欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      基本初等函數(shù)的極限(全文5篇)

      時(shí)間:2019-05-12 05:24:21下載本文作者:會(huì)員上傳
      簡介:寫寫幫文庫小編為你整理了多篇相關(guān)的《基本初等函數(shù)的極限》,但愿對(duì)你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫還可以找到更多《基本初等函數(shù)的極限》。

      第一篇:基本初等函數(shù)的極限

      基本初等函數(shù)在其定義域內(nèi)極限值等于函數(shù)值.c?c 常函數(shù) y?c limx

      指數(shù)函數(shù) y?ax?a?0,a?1?

      a?1 limax??? limax?0;0?a?1 limax?0 limax??? x???x???x???x???對(duì)數(shù)函數(shù) y?logax?a?0,a?1?

      logax???;0?a?1limlogax???,limlogax??? a?1limlogax???,lim??x???x?0x???x?0

      三角函數(shù)

      y?tanx lim

      ?x??k???2?????tanx??? lim?x??k???2?????tanx???

      y?cotx lim?cotx??? lim?cotx??? x??k??x??k??

      反三角函數(shù)

      x???limarctanx??2arctanx??;limarccotx?0 limarccotx??xlimx???x??????2?

      冪函數(shù) y?x?

      x2??定義域?yàn)镽,例如y?x2,limx??

      1/21/21/2limx???limx?0(定義域內(nèi)的點(diǎn))0,??定義域?yàn)?,例如,y?x??x???x?0?

      x?1?0,limx?1?? 定義域?yàn)???,0???0,???,例如y?x?1,limx??x?0

      x?1/2?0,limx?1/2??? 定義域?yàn)?0,???,例如y?x?1/2,xlim???x?0?

      注:不管?的取值,定義域都包括?0,???

      ???0,limx????,lim?x??0;??0,limx??0,limx??? ?x???x?0x???x?0

      第二篇:基本初等函數(shù)

      基本初等函數(shù)

      一、考點(diǎn)分析

      函數(shù)是高中數(shù)學(xué)的主要內(nèi)容,它把中學(xué)數(shù)學(xué)的各個(gè)分支緊密地聯(lián)系在一起,是中學(xué)數(shù)學(xué)全部內(nèi)容的主線。在高考中,至少三個(gè)小題一個(gè)大題,分值在30分左右。以指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、生成性函數(shù)為載體結(jié)合圖象的變換(平移、伸縮、對(duì)稱變換)、四性問題(單調(diào)性、奇偶性、周期性、對(duì)稱性)、反函數(shù)問題常常是選擇題、填空題考查的主要內(nèi)容,其中函數(shù)的單調(diào)性和奇偶性有向抽象函數(shù)發(fā)展的趨勢。函數(shù)與導(dǎo)數(shù)的結(jié)合是高考的熱點(diǎn)題型,文科以三次(或四次)函數(shù)為命題載體,理科以生成性函數(shù)(對(duì)數(shù)函數(shù)、指數(shù)函數(shù)及分式函數(shù))為命題載體,以切線問題、極值最值問題、單調(diào)性問題、恒成立問題為設(shè)置條件,與不等式、數(shù)列綜合成題,是解答題試題的主要特點(diǎn)。

      考點(diǎn):函數(shù)的定義域和值域,了解并簡單應(yīng)用分段函數(shù),函數(shù)的單調(diào)性、最值及幾何意義、奇偶性,會(huì)利用函數(shù)圖像表示并分析函數(shù)的性質(zhì);理解指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的概念以及運(yùn)算

      性質(zhì),會(huì)畫圖像并且了解相關(guān)性質(zhì)。了解冪函數(shù)的概念,結(jié)合圖像了解變化情況。

      易錯(cuò)點(diǎn):容易遺忘判斷單調(diào)性以及奇偶性的方法;容易遺忘指數(shù)、對(duì)數(shù)函數(shù)的圖像性質(zhì),以及相關(guān)的運(yùn)算性質(zhì)。

      難點(diǎn):函數(shù)的單調(diào)性、奇偶性,指數(shù)、對(duì)數(shù)函數(shù)的圖像性質(zhì)以及運(yùn)算性質(zhì)。

      二、知識(shí)分析

      1.函數(shù)的三要素是什么?如何比較兩個(gè)函數(shù)是否相同?(定義域、對(duì)應(yīng)法則、值域)

      2.求函數(shù)的定義域有哪些常見類型?

