第一篇:初三數(shù)學(xué)知識點
一元二次方程的基本概念
1.一元二次方程3x2+5x-2=0的常數(shù)項是-2.22.一元二次方程3x+4x-2=0的一次項系數(shù)為4,常數(shù)項是-2.3.一元二次方程3x2-5x-7=0的二次項系數(shù)為3,常數(shù)項是-7.4.把方程3x(x-1)-2=-4x化為一般式為3x2-x-2=0.已知自變量的值求函數(shù)值
1.當(dāng)x=2時,函數(shù)y=
2.當(dāng)x=3時,函數(shù)y=
3.當(dāng)x=-1時,函數(shù)y=2x?3的值為1.1x?21的值為1.的值為1.2x?3
特殊三角函數(shù)值
1.cos30°= 3
2.2.sin260°+ cos260°= 1.3.2sin30°+ tan45°= 2.4.tan45°= 1.5.cos60°+ sin30°= 1.圓的基本性質(zhì)
1.半圓或直徑所對的圓周角是直角.2.任意一個三角形一定有一個外接圓.3.在同一平面內(nèi),到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓.4.在同圓或等圓中,相等的圓心角所對的弧相等.5.同弧所對的圓周角等于圓心角的一半.6.同圓或等圓的半徑相等.7.過三個點一定可以作一個圓.8.長度相等的兩條弧是等弧.9.在同圓或等圓中,相等的圓心角所對的弧相等.10.經(jīng)過圓心平分弦的直徑垂直于弦。
第二篇:初三數(shù)學(xué)知識點總結(jié)和歸納
小編整理了關(guān)于初三數(shù)學(xué)知識點總結(jié)和歸納,包括三角形的定義、實數(shù)的概念運算、圓的知識點、代數(shù)、函數(shù)等有關(guān)知識點,初三數(shù)學(xué)知識點以供同學(xué)們參考和學(xué)習(xí)!
初三數(shù)學(xué)知識點 第一章 實數(shù)
★重點★ 實數(shù)的有關(guān)概念及性質(zhì),實數(shù)的運算
☆內(nèi)容提要☆
一、重要概念
1.數(shù)的分類及概念
數(shù)系表:
說明:“分類”的原則:1)相稱(不重、不漏)
2)有標(biāo)準(zhǔn)
2.非負(fù)數(shù):正實數(shù)與零的統(tǒng)稱。(表為:x≥0)
常見的非負(fù)數(shù)有:
性質(zhì):若干個非負(fù)數(shù)的和為0,則每個非負(fù)擔(dān)數(shù)均為0。
3.倒數(shù): ①定義及表示法
②性質(zhì):A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01;a>1時,1/a<1;D.積為1。
4.相反數(shù): ①定義及表示法
②性質(zhì):A.a≠0時,a≠-a;B.a與-a在數(shù)軸上的位置;C.和為0,商為-1。
5.數(shù)軸:①定義(“三要素”)
②作用:A.直觀地比較實數(shù)的大小;B.明確體現(xiàn)絕對值意義;C.建立點與實數(shù)的一一對應(yīng)關(guān)系。
6.奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)(正整數(shù)—自然數(shù))
定義及表示:
奇數(shù):2n-1
偶數(shù):2n(n為自然數(shù))
7.絕對值:①定義(兩種):
代數(shù)定義:
幾何定義:數(shù)a的絕對值頂?shù)膸缀我饬x是實數(shù)a在數(shù)軸上所對應(yīng)的點到原點的距離。
②│a│≥0,符號“││”是“非負(fù)數(shù)”的標(biāo)志;③數(shù)a的絕對值只有一個;④處理任何類型的題目,只要其中有“││”出現(xiàn),其關(guān)鍵一步是去掉“││”符號。
二、實數(shù)的運算
1.運算法則(加、減、乘、除、乘方、開方)
2.運算定律(五個—加法[乘法]交換律、結(jié)合律;[乘法對加法的]
分配律)
3.運算順序:A.高級運算到低級運算;B.(同級運算)從“左”
到“右”(如5÷ 35);C.(有括號時)由“小”到“中”到“大”。
三、應(yīng)用舉例(略)
附:典型例題
1.已知:a、b、x在數(shù)軸上的位置如下圖,求證:│x-a│+│x-b│
=b-a.2.已知:a-b=-2且ab<0,(a≠0,b≠0),判斷a、b的符號。
初三數(shù)學(xué)知識點 第二章 代數(shù)式
★重點★代數(shù)式的有關(guān)概念及性質(zhì),代數(shù)式的運算
☆內(nèi)容提要☆
一、重要概念
分類:
1.代數(shù)式與有理式
用運算符號把數(shù)或表示數(shù)的字母連結(jié)而成的式子,叫做代數(shù)式。單獨
的一個數(shù)或字母也是代數(shù)式。
整式和分式統(tǒng)稱為有理式。
2.整式和分式
含有加、減、乘、除、乘方運算的代數(shù)式叫做有理式。
沒有除法運算或雖有除法運算但除式中不含有字母的有理式叫做整式。
有除法運算并且除式中含有字母的有理式叫做分式。
3.單項式與多項式
沒有加減運算的整式叫做單項式。(數(shù)字與字母的積—包括單獨的一個數(shù)或字母)
幾個單項式的和,叫做多項式。
說明:①根據(jù)除式中有否字母,將整式和分式區(qū)別開;根據(jù)整式中有否加減運算,把單項式、多項式區(qū)分開。②進行代數(shù)式分類時,是以所給的代數(shù)式為對象,而非以變形后的代數(shù)式為對象。劃分代數(shù)式類別時,是從外形來看。如,=x, =│x│等。
