 與 y=-ax2 圖象有何關(guān)系?

      (教師借助多媒體手段,放映問題答案,展示函數(shù)圖象隨a 值變化的過程,即函數(shù)y= ax2(a)的圖象和性質(zhì)。)函數(shù)y= ax2(a)的圖象和性質(zhì): 1.函數(shù)是偶函數(shù),圖象關(guān)于y軸對稱.2.頂點坐標(biāo)(0,0)

      3.當(dāng)a >0 時,開口向上,在上是減函數(shù),在上是增函數(shù),當(dāng)時,有最小值0。4.當(dāng)a <0 時,開口向下,在上是增函數(shù),在上是減函數(shù),當(dāng)時,有最大值0。

      5.當(dāng)a >0 時,拋物線在x軸上方,開口隨 a增大逐漸減??;當(dāng)a<0 時,拋物線在x軸下方,開口隨 a增大逐漸減大。

      教師提問:若將函數(shù)的圖象進(jìn)行平移,則函數(shù)的哪些性質(zhì)將不發(fā)生變化?哪些將發(fā)生變化?(學(xué)生討論回答),研究一般的二次函數(shù)的性質(zhì)和圖象:

      1、研討二次函數(shù)的性質(zhì)和圖象。

      2、研討二次函數(shù)的性質(zhì)和圖象。教師設(shè)計問題,學(xué)生探究:

      問題一:指出兩個函數(shù)的開口方向,并說明哪個函數(shù)圖象的開口較大? 問題二:分別將二次函數(shù)與配方,然后分別求出兩個函數(shù)的最值以及與x軸交點。

      問題三:列表畫圖,分別在直角坐標(biāo)系中作出兩個函數(shù)的圖象:

      1、推測兩個函數(shù)圖象的對稱軸,并給出證明。

      2、y= a(x-h)2+ k(a)的頂點坐標(biāo)是________,對稱軸是________。

      3、分別指出兩個函數(shù)的單調(diào)區(qū)間。

      問題四:將二次函數(shù)y=ax2+bx+c(a)配方,并回答下列問題:

      1、函數(shù)圖象的頂點坐標(biāo)和對稱軸分別是_______、_______。

      2、對于a>0和a<0分別指出函數(shù)圖象的開口方向,和最值。

      (學(xué)生完成以上問題的過程中教師要適時啟發(fā),并在最后加以總結(jié)。)

      二次函數(shù)性質(zhì)如下:

      1、圖象是一條拋物線,頂點坐標(biāo)是,對稱軸是直線

      2、當(dāng)a >0 時,拋物線開口向上,函數(shù)在處取最小值;在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù);

      3、當(dāng)a <0 時,拋物線開口向下,函數(shù)在處取最大值;在區(qū)間上是增函數(shù),在區(qū)間上是減函數(shù);概念深化:

      (教師指出配方法是研究二次函數(shù)性質(zhì)的通法,對于二次函數(shù)性質(zhì)的有關(guān)結(jié)論不必死記硬背,關(guān)鍵在于如何運(yùn)用配方法來研究二次函數(shù)性質(zhì),組織學(xué)生分組討論。)“配方法”是研究二次函數(shù)的主要方法,熟練的掌握配方法是掌握二次函數(shù)的關(guān)鍵,對一個具體的二次函數(shù),通過配方就能知道這個函數(shù)的主要性質(zhì)。應(yīng)用舉例:

      例:求函數(shù)的最小值和它的圖像的對稱軸,在哪個區(qū)間上是增函數(shù)?在哪個區(qū)間上是減函數(shù)?

      (例題由學(xué)生版演,教師給予糾正。讓學(xué)生充分體驗研究二次函數(shù)的方法——配方法。通過學(xué)生版演,可以發(fā)現(xiàn)解題過程中出現(xiàn)的問題,及時給予糾正)解:因為:

      所以 函數(shù)圖象的對稱軸是直線,它在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù)。

      (三)、隨堂練習(xí):

      1、用配方法,求下列函數(shù)的最大值或最小值:

      (1)1.根據(jù)二次函數(shù)的頂點坐標(biāo)公式確定下列函數(shù)的對稱軸和頂點坐標(biāo):

      (1)y=2x2-12x+13(2)(2)y=-5x2+80x-319

      2、求下列函數(shù)圖象的對稱軸和頂點坐標(biāo),并做出圖象:

      (1)y=2x2-2x-2.5(2)y=-2x2-4x+8(學(xué)生做完練習(xí)后,教師進(jìn)行及時評價)

      (四)、歸納小結(jié):

      方法:研究二次函數(shù)的主要方法——配方法。

      知識:二次函數(shù)的圖象與性質(zhì)的有關(guān)結(jié)論。

      (1)拋物線,當(dāng)x=()時,y有最()值,是 .(2)當(dāng)m=()時,拋物線 開口向下.