      例:函數(shù)

      y?lgx?3的定義域是答:?0,2?3??3,4? ?2,3.如何求復(fù)合函數(shù)的定義域?

      如:函數(shù)f(x)的定義域是?a,b?,b??a?0,則函數(shù)F(x)?f(x)?f(?x)的定義域是_____________。答:?a,?a?

      4.求一個(gè)函數(shù)的解析式數(shù)時(shí),注明函數(shù)的定義域了嗎?

      如:f

      令t?ex?x,求f(x)t?0,∴x?t2?1,∴f(t)?et

      x2?12?1?t2?1,∴f(x)?e?x2?1?x?0?

      5.如何用定義證明函數(shù)的單調(diào)性?(取值、作差、判正負(fù))

      如何判斷復(fù)合函數(shù)的單調(diào)性?,u??(x)(內(nèi)層),則y?f??(x)? y?f(u)(外層)

      當(dāng)內(nèi)、外層函數(shù)單調(diào)性相同時(shí),f

      ??(x)?為增函數(shù),否則f??(x)?為減函數(shù)

      如:求y?log1?x2?2x的單調(diào)區(qū)間。

      設(shè)u??x?2x,由u?0,則0?x?2且log1u?,u???x?1??1,如圖

      ??

      當(dāng)x?(0,1]時(shí),u?,又log1u?,∴y?

      當(dāng)x?[1,2)時(shí),u?,又log1u?,∴y?

      ∴……)

      6.如何利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性?

      在區(qū)間?a,b?內(nèi),若總有f'(x)?0,則f(x)為增函數(shù)。(在個(gè)別點(diǎn)上導(dǎo)數(shù)等于零,不影響函數(shù)的單調(diào)性),反之也對(duì),若f'(x)?0呢?

      如:已知a?0,函數(shù)f(x)?x3?ax在?1,???上是單調(diào)增函數(shù),則a的最大值是 A.0

      B.1C.2D.

      3?x??0令f'(x)?3x?a?3?x?,則x?

      x?,??

      由已知f(x)在?1,????1,即a?3,∴a的最大值為3 7.函數(shù)f(x)具有奇偶性的必要(非充分)條件是什么?(f(x)定義域關(guān)于原點(diǎn)對(duì)稱)

      若f(?x)??f(x)總成立?f(x)為奇函數(shù)?函數(shù)圖像關(guān)于原點(diǎn)對(duì)稱 若f(?x)?f(x)總成立?f(x)為偶函數(shù)?函數(shù)圖像關(guān)于y軸對(duì)稱 注意如下結(jié)論:

      (1)在公共定義域內(nèi):兩個(gè)奇函數(shù)的乘積是偶函數(shù);兩個(gè)偶函數(shù)的乘積是偶函數(shù);一個(gè)偶函數(shù)與奇函數(shù)的乘積是奇函數(shù)。

      (2)若f(x)是奇函數(shù)且定義域中有原點(diǎn),則f(0)?0

      a·2x?a?

      2如:若f(x)?為奇函數(shù),則實(shí)數(shù)a?

      2x?

      1a·20?a?2

      ?0,∴a?1 ∵f(x)為奇函數(shù),x?R,又0?R,∴f(0)?0,即0

      2?12x

      又如:f(x)為定義在(?11),求f(x)在,上的奇函數(shù),當(dāng)x?(0,1)時(shí),f(x)?x

      4?1(?11),上的解析式。

      2?x

      令x???10,?,則?x??01,?,f(?x)??x

      4?12?x2x

      ??又f(x)為奇函數(shù),∴f(x)???x

      4?11?4x

      ?2x

      0)??4x?1,x?(?1,??

      又f(0)?0,∴f(x)??0,x?0

      ?2x

      ?x,x??0,1??4?1?

      8.你熟悉周期函數(shù)的定義嗎?