4.系數(shù)與指數(shù)
區(qū)別與聯(lián)系:①從位置上看;②從表示的意義上看
5.同類項及其合并
條件:①字母相同;②相同字母的指數(shù)相同
合并依據(jù):乘法分配律
6.根式
表示方根的代數(shù)式叫做根式。
含有關(guān)于字母開方運算的代數(shù)式叫做無理式。
注意:①從外形上判斷;②區(qū)別:、是根式,但不是無理式(是無理數(shù))。
7.算術(shù)平方根
⑴正數(shù)a的正的平方根([a≥0—與“平方根”的區(qū)別]);
⑵算術(shù)平方根與絕對值
① 聯(lián)系:都是非負(fù)數(shù),=│a│
②區(qū)別:│a│中,a為一切實數(shù);中,a為非負(fù)數(shù)。
8.同類二次根式、最簡二次根式、分母有理化
化為最簡二次根式以后,被開方數(shù)相同的二次根式叫做同類二次根式。
滿足條件:①被開方數(shù)的因數(shù)是整數(shù),因式是整式;②被開方數(shù)中不含有開得盡方的因數(shù)或因式。
把分母中的根號劃去叫做分母有理化。
9.指數(shù)
⑴(—冪,乘方運算)
① a>0時,>0;②a<0時,>0(n是偶數(shù)),<0(n是奇數(shù))
⑵零指數(shù): =1(a≠0)
負(fù)整指數(shù): =1/(a≠0,p是正整數(shù))
二、運算定律、性質(zhì)、法則
1.分式的加、減、乘、除、乘方、開方法則
2.分式的性質(zhì)
⑴基本性質(zhì): =(m≠0)
⑵符號法則:
⑶繁分式:①定義;②化簡方法(兩種)
3.整式運算法則(去括號、添括號法則)
4.冪的運算性質(zhì):① 2 =;② ÷ =;③ =;④ =;⑤
技巧:
5.乘法法則:⑴單3單;⑵單3多;⑶多3多。
6.乘法公式:(正、逆用)
(a+b)(a-b)=
(a±b)=
7.除法法則:⑴單÷單;⑵多÷單。
8.因式分解:⑴定義;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分組分解法;E.求根公式法。
9.算術(shù)根的性質(zhì): =;;(a≥0,b≥0);(a≥0,b>0)(正用、逆用)
10.根式運算法則:⑴加法法則(合并同類二次根式);⑵乘、除法法則;⑶分母有理化:A.;B.;C..11.科學(xué)記數(shù)法:(1≤a<10,n是整數(shù)=
三、應(yīng)用舉例(略)
四、數(shù)式綜合運算(略)初三數(shù)學(xué)知識點:第三章 統(tǒng)計初步
★重點★
☆ 內(nèi)容提要☆
一、重要概念
1.總體:考察對象的全體。
2.個體:總體中每一個考察對象。
3.樣本:從總體中抽出的一部分個體。
4.樣本容量:樣本中個體的數(shù)目。
5.眾數(shù):一組數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)據(jù)。
6.中位數(shù):將一組數(shù)據(jù)按大小依次排列,處在最中間位置的一個數(shù)(或最中間位置的兩個數(shù)據(jù)的平均數(shù))
二、計算方法
1.樣本平均數(shù):⑴;⑵若,?,,則(a—常數(shù),,?,接近較整的常數(shù)a);⑶加權(quán)平均數(shù):;⑷平均數(shù)是刻劃數(shù)據(jù)的集中趨勢(集中位置)的特征數(shù)。通常用樣本平均數(shù)去估計總體平均數(shù),樣本容量越大,估計越準(zhǔn)確。
2.樣本方差:⑴;⑵若 , ,?, ,則(a—接近、、?、的平均數(shù)的較“整”的常數(shù));若、、?、較“小”較“整”,則;⑶樣本方差是刻劃數(shù)據(jù)的離散程度(波動大小)的特征數(shù),當(dāng)樣本容量較大時,樣本方差非常接近總體方差,通常用樣本方差去估計總體方差。
3.樣本標(biāo)準(zhǔn)差:
三、應(yīng)用舉例(略)
初三數(shù)學(xué)知識點:第四章 直線形
★重點★相交線與平行線、三角形、四邊形的有關(guān)概念、判定、性質(zhì)。
☆ 內(nèi)容提要☆
一、直線、相交線、平行線
1.線段、射線、直線三者的區(qū)別與聯(lián)系
從“圖形”、“表示法”、“界限”、“端點個數(shù)”、“基本性質(zhì)”等方面加以分析。
2.線段的中點及表示
3.直線、線段的基本性質(zhì)(用“線段的基本性質(zhì)”論證“三角形兩邊之和大于第三邊”)
4.兩點間的距離(三個距離:點-點;點-線;線-線)
5.角(平角、周角、直角、銳角、鈍角)
6.互為余角、互為補角及表示方法
7.角的平分線及其表示
8.垂線及基本性質(zhì)(利用它證明“直角三角形中斜邊大于直角邊”)
9.對頂角及性質(zhì)
10.平行線及判定與性質(zhì)(互逆)(二者的區(qū)別與聯(lián)系)
11.常用定理:①同平行于一條直線的兩條直線平行(傳遞性);②同垂直于一條直線的兩條直線平行。
12.定義、命題、命題的組成 13.公理、定理
14.逆命題二、三角形
分類:⑴按邊分;
⑵按角分
1.定義(包括內(nèi)、外角)
2.三角形的邊角關(guān)系:⑴角與角:①內(nèi)角和及推論;②外角和;③n邊形內(nèi)角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大于第三邊,兩邊之差小于第三邊。⑶角與邊:在同一三角形中,3.三角形的主要線段