      (3)已知函數(shù) 是二次函數(shù),它的圖象開口(),當(dāng)x()時,y隨x的增大而增大.

      (4)拋物線的開口(),對稱軸是(),頂點坐標(biāo)是(),它可以看作是由拋物線 向()平移()個單位得到的.(5)函數(shù),當(dāng)x()時,函數(shù)值y隨x的增大而減小.當(dāng)x()時,函數(shù)取得最()值,最()值y=().

      (6)拋物線 可由拋物線 向()平移()個單位,再向平移()個單位而得到.

      (7)二次函數(shù) 的圖象的頂點是(),當(dāng)x()時,y隨x的增大而減小.

      (五)、作業(yè): P22習(xí)題27.2 第2題(1)、(3)、(5)及第3題

      下載二次函數(shù)的圖像和性質(zhì)教學(xué)反思word格式文檔
      下載二次函數(shù)的圖像和性質(zhì)教學(xué)反思.doc
      將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
      點此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報,并提供相關(guān)證據(jù),工作人員會在5個工作日內(nèi)聯(lián)系你,一經(jīng)查實,本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        二次函數(shù)的圖像與性質(zhì)教學(xué)設(shè)計

        第二章 二次函數(shù) 2.2 二次函數(shù)的圖象與性質(zhì)(1) 一、知識點 1.用描點法畫函數(shù) ??的圖象 2.根據(jù)圖象認(rèn)識和理解二次函數(shù) ?的性質(zhì) 二、教學(xué)目標(biāo) 知識與技能 1.能夠利用描點法畫函數(shù)......

        二次函數(shù)的圖像和性質(zhì)3教學(xué)設(shè)計

        22.1.3二次函數(shù)y=a(x-h(huán))2+k的圖象和性質(zhì)教學(xué)設(shè)計 知識與技能:會用描點法畫出二次函數(shù)y=a (x-h(huán))2+k的圖象; 過程與方法:結(jié)合圖象確定拋物線y=a (x-h(huán))2+k的開口方向、對稱軸與頂點坐標(biāo)及......

        6.2二次函數(shù)的圖像和性質(zhì)教案

        課 題: §6.1二次函數(shù) 教學(xué)目標(biāo): 1.掌握二次函數(shù)y?a(x?m)2?k與y?ax2、y?ax2?k、y?a(x?m)2的圖像的位置關(guān)系; 2、會用配方法確定二次函數(shù)y?ax2?bx?c圖象的頂點坐標(biāo)、對稱軸和函數(shù)的最值,會用......

        反比例函數(shù)的圖像和性質(zhì)教學(xué)反思

        反比例函數(shù)的圖象和性質(zhì)教學(xué)反思 剛剛講完《反比例函數(shù)的圖像和性質(zhì)》這節(jié)課,感受很深,本節(jié)課的內(nèi)容主要有兩點:一是畫反比例函數(shù)的圖象,二是由圖像得出反比例函數(shù)的性質(zhì)。而難......

        教學(xué)反思-反比例函數(shù)的圖像和性質(zhì)

        教學(xué)反思 我在本周星期三下午第六節(jié)課上了《9.2.反比例函數(shù)的圖像和性質(zhì)(2)》這節(jié)課,感受很深。這節(jié)課是在學(xué)習(xí)過反比例函數(shù)圖象之后,展開對反比例函數(shù)性質(zhì)的研究。本節(jié)課的重......

        反比例函數(shù)的圖像和性質(zhì)教學(xué)反思(大全)

        《反比例函數(shù)的圖像和性質(zhì)》的教學(xué)反思 (2009-04-03 20:30:58)轉(zhuǎn)載▼ 剛剛講完《反比例函數(shù)的圖像和性質(zhì)》這節(jié)課,感受很深,本節(jié)課的內(nèi)容主要有兩點:一是畫反比例函數(shù)的圖像,二......

        正比例函數(shù)圖像和性質(zhì)教學(xué)反思1

        《正比例函數(shù)的圖象與性質(zhì)》教學(xué)反思 正比例函數(shù)的圖象與性質(zhì),對學(xué)生學(xué)習(xí)一次函數(shù)有著重要的影響,是學(xué)好函數(shù)的基礎(chǔ)。 在教學(xué)過程中,考慮到學(xué)生在理解能力上還有一定的局限性,......

        正比例函數(shù)圖像和性質(zhì)教學(xué)反思1[最終定稿]

        《正比例函數(shù)的圖象與性質(zhì)》的教學(xué)反思 商南縣初級中學(xué) 孟超 正比例函數(shù)的圖象與性質(zhì),是學(xué)生學(xué)習(xí)的第一個函數(shù),它對下面學(xué)習(xí)一次函數(shù)有著重要的影響,是學(xué)好函數(shù)的基礎(chǔ)。 在教......