      (T?0)若存在實(shí)數(shù)T,在定義域內(nèi)總有f?x?T??f(x),則f(x)為周期函數(shù),T是

      一個(gè)周期。如:若f?x?a???f(x),則答: T?2a為f(x)的一個(gè)周期。

      又如:若f(x)圖像有兩條對(duì)稱軸x?a,x?b???即f(b?x)?f(b?x),f(a?x)?f(a?x),則f(x)是周期函數(shù),2|a?b|為一個(gè)周期

      如圖:

      9.你掌握常用的圖象變換了嗎?

      f(x)與f(?x)的圖像關(guān)于y軸對(duì)稱 f(x)與?f(x)的圖像關(guān)于x軸對(duì)稱 f(x)與?f(?x)的圖像關(guān)于原點(diǎn)對(duì)稱 ?將y?f(x)圖像??????右移a(a?0)個(gè)單位

      左移a(a?0)個(gè)單位

      y?f(x?a)上移b(b?0)個(gè)單位y?f(x?a)?b

      ??????? 下移b(b?0)個(gè)單位

      y?f(x?a)y?f(x?a)?b

      注意如下“翻折”變換:f(x)?|f(x)|,f(x)?f(|x|)

      如:f(x)?log2?x?1?y=log2x

      作出y?|log2?x?1?|及y?log2|x?1|的圖像

      10.你熟練掌握常用函數(shù)的圖象和性質(zhì)了嗎?

      (1)一次函數(shù):y?kx?b?k?0?(2)反比例函數(shù):y?

      kk

      ?k?0?推廣為y?b??k?0?是中心O'(a,b)的雙曲線。

      xx?a

      b?4ac?b2?

      (3)二次函數(shù)y?ax?bx?c?a?0??a?x?的圖像為拋物線 ??

      2a?4a?

      ?b4ac?b2?bx??頂點(diǎn)坐標(biāo)為??,對(duì)稱軸 ?2a4a??2a

      開口方向:a?0,向上,函數(shù)ymin

      4ac?b2?

      4a

      a?0,向下,ymax

      4ac?b2?

      4a

      應(yīng)用:①“三個(gè)二次”(二次函數(shù)、二次方程、二次不

      等式)的關(guān)系——二次方程ax?bx?c?0,??0時(shí),兩根x1、x2為二次函數(shù)

      也是二次不等式ax?bx?c?0(?0)解集的端y?ax2?bx?c的圖像與x軸的兩個(gè)交點(diǎn),點(diǎn)值。

      ②求閉區(qū)間[m,n]上的最值。

      ③求區(qū)間定(動(dòng)),對(duì)稱軸動(dòng)(定)的最值問題。④一元二次方程根的分布問題。

      如:二次方程ax?bx?c?0的兩根都大于

      ???0

      ?b?k????k,一根大于k,一根小于k?f(k)?0

      2a???f(k)?0

      (4)指數(shù)函數(shù):y?a

      x

      ?a?0,a?1?

      ax(a>1)

      (5)對(duì)數(shù)函數(shù):y?logax?a?0,a?1?

      由圖象記性質(zhì)!(注意底數(shù)的限定?。?)“對(duì)勾函數(shù)”y?x?

      (a?

      0),k

      ?k?0? x

      1ap

      11.你在基本運(yùn)算上常出現(xiàn)錯(cuò)誤嗎?

      指數(shù)運(yùn)算:a0?1(a?0),a

      ?p

      ?

      a?a?

      0),a

      mn

      ?

      mn

      ?

      a?0)

      對(duì)數(shù)運(yùn)算:logaM·N?logaM?logaN?M?0,N?0?

      loga

      M

      1?logaM?logaN,loga?logaM Nn

      logax

      對(duì)數(shù)恒等式:a

      ?x;對(duì)數(shù)換底公式:logab?

      logcbn

      ?logambn?logab logcam

      12.如何解抽象函數(shù)問題?(賦值法、結(jié)構(gòu)變換法)

      如:(1)x?R,f(x)滿足f(x?y)?f(x)?f(y),證明f(x)為奇函數(shù)。先令x?y?0?f(0)?0,再令y??x,……

      (2)x?R,f(x)滿足f(xy)?f(x)?f(y),證明f(x)為偶函數(shù)。先令x?y??t?f[(?t)(?t)]?f(t?t),∴f(?t)?f(?t)?f(t)?f(t),∴f(?t)?f(t)……

      (3)證明單調(diào)性:f(x2)?f???x2?x1??x2???…… 13.掌握求函數(shù)值域的常用方法了嗎?