討論:①定義②33線的交點—三角形的3心③性質(zhì)
① 高線②中線③角平分線④中垂線⑤中位線
⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等邊三角形
4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質(zhì)
5.全等三角形
⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)
⑵特殊三角形全等的判定:①一般方法②專用方法
6.三角形的面積
⑴一般計算公式⑵性質(zhì):等底等高的三角形面積相等。
7.重要輔助線
⑴中點配中點構(gòu)成中位線;⑵加倍中線;⑶添加輔助平行線
8.證明方法
⑴直接證法:綜合法、分析法
⑵間接證法—反證法:①反設(shè)②歸謬③結(jié)論
⑶證線段相等、角相等常通過證三角形全等
⑷證線段倍分關(guān)系:加倍法、折半法
⑸證線段和差關(guān)系:延結(jié)法、截余法
⑹證面積關(guān)系:將面積表示出來三、四邊形
分類表:
1.一般性質(zhì)(角)
⑴內(nèi)角和:360°
⑵順次連結(jié)各邊中點得平行四邊形。
推論1:順次連結(jié)對角線相等的四邊形各邊中點得菱形。
推論2:順次連結(jié)對角線互相垂直的四邊形各邊中點得矩形。
⑶外角和:360°
2.特殊四邊形
⑴研究它們的一般方法:
⑵平行四邊形、矩形、菱形、正方形;梯形、等腰梯形的定義、性質(zhì)和判定
⑶判定步驟:四邊形→平行四邊形→矩形→正方形
┗→菱形——↑
⑷對角線的紐帶作用:
3.對稱圖形
⑴軸對稱(定義及性質(zhì));⑵中心對稱(定義及性質(zhì))
4.有關(guān)定理:①平行線等分線段定理及其推論1、2
②三角形、梯形的中位線定理
③平行線間的距離處處相等。(如,找下圖中面積相等的三角形)
5.重要輔助線:①常連結(jié)四邊形的對角線;②梯形中?!捌揭埔谎?、“平移對角線”、“作高”、“連結(jié)頂點和對腰中點并延長與底邊相交”轉(zhuǎn)化為三角形。
6.作圖:任意等分線段。
四、應(yīng)用舉例(略)初三數(shù)學(xué)知識點 第五章 方程(組)
★重點★一元一次、一元二次方程,二元一次方程組的解法;方程的有關(guān)應(yīng)用題(特別是行程、工程問題)
☆ 內(nèi)容提要☆
一、基本概念
1.方程、方程的解(根)、方程組的解、解方程(組)
2.分類:
二、解方程的依據(jù)—等式性質(zhì)
1.a=b←→a+c=b+c
2.a=b←→ac=bc(c≠0)
三、解法
1.一元一次方程的解法:去分母→去括號→移項→合并同類項→
系數(shù)化成1→解。
2.元一次方程組的解法:⑴基本思想:“消元”⑵方法:①代入法
②加減法四、一元二次方程
1.定義及一般形式:
2.解法:⑴直接開平方法(注意特征)
⑵配方法(注意步驟—推倒求根公式)
⑶公式法:
⑷因式分解法(特征:左邊=0)
3.根的判別式:
4.根與系數(shù)頂?shù)年P(guān)系:
逆定理:若,則以 為根的一元二次方程是:。
5.常用等式:
五、可化為一元二次方程的方程
1.分式方程
⑴定義
⑵基本思想:
⑶基本解法:①去分母法②換元法(如,)
⑷驗根及方法
2.無理方程
⑴定義
⑵基本思想:
⑶基本解法:①乘方法(注意技巧!)②換元法(例,)⑷驗根及方法
3.簡單的二元二次方程組
由一個二元一次方程和一個二元二次方程組成的二元二次方程組都可用代入法解。
初三數(shù)學(xué)知識點
六、列方程(組)解應(yīng)用題
一概述
列方程(組)解應(yīng)用題是中學(xué)數(shù)學(xué)聯(lián)系實際的一個重要方面。其具體步驟是:
⑴審題。理解題意。弄清問題中已知量是什么,未知量是什么,問題給出和涉及的相等關(guān)系是什么。
⑵設(shè)元(未知數(shù))。①直接未知數(shù)②間接未知數(shù)(往往二者兼用)。一般來說,未知數(shù)越多,方程越易列,但越難解。
⑶用含未知數(shù)的代數(shù)式表示相關(guān)的量。
⑷尋找相等關(guān)系(有的由題目給出,有的由該問題所涉及的等量關(guān)系給出),列方程。一般地,未知數(shù)個數(shù)與方程個數(shù)是相同的。
⑸解方程及檢驗。
⑹答案。
綜上所述,列方程(組)解應(yīng)用題實質(zhì)是先把實際問題轉(zhuǎn)化為數(shù)學(xué)問題(設(shè)元、列方程),在由數(shù)學(xué)問題的解決而導(dǎo)致實際問題的解決(列方程、寫出答案)。在這個過程中,列方程起著承前啟后的作用。因此,列方程是解應(yīng)用題的關(guān)鍵。
二常用的相等關(guān)系
1.行程問題(勻速運動)
基本關(guān)系:s=vt
⑴相遇問題(同時出發(fā)):
+ =;
⑵追及問題(同時出發(fā)):
若甲出發(fā)t小時后,乙才出發(fā),而后在B處追上甲,則
⑶水中航行:;
2.配料問題:溶質(zhì)=溶液3濃度
溶液=溶質(zhì)+溶劑
3.增長率問題:
4.工程問題:基本關(guān)系:工作量=工作效率3工作時間(常把工作量看著單位“1”)。
5.幾何問題:常用勾股定理,幾何體的面積、體積公式,相似形及有關(guān)比例性質(zhì)等。
三注意語言與解析式的互化
如,“多”、“少”、“增加了”、“增加為(到)”、“同時”、“擴大為(到)”、“擴大了”、??