      (二次函數(shù)法(配方法),換元法,均值定理法,利用函數(shù)單調(diào)性法,導(dǎo)數(shù)法等。)

      三、習(xí)題

      第三篇:基本初等函數(shù)教學(xué)反思

      初中我們學(xué)習(xí)了一次函數(shù)、二次函數(shù)、反比例函數(shù)三類初等函數(shù),必修一中我們又要學(xué)習(xí)另外三種初等函數(shù)----指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)。在前兩章中我們已經(jīng)學(xué)習(xí)了函數(shù)的概念、函數(shù)的基本性質(zhì)——單調(diào)性、奇偶性,我在教學(xué)學(xué)過程中就將這些性質(zhì)和初中學(xué)習(xí)的函數(shù)進(jìn)行結(jié)合,分析討論這些函數(shù)的相關(guān)性質(zhì)。指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)的研究也是以這些基本性質(zhì)為出發(fā)點(diǎn),來進(jìn)行研究的。實(shí)質(zhì)是對(duì)函數(shù)性質(zhì)研究的延續(xù)。我主要談一下我在教學(xué)對(duì)數(shù)函數(shù)的圖像和性質(zhì)方面的感受。

      指數(shù)函數(shù)和對(duì)數(shù)函數(shù)間有著密不可分的關(guān)系,它們的性質(zhì)有好多的相似指處,因此在教學(xué)過程中,我比較注重培養(yǎng)學(xué)生運(yùn)用對(duì)比、類比的數(shù)學(xué)思想去學(xué)習(xí)對(duì)數(shù)函數(shù)函數(shù)。;同時(shí)從數(shù)形結(jié)合的角度去感性認(rèn)識(shí)對(duì)數(shù)函數(shù)的性質(zhì),這樣可以把函數(shù)的抽象性以更為直觀的形式表現(xiàn)出來;在教學(xué)過程中,我還適時(shí)運(yùn)用肢體語言讓同學(xué)們感知函數(shù)圖像,從而比較自然地使學(xué)生能盡快記住函數(shù)圖像的樣子,有了圖像性質(zhì)全部寫在圖上。數(shù)形結(jié)合這種重要的數(shù)學(xué)思想貫穿整個(gè)高中數(shù)學(xué),應(yīng)該逐漸使學(xué)生養(yǎng)成運(yùn)用意識(shí)。學(xué)生對(duì)函數(shù)性質(zhì)的把握還是不錯(cuò)的。

      但是,對(duì)于新知的理解和接受需要一個(gè)過程,就像我們?nèi)伺c人之間的交往一樣,新朋友的熟悉需要一個(gè)認(rèn)識(shí)的過程。由于課程時(shí)間安排比較緊,我們不可能停下來認(rèn)識(shí),一個(gè)學(xué)期或一個(gè)學(xué)年后發(fā)現(xiàn)好多學(xué)生已經(jīng)將對(duì)數(shù)函數(shù)、指數(shù)函數(shù)的性質(zhì)忘記了,碰到了和陌生的一樣。我覺得這和我們平時(shí)的月考內(nèi)容安排有關(guān)系,我們的月考內(nèi)容應(yīng)該是之前的全部學(xué)習(xí)內(nèi)容,非本學(xué)期的前面的知識(shí)要占一定比例,但是我們的安排都是本月學(xué)習(xí)什么只考什么,前面的根本不涉及。這樣前面的東西就慢慢忘了。我們應(yīng)該在這方面改進(jìn)一下。

      第四篇:函數(shù)極限

      習(xí)題

      1.按定義證明下列極限:

      (1)limx???6x?5=6;(2)lim(x2-6x+10)=2;x?2x

      x2?5?1;(4)lim?(3)lim2x???x?1x?2

      (5)limcos x = cos x0 x?x04?x2=0;

      2.根據(jù)定義2敘述limf(x)≠ A.x?x0

      3.設(shè)limf(x)= A.,證明limf(x0+h)= A.x?x0h?0

      4.證明:若limf(x)= A,則lim| f(x)| = |A|.當(dāng)且僅當(dāng)A為何值時(shí)反之也成立? x?x0x?x0

      5.證明定理3.1

      6.討論下列函數(shù)在x0→0 時(shí)的極限或左、右極限:(1)f(x)=x

      x;(2)f(x)= [x]

      ?2x;x?0.?(3)f(x)=?0;x?0.?1?x2,x?0.?

      7.設(shè) limf(x)= A,證明limf(x???x?x01)= A x

      8.證明:對(duì)黎曼函數(shù)R(x)有l(wèi)imR(x)= 0 , x0∈[0,1](當(dāng)x0=0或1時(shí),考慮單側(cè)極限).x?x0

      習(xí)題

      1. 求下列極限:

      x2?1(1)lim2(sinx-cosx-x);(2)lim;?x?02x2?x?1x?22

      x2?1?x?1???1?3x?;

      lim(3)lim;(4)

      x?12x2?x?1x?0x2?2x3

      xn?1(5)limm(n,m 為正整數(shù));(6)lim

      x?1xx?4?1

      (7)lim

      x?0

      ?2x?3x?2

      70;

      a2?x?a?3x?6??8x?5?.(a>0);(8)lim

      x???x5x?190

      2. 利用斂性求極限:(1)lim

      x???

      x?cosxxsinx

      ;(2)lim2

      x?0xx?4

      x?x0

      3. 設(shè) limf(x)=A, limg(x)=B.證明:

      x?x0

      (1)lim[f(x)±g(x)]=A±B;

      x?x0

      (2)lim[f(x)g(x)]=AB;

      x?x0

      (3)lim

      x?x0

      f(x)A

      =(當(dāng)B≠0時(shí))g(x)B

      4. 設(shè)

      a0xm?a1xm?1???am?1x?am

      f(x)=,a0≠0,b0≠0,m≤n,nn?1

      b0x?b1x???bn?1x?bn

      試求 limf(x)

      x???

      5. 設(shè)f(x)>0, limf(x)=A.證明

      x?x0

      x?x0

      lim

      f(x)=A,其中n≥2為正整數(shù).6.證明limax=1(0

      x?0

      7.設(shè)limf(x)=A, limg(x)=B.x?x0

      x?x0

      (1)若在某∪(x0)內(nèi)有f(x)< g(x),問是否必有A < B ? 為什么?

      (2)證明:若A>B,則在某∪(x0)內(nèi)有f(x)> g(x).8.求下列極限(其中n皆為正整數(shù)):(1)lim ?

      x?0

      x

      x11

      lim;(2);nn?x?0x1?xx1?x

      x?x2???xn?n

      (3)lim;(4)lim

      x?0x?0x?1

      ?x?1

      x

      (5)lim

      x??

      ?x?(提示:參照例1)

      x

      x?0

      x?0

      x?0

      9.(1)證明:若limf(x3)存在,則limf(x)= lim f(x3)(2)若limf(x2)存在,試問是否成立limf(x)=limf(x2)?

      x?0

      x?0

      x?0

      習(xí)題

      1.敘述函數(shù)極限limf(x)的歸結(jié)原則,并應(yīng)用它證明limcos x不存在.n???

      n???

      2.設(shè)f 為定義在[a,+?)上的增(減)函數(shù).證明: lim= f(x)存在的充要條件是f在n???

      [a,+?)上有上(下)界.3.(1)敘述極限limf(x)的柯西準(zhǔn)則;

      n???

      (2)根據(jù)柯西準(zhǔn)則敘述limf(x)不存在的充要條件,并應(yīng)用它證明limsin x不存在.n???

      n???

      4.設(shè)f在∪0(x0)內(nèi)有定義.證明:若對(duì)任何數(shù)列{xn}?∪0(x0)且limxn=x0,極限limf(xn)都

      n??

      n??

      存在,則所有這極限都相等.提示: 參見定理3.11充分性的證明.5設(shè)f為∪0(x0)上的遞減函數(shù).證明:f(x0-0)和f(x0+0)都存在,且f(x0-0)=supf(x),f(x0+0)=

      0x?u?

      ?x0?

      0x?un(x0)

      inff(x)

      6.設(shè) D(x)為狄利克雷函數(shù),x0∈R證明limD(x)不存在.x?x0

      7.證明:若f為周期函數(shù),且limf(x)=0,則f(x)=0

      x???

      8.證明定理3.9

      習(xí)題

      1.求下列極限

      sin2xsinx3

      (1)lim;(2)lim

      x?0x?0sinx2x

      (3)lim

      x?

      cosxx?