又如,一個三位數(shù),百位數(shù)字為a,十位數(shù)字為b,個位數(shù)字為c,則這個三位數(shù)為:100a+10b+c,而不是abc。
四注意從語言敘述中寫出相等關(guān)系。
如,x比y大3,則x-y=3或x=y+3或x-3=y。又如,x與y的差為3,則x-y=3。五注意單位換算
如,“小時”“分鐘”的換算;s、v、t單位的一致等。
七、應(yīng)用舉例(略)
初三數(shù)學(xué)知識點:第六章 一元一次不等式(組)
★重點★一元一次不等式的性質(zhì)、解法
☆ 內(nèi)容提要☆
1.定義:a>b、a
2.一元一次不等式:ax>b、ax
3.一元一次不等式組:
4.不等式的性質(zhì):⑴a>b←→a+c>b+c
⑵a>b←→ac>bc(c>0)
⑶a>b←→ac
⑷(傳遞性)a>b,b>c→a>c
⑸a>b,c>d→a+c>b+d.5.一元一次不等式的解、解一元一次不等式
6.一元一次不等式組的解、解一元一次不等式組(在數(shù)軸上表示解集)
7.應(yīng)用舉例(略)初三數(shù)學(xué)知識點 第七章 相似形
★重點★相似三角形的判定和性質(zhì)
☆內(nèi)容提要☆
一、本章的兩套定理
第一套(比例的有關(guān)性質(zhì)):
涉及概念:①第四比例項②比例中項③比的前項、后項,比的內(nèi)項、外項④黃金分割等。
第二套:
注意:①定理中“對應(yīng)”二字的含義;
②平行→相似(比例線段)→平行。
二、相似三角形性質(zhì)
1.對應(yīng)線段?;2.對應(yīng)周長?;3.對應(yīng)面積?。
三、相關(guān)作圖
①作第四比例項;②作比例中項。
四、證(解)題規(guī)律、輔助線
1.“等積”變“比例”,“比例”找“相似”。
2.找相似找不到,找中間比。方法:將等式左右兩邊的比表示出來。⑴
⑵
⑶
3.添加輔助平行線是獲得成比例線段和相似三角形的重要途徑。
4.對比例問題,常用處理方法是將“一份”看著k;對于等比問題,常用處理辦法是設(shè)“公比”為k。
5.對于復(fù)雜的幾何圖形,采用將部分需要的圖形(或基本圖形)“抽”出來的辦法處理。
五、應(yīng)用舉例(略)
初三數(shù)學(xué)知識點 第八章 函數(shù)及其圖象
★重點★正、反比例函數(shù),一次、二次函數(shù)的圖象和性質(zhì)。
☆ 內(nèi)容提要☆
一、平面直角坐標(biāo)系
1.各象限內(nèi)點的坐標(biāo)的特點
2.坐標(biāo)軸上點的坐標(biāo)的特點
3.關(guān)于坐標(biāo)軸、原點對稱的點的坐標(biāo)的特點
4.坐標(biāo)平面內(nèi)點與有序?qū)崝?shù)對的對應(yīng)關(guān)系
二、函數(shù)
1.表示方法:⑴解析法;⑵列表法;⑶圖象法。
2.確定自變量取值范圍的原則:⑴使代數(shù)式有意義;⑵使實際問題有
意義。
3.畫函數(shù)圖象:⑴列表;⑵描點;⑶連線。
三、幾種特殊函數(shù)
(定義→圖象→性質(zhì))
1.正比例函數(shù)
⑴定義:y=kx(k≠0)或y/x=k。
⑵圖象:直線(過原點)
⑶性質(zhì):①k>0,?②k<0,?
2.一次函數(shù)
⑴定義:y=kx+b(k≠0)
⑵圖象:直線過點(0,b)—與y軸的交點和(-b/k,0)—與x軸的交點。
⑶性質(zhì):①k>0,?②k<0,?
⑷圖象的四種情況:
3.二次函數(shù)
⑴定義:
特殊地,都是二次函數(shù)。
⑵圖象:拋物線(用描點法畫出:先確定頂點、對稱軸、開口方向,再對稱地描點)。用配方法變?yōu)椋瑒t頂點為(h,k);對稱軸為直線x=h;a>0時,開口向上;a<0時,開口向下。
⑶性質(zhì):a>0時,在對稱軸左側(cè)?,右側(cè)?;a<0時,在對稱軸左側(cè)?,右側(cè)?。
4.反比例函數(shù)
⑴定義: 或xy=k(k≠0)。
⑵圖象:雙曲線(兩支)—用描點法畫出。
⑶性質(zhì):①k>0時,圖象位于?,y隨x?;②k<0時,圖象位于?,y隨x?;③兩支曲線無限接近于坐標(biāo)軸但永遠(yuǎn)不能到達坐標(biāo)軸。
四、重要解題方法
1.用待定系數(shù)法求解析式(列方程[組]求解)。對求二次函數(shù)的解析式,要合理選用一般式或頂點式,并應(yīng)充分運用拋物線關(guān)于對稱軸對稱的特點,尋找新的點的坐標(biāo)。如下圖:
2.利用圖象一次(正比例)函數(shù)、反比例函數(shù)、二次函數(shù)中的k、b;a、b、c的符號。
六、應(yīng)用舉例(略)
初三數(shù)學(xué)知識點 第九章 解直角三角形
★重點★解直角三角形
☆ 內(nèi)容提要☆ 一、三角函數(shù)
1.定義:在Rt△ABC中,∠C=Rt∠,則sinA=;cosA=;tgA=;ctgA=.2.特殊角的三角函數(shù)值:
0° 30° 45° 60° 90°
sinα
cosα
tgα /
ctgα /
3.互余兩角的三角函數(shù)關(guān)系:sin(90°-α)=cosα;?
4.三角函數(shù)值隨角度變化的關(guān)系
5.查三角函數(shù)表
二、解直角三角形
1.定義:已知邊和角(兩個,其中必有一邊)→所有未知的邊和角。
2.依據(jù):①邊的關(guān)系:
②角的關(guān)系:A+B=90°
③邊角關(guān)系:三角函數(shù)的定義。
注意:盡量避免使用中間數(shù)據(jù)和除法。
三、對實際問題的處理
1.俯、仰角: 2.方位角、象限角: 3.坡度:
4.在兩個直角三角形中,都缺解直角三角形的條件時,可用列方程的辦法解決。
四、應(yīng)用舉例(略)
初三數(shù)學(xué)知識點 第十章 圓
★重點★①圓的重要性質(zhì);②直線與圓、圓與圓的位置關(guān)系;③與圓有關(guān)的角的定理;④與圓有關(guān)的比例線段定理。
☆ 內(nèi)容提要☆
一、圓的基本性質(zhì)
1.圓的定義(兩種)
2.有關(guān)概念:弦、直徑;弧、等弧、優(yōu)弧、劣弧、半圓;弦心距;等圓、同圓、同心圓。
3.“三點定圓”定理
4.垂徑定理及其推論
5.“等對等”定理及其推論
5.與圓有關(guān)的角:⑴圓心角定義(等對等定理)
⑵圓周角定義(圓周角定理,與圓心角的關(guān)系)
⑶弦切角定義(弦切角定理)
二、直線和圓的位置關(guān)系
1.三種位置及判定與性質(zhì):
2.切線的性質(zhì)(重點)
3.切線的判定定理(重點)。圓的切線的判定有⑴?⑵?
4.切線長定理
三、圓換圓的位置關(guān)系
1.五種位置關(guān)系及判定與性質(zhì):(重點:相切)
2.相切(交)兩圓連心線的性質(zhì)定理
3.兩圓的公切線:⑴定義⑵性質(zhì)
四、與圓有關(guān)的比例線段
1.相交弦定理
2.切割線定理
五、與和正多邊形
1.圓的內(nèi)接、外切多邊形(三角形、四邊形)
2.三角形的外接圓、內(nèi)切圓及性質(zhì)
3.圓的外切四邊形、內(nèi)接四邊形的性質(zhì)
4.正多邊形及計算
中心角:
內(nèi)角的一半:(右圖)
(解Rt△OAM可求出相關(guān)元素,、等)
六、一組計算公式
1.圓周長公式
2.圓面積公式
3.扇形面積公式
4.弧長公式
5.弓形面積的計算方法
6.圓柱、圓錐的側(cè)面展開圖及相關(guān)計算
七、點的軌跡
六條基本軌跡
八、有關(guān)作圖
1.作三角形的外接圓、內(nèi)切圓
2.平分已知弧
3.作已知兩線段的比例中項
4.等分圓周:
4、8;
6、3等分
九、基本圖形
十、重要輔助線
1.作半徑
2.見弦往往作弦心距
3.見直徑往往作直徑上的圓周角
4.切點圓心莫忘連
5.兩圓相切公切線(連心線)
6.兩圓相交公共弦
第三篇:初三數(shù)學(xué)知識點歸納人教版
初三數(shù)學(xué)知識點歸納人教版有哪些?初中數(shù)學(xué)學(xué)習(xí)是對學(xué)生邏輯計算能力的培養(yǎng),學(xué)好初三數(shù)學(xué)的關(guān)鍵就在于要適時適量地進行總結(jié)歸類,一起來看看初三數(shù)學(xué)知識點歸納人教版,歡迎查閱!
初三數(shù)學(xué)知識點總結(jié)
一、直線、相交線、平行線
1.線段、射線、直線三者的區(qū)別與聯(lián)系
從圖形、表示法、界限、端點個數(shù)、基本性質(zhì)等方面加以分析。
2.線段的中點及表示
3.直線、線段的基本性質(zhì)(用線段的基本性質(zhì)論證三角形兩邊之和大于第三邊)
4.兩點間的距離(三個距離:點-點;點-線;線-線)
5.角(平角、周角、直角、銳角、鈍角)
6.互為余角、互為補角及表示方法
7.角的平分線及其表示
8.垂線及基本性質(zhì)(利用它證明直角三角形中斜邊大于直角邊)
9.對頂角及性質(zhì)
10.平行線及判定與性質(zhì)(互逆)(二者的區(qū)別與聯(lián)系)
11.常用定理:①同平行于一條直線的兩條直線平行(傳遞性);②同垂直于一條直線的兩條直線平行。
12.定義、命題、命題的組成13.公理、定理
14.逆命題二、三角形
分類:⑴按邊分;
⑵按角分
1.定義(包括內(nèi)、外角)
2.三角形的邊角關(guān)系:⑴角與角:①內(nèi)角和及推論;②外角和;③n邊形內(nèi)角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大于第三邊,兩邊之差小于第三邊。⑶角與邊:在同一三角形中,3.三角形的主要線段
討論:①定義②線的交點-三角形的心③性質(zhì)
① 高線②中線③角平分線④中垂線⑤中位線
⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等邊三角形
4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質(zhì)
5.全等三角形
⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)
⑵特殊三角形全等的判定:①一般方法②專用方法
6.三角形的面積
⑴一般計算公式⑵性質(zhì):等底等高的三角形面積相等。
7.重要輔助線
⑴中點配中點構(gòu)成中位線;⑵加倍中線;⑶添加輔助平行線
8.證明方法
⑴直接證法:綜合法、分析法
⑵間接證法-反證法:①反設(shè)②歸謬③結(jié)論
⑶證線段相等、角相等常通過證三角形全等
⑷證線段倍分關(guān)系:加倍法、折半法
⑸證線段和差關(guān)系:延結(jié)法、截余法
⑹證面積關(guān)系:將面積表示出來三、四邊形
分類表:
1.一般性質(zhì)(角)
⑴內(nèi)角和:360
⑵順次連結(jié)各邊中點得平行四邊形。
推論1:順次連結(jié)對角線相等的四邊形各邊中點得菱形。
推論2:順次連結(jié)對角線互相垂直的`四邊形各邊中點得矩形。
⑶外角和:360
2.特殊四邊形
⑴研究它們的一般方法:
⑵平行四邊形、矩形、菱形、正方形;梯形、等腰梯形的定義、性質(zhì)和判定
⑶判定步驟:四邊形平行四邊形矩形正方形
⑷對角線的紐帶作用:
3.對稱圖形
⑴軸對稱(定義及性質(zhì));⑵中心對稱(定義及性質(zhì))
4.有關(guān)定理:①平行線等分線段定理及其推論1、2
②三角形、梯形的中位線定理
③平行線間的距離處處相等。(如,找下圖中面積相等的三角形)
5.重要輔助線:①常連結(jié)四邊形的對角線;②梯形中常平移一腰、平移對角線、作高、連結(jié)頂點和對腰中點并延長與底邊相交轉(zhuǎn)化為三角形。
6.作圖:任意等分線段。
初三數(shù)學(xué)知識點歸納大全
第四章直線形
★重點★相交線與平行線、三角形、四邊形的有關(guān)概念、判定、性質(zhì)。
☆內(nèi)容提要☆
一、直線、相交線、平行線
1.線段、射線、直線三者的區(qū)別與聯(lián)系
從“圖形”、“表示法”、“界限”、“端點個數(shù)”、“基本性質(zhì)”等方面加以分析。
2.線段的中點及表示
3.直線、線段的基本性質(zhì)(用“線段的基本性質(zhì)”論證“三角形兩邊之和大于第三邊”)
4.兩點間的距離(三個距離:點-點;點-線;線-線)
5.角(平角、周角、直角、銳角、鈍角)
6.互為余角、互為補角及表示方法
7.角的平分線及其表示
8.垂線及基本性質(zhì)(利用它證明“直角三角形中斜邊大于直角邊”)
9.對頂角及性質(zhì)
10.平行線及判定與性質(zhì)(互逆)(二者的區(qū)別與聯(lián)系)
11.常用定理:①同平行于一條直線的兩條直線平行(傳遞性);②同垂直于一條直線的兩條直線平行。
12.定義、命題、命題的組成13.公理、定理
14.逆命題二、三角形
分類:⑴按邊分;
⑵按角分
1.定義(包括內(nèi)、外角)
2.三角形的邊角關(guān)系:⑴角與角:①內(nèi)角和及推論;②外角和;③n邊形內(nèi)角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大于第三邊,兩邊之差小于第三邊。⑶角與邊:在同一三角形中,3.三角形的主要線段
討論:①定義②__線的交點―三角形的×心③性質(zhì)
①高線②中線③角平分線④中垂線⑤中位線
⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等邊三角形
4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質(zhì)
5.全等三角形
⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)
⑵特殊三角形全等的判定:①一般方法②專用方法
6.三角形的面積
⑴一般計算公式⑵性質(zhì):等底等高的三角形面積相等。
7.重要輔助線
⑴中點配中點構(gòu)成中位線;⑵加倍中線;⑶添加輔助平行線
8.證明方法
⑴直接證法:綜合法、分析法
⑵間接證法―反證法:①反設(shè)②歸謬③結(jié)論
⑶證線段相等、角相等常通過證三角形全等
⑷證線段倍分關(guān)系:加倍法、折半法
⑸證線段和差關(guān)系:延結(jié)法、截余法
⑹證面積關(guān)系:將面積表示出來三、四邊形
分類表:
1.一般性質(zhì)(角)
⑴內(nèi)角和:360°
⑵順次連結(jié)各邊中點得平行四邊形。
推論1:順次連結(jié)對角線相等的四邊形各邊中點得菱形。
推論2:順次連結(jié)對角線互相垂直的四邊形各邊中點得矩形。
⑶外角和:360°
2.特殊四邊形
⑴研究它們的一般方法:
⑵平行四邊形、矩形、菱形、正方形;梯形、等腰梯形的定義、性質(zhì)和判定
⑶判定步驟:四邊形→平行四邊形→矩形→正方形
┗→菱形――↑
⑷對角線的紐帶作用:
3.對稱圖形
⑴軸對稱(定義及性質(zhì));⑵中心對稱(定義及性質(zhì))
4.有關(guān)定理:①平行線等分線段定理及其推論1、2
②三角形、梯形的中位線定理
③平行線間的距離處處相等。(如,找下圖中面積相等的三角形)
5.重要輔助線:①常連結(jié)四邊形的對角線;②梯形中?!捌揭埔谎?、“平移對角線”、“作高”、“連結(jié)頂點和對腰中點并延長與底邊相交”轉(zhuǎn)化為三角形。
6.作圖:任意等分線段。
初中數(shù)學(xué)知識點總結(jié)歸納
代數(shù)部分:有理數(shù)、無理數(shù)、實數(shù)整式、分式、二次根式一元一次方程、一元二次方程、二(三)元一次方程組、二元二次方程組、分式方程、一元一次不等式函數(shù)(一次函數(shù)、二次函數(shù)、反比例函數(shù))
幾何部分:線段、角相交線、平行線三角形、四邊形、相似形、圓。
1、實數(shù)的分類
有理數(shù):整數(shù)(包括:正整數(shù)、0、負(fù)整數(shù))和分?jǐn)?shù)(包括:有限小數(shù)和無限環(huán)循小數(shù))都是有理數(shù)。如:-3,0.231,0.737373...無理數(shù):無限不環(huán)循小數(shù)叫做無理數(shù)如:π,-,0.1010010001...(兩個1之間依次多1個0)。
實數(shù):有理數(shù)和無理數(shù)統(tǒng)稱為實數(shù)。
2、無理數(shù)
在理解無理數(shù)時,要抓住“無限不循環(huán)”這一時之,它包含兩層意思:一是無限小數(shù);二是不循環(huán).二者缺一不可.歸納起來有四類:
(1)開方開不盡的數(shù),如等;
(2)有特定意義的數(shù),如圓周率π,或化簡后含有π的數(shù),如+8等;
(3)有特定結(jié)構(gòu)的數(shù),如0.1010010001...等;
(4)某些三角函數(shù),如sin60o等。
注意:判斷一個實數(shù)的屬性(如有理數(shù)、無理數(shù)),應(yīng)遵循:一化簡,二辨析,三判斷.要注意:“神似”或“形似”都不能作為判斷的標(biāo)準(zhǔn).3、非負(fù)數(shù):正實數(shù)與零的統(tǒng)稱。(表為:x≥0)
常見的非負(fù)數(shù)有:
性質(zhì):若干個非負(fù)數(shù)的和為0,則每個非負(fù)擔(dān)數(shù)均為0。
4、數(shù)軸:規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時,要注意上述規(guī)定的三要素缺一不可)。
解題時要真正掌握數(shù)形結(jié)合的思想,理解實數(shù)與數(shù)軸的點是一一對應(yīng)的,并能靈活運用。
①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數(shù)軸(“三要素”)。
②任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示。
③如果兩個數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。
作用:A.直觀地比較實數(shù)的大小;B.明確體現(xiàn)絕對值意義;C.建立點與實數(shù)的一一對應(yīng)關(guān)系。
5、相反數(shù)
實數(shù)與它的相反數(shù)時一對數(shù)(只有符號不同的兩個數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個數(shù)所對應(yīng)的點關(guān)于原點對稱,如果a與b互為相反數(shù),則有a+b=0,a=-b,反之亦成立。
即:(1)實數(shù)的相反數(shù)是。
第四篇:初三數(shù)學(xué)上冊知識點
初三數(shù)學(xué)上冊知識點
一、圓的基本性質(zhì)
1.圓的定義(兩種)
2.有關(guān)概念:弦、直徑;弧、等弧、優(yōu)弧、劣弧、半圓;弦心距;等圓、同圓、同心圓。
3.“三點定圓”定理
4.垂徑定理及其推論
5.“等對等”定理及其推論
5. 與圓有關(guān)的角:⑴圓心角定義(等對等定理)
⑵圓周角定義(圓周角定理,與圓心角的關(guān)系)
⑶弦切角定義(弦切角定理)
二、直線和圓的位置關(guān)系
1.三種位置及判定與性質(zhì):
2.切線的性質(zhì)(重點)
3.切線的判定定理(重點)。圓的切線的判定有⑴?⑵?
4.切線長定理
三、圓換圓的位置關(guān)系
1.五種位置關(guān)系及判定與性質(zhì):(重點:相切)
2.相切(交)兩圓連心線的性質(zhì)定理
3.兩圓的公切線:⑴定義⑵性質(zhì)
四、與圓有關(guān)的比例線段
1.相交弦定理
2.切割線定理
五、與和正多邊形
1.圓的內(nèi)接、外切多邊形(三角形、四邊形)
2.三角形的外接圓、內(nèi)切圓及性質(zhì)
3.圓的外切四邊形、內(nèi)接四邊形的性質(zhì)
4.正多邊形及計算
中心角:
內(nèi)角的一半:(右圖)
(解Rt△OAM可求出相關(guān)元素,、等)
六、一組計算公式
1.圓周長公式
2.圓面積公式
3.扇形面積公式
4.弧長公式
5.弓形面積的計算方法
6.圓柱、圓錐的側(cè)面展開圖及相關(guān)計算
七、點的軌跡
六條基本軌跡
八、有關(guān)作圖
1.作三角形的外接圓、內(nèi)切圓
2.平分已知弧
3.作已知兩線段的比例中項
4.等分圓周:
4、8;
6、3等分
第五篇:初三(九年級)下冊數(shù)學(xué)知識點歸納
初三(九年級)下冊數(shù)學(xué)知識點歸納
九年級下冊知識點歸納包括二次函數(shù)、相似、銳角三角形、投影與視圖共四章內(nèi)容,主要總結(jié)了這幾個單元的重點和難點的內(nèi)容,是初三同學(xué)們和中考考生的必備資料!
第二十六章 二次函數(shù)
26.1 二次函數(shù)及其圖像
二次函數(shù)(quadratic function)是指未知數(shù)的最高次數(shù)為二次的多項式函數(shù)。二次函數(shù)可以表示為f(x)=ax^2+bx+c(a不為0)。其圖像是一條主軸平行于y軸的拋物線。
一般的,自變量x和因變量y之間存在如下關(guān)系:
一般式
y=ax+bx+c(a0,a、b、c為常數(shù)),頂點坐標(biāo)為(-b/2a,-(4ac-b2)/4a);頂點式
y=a(x+m)2+k(a0,a、m、k為常數(shù))或y=a(x-h)2+k(a0,a、h、k為常數(shù)),頂點坐標(biāo)為(-m,k)對稱軸為x=-m,頂點的位置特征和圖像的開口方向與函數(shù)y=ax2的圖像相同,有時題目會指出讓你用配方法把一般式化成頂點式;交點式
y=a(x-x1)(x-x2)[僅限于與x軸有交點A(x1,0)和 B(x2,0)的拋物線];
重要概念:a,b,c為常數(shù),a0,且a決定函數(shù)的開口方向,a0時,開口方向向上,a0時,開口方向向下。a的絕對值還可以決定開口大小,a的絕對值越大開口就越小,a的絕對值越小開口就越大。
牛頓插值公式(已知三點求函數(shù)解析式)
y=(y3(x-x1)(x-x2))/((x3-x1)(x3-x2)+(y2(x-x1)(x-x3))/((x2-x1)(x2-x3)+(y1(x-x2)(x-x3))/((x1-x2)(x1-x3)。由此可引導(dǎo)出交點式的系數(shù)a=y1/(x1*x2)(y1為截距)
求根公式
二次函數(shù)表達式的右邊通常為二次三項式。
求根公式
x是自變量,y是x的二次函數(shù)
x1,x2=[-b((b^2-4ac))]/2a
(即一元二次方程求根公式)(如右圖)
求根的方法還有因式分解法和配方法
在平面直角坐標(biāo)系中作出二次函數(shù)y=2x的平方的圖像,可以看出,二次函數(shù)的圖像是一條永無止境的拋物線。
不同的二次函數(shù)圖像 如果所畫圖形準(zhǔn)確無誤,那么二次函數(shù)將是由一般式平移得到的。
注意:草圖要有 1本身圖像,旁邊注明函數(shù)。
2畫出對稱軸,并注明X=什么
3與X軸交點坐標(biāo),與Y軸交點坐標(biāo),頂點坐標(biāo)。拋物線的性質(zhì)
軸對稱
1.拋物線是軸對稱圖形。對稱軸為直線x =-b/2a。
對稱軸與拋物線唯一的交點為拋物線的頂點P。
特別地,當(dāng)b=0時,拋物線的對稱軸是y軸(即直線x=0)頂點
2.拋物線有一個頂點P,坐標(biāo)為P(-b/2a,4ac-b^2;)/4a)當(dāng)-b/2a=0時,P在y軸上;當(dāng)= b^2;-4ac=0時,P在x軸上。
開口
3.二次項系數(shù)a決定拋物線的開口方向和大小。
當(dāng)a0時,拋物線向上開口;當(dāng)a0時,拋物線向下開口。
|a|越大,則拋物線的開口越小。
決定對稱軸位置的因素
4.一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。
當(dāng)a與b同號時(即ab0),對稱軸在y軸左;因為若對稱軸在左邊則對稱軸小于0,也就是-b/2a0,所以b/2a要大于0,所以a、b要同號
當(dāng)a與b異號時(即ab0),對稱軸在y軸右。因為對稱軸在右邊則對稱軸要大于0,也就是-b/2a0, 所以b/2a要小于0,所以a、b要異號 可簡單記憶為左同右異,即當(dāng)a與b同號時(即ab0),對稱軸在y軸左;當(dāng)a與b異號時(即ab 0),對稱軸在y軸右。
事實上,b有其自身的幾何意義:拋物線與y軸的交點處的該拋物線切線的函數(shù)解析式(一次函數(shù))的斜率k的值??赏ㄟ^對二次函數(shù)求導(dǎo)得到。
決定拋物線與y軸交點的因素
5.常數(shù)項c決定拋物線與y軸交點。
拋物線與y軸交于(0,c)
拋物線與x軸交點個數(shù)
6.拋物線與x軸交點個數(shù)
= b^2-4ac0時,拋物線與x軸有2個交點。
= b^2-4ac=0時,拋物線與x軸有1個交點。
_______
= b^2-4ac0時,拋物線與x軸沒有交點。X的取值是虛數(shù)(x=-bb^2-4ac 的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)
當(dāng)a0時,函數(shù)在x=-b/2a處取得最小值f(-b/2a)=4ac-b在{x|x-b/2a}上是減函數(shù),在
{x|x-b/2a}上是增函數(shù);拋物線的開口向上;函數(shù)的值域是{y|y4ac-b^2/4a}相反不變
當(dāng)b=0時,拋物線的對稱軸是y軸,這時,函數(shù)是偶函數(shù),解析式變形為y=ax^2+c(a0)
特殊值的形式
7.特殊值的形式
①當(dāng)x=1時 y=a+b+c
②當(dāng)x=-1時 y=a-b+c
③當(dāng)x=2時 y=4a+2b+c
④當(dāng)x=-2時 y=4a-2b+c
二次函數(shù)的性質(zhì)
8.定義域:R
值域:(對應(yīng)解析式,且只討論a大于0的情況,a小于0的情況請讀者自行推斷)①[(4ac-b^2)/4a,正無窮);②[t,正無窮)
奇偶性:當(dāng)b=0時為偶函數(shù),當(dāng)b0時為非奇非偶函數(shù)。
周期性:無
解析式:
①y=ax^2+bx+c[一般式] ⑴a0 ⑵a0,則拋物線開口朝上;a0,則拋物線開口朝下;
⑶極值點:(-b/2a,(4ac-b^2)/4a);
⑷=b^2-4ac,0,圖象與x軸交于兩點:
([-b-]/2a,0)和([-b+]/2a,0);
=0,圖象與x軸交于一點:
(-b/2a,0);
0,圖象與x軸無交點;
②y=a(x-h)^2+k[頂點式]
此時,對應(yīng)極值點為(h,k),其中h=-b/2a,k=(4ac-b^2)/4a;
③y=a(x-x1)(x-x2)[交點式(雙根式)](a0)對稱軸X=(X1+X2)/2 當(dāng)a0 且X≧(X1+X2)/2時,Y隨X的增大而增大,當(dāng)a0且X≦(X1+X2)/2時Y隨X 的增大而減小
此時,x1、x2即為函數(shù)與X軸的兩個交點,將X、Y代入即可求出解析式(一般與一元二次方程連
用)。
交點式是Y=A(X-X1)(X-X2)知道兩個x軸交點和另一個點坐標(biāo)設(shè)交點式。兩交點X值就是相應(yīng)X1 X2值。
26.2 用函數(shù)觀點看一元二次方程
1.如果拋物線 與x軸有公共點,公共點的橫坐標(biāo)是,那么當(dāng) 時,函數(shù)的值是0,因此 就是方程的一個根。
2.二次函數(shù)的圖象與x軸的位置關(guān)系有三種:沒有公共點,有一個公共點,有兩個公共點。這對應(yīng)著一元二次方程根的三種情況:沒有實數(shù)根,有兩個相等的實數(shù)根,有兩個不等的實數(shù)根。
26.3 實際問題與二次函數(shù)
在日常生活、生產(chǎn)和科研中,求使材料最省、時間最少、效率最高等問題,有些可歸結(jié)為求二次函數(shù)的最大值或最小值。