      ?

      tanx?sinxarctanx

      lim(5)lim;(6);3x?0x?0xx

      sin2x?sin2a1

      (7)limxsin;(8)lim;

      x???x?axx?a

      ;(4)lim

      x?0

      tanx

      ;x

      ?cosx2

      (9)lim;(10)lim

      x?0x?01?cosxx?1?1

      sin4x

      2.求下列極限

      12?x

      (1)lim(1?);(2)lim?1?ax?x(a為給定實(shí)數(shù));

      n??x?0x

      x

      (3)lim?1?tanx?

      x?0

      cotx

      ;(4)lim?

      ?1?x?

      ?;

      x?01?x??

      (5)lim(x???

      3x?22x?1?);(6)lim(1?)?x(?,?為給定實(shí)數(shù))

      n???3x?1x

      3.證明:lim?lim?cosxcoxcos4.利用歸結(jié)原則計(jì)算下列極限:(1)limnsin

      n??

      ?

      x?0n??

      ??

      ?

      x2

      xx???cos?1 2n??22??

      ?

      n

      ;(2)

      習(xí)題

      1. 證明下列各式

      (1)2x-x2=O(x)(x→0);(2)x sinx?O(x)(x→0);

      +

      (3)?x?1?o(1)(x→0);

      (4)(1+x)n= 1+ nx+o(x)(x→0)(n 為正整數(shù))(5)2x3 + x2=O(x3)(x→∞);

      (6)o(g(x))±o(g(x))=o(g(x))(x→x0)

      (7)o(g1(x))·0(g2(x))=o(g1(x)g2(x))(x→x0)2. 應(yīng)用定理3.12求下列極限:

      ?x2?1x(1)lim(2)lim x?01?cosxx??x?cosx

      x3. 證明定理3.13

      4. 求下列函數(shù)所表示曲線的漸近線:

      13x3?4

      (1)y =;(2)y = arctan x;(3)y = 2

      xx?2x

      5. 試確定a的值,使下列函數(shù)與xa當(dāng)x→0時(shí)為同階無窮小量:

      (1)sin2x-2sinx;(2)

      -(1-x);1?x

      (3)?tanx??sinx;(4)

      x2?4x3

      6. 試確定a的值,使下列函數(shù)與xa當(dāng)x→∞時(shí)為同階無窮大量:

      (1)

      x2?x5;(2)x+x2(2+sinx);

      (3)(1+x)(1+x2)…(1+xn).7. 證明:若S為無上界數(shù)集,則存在一遞增數(shù)列{xn}?s,使得xn→+∞(n→∞)

      8. 證明:若f為x→r時(shí)的無窮大量,而函數(shù)g在某U0(r)上滿足g(x)≥K>0,則fg為x→r

      時(shí)的無窮大量。

      9. 設(shè) f(x)~g(x)(x→x0),證明:

      f(x)-g(x)= o(f(x))或 f(x)-g(x)= o(g(x))

      總 練習(xí)題

      1. 求下列極限:

      ?1

      (x?[x])lim([x]?1)(1)lim;(2)??

      x?3

      x?1

      (3)lim(x???

      a?xb?x?a?xb?x)

      xx?a

      (4)lim

      x???

      (5)lim

      xx?a

      x???

      (6)lim

      ?x??x?x??x

      x?0

      (7)lim?

      n??m,m,n 為正整數(shù) ?n?x?11?xm1?x??

      2. 分別求出滿足下述條件的常數(shù)a與b:

      ?x2?1?

      (1)lim??ax?b???0 x????x?1??

      x(3)limx

      (2)lim

      x???x???x?2

      ??x?1?ax?b??0

      ?x?1?ax?b?0

      x?2

      3. 試分別舉出符合下列要求的函數(shù)f:

      (1)limf(x)?f(2);(2)limf(x)不存在。

      4. 試給出函數(shù)f的例子,使f(x)>0恒成立,而在某一點(diǎn)x0處有l(wèi)imf(x)?0。這同極限的x?x0

      局部保號(hào)性有矛盾嗎?

      5. 設(shè)limf(x)?A,limg(u)?B,在何種條件下能由此推出

      x?a

      g?A

      limg(f(x))?B?

      x?a

      6. 設(shè)f(x)=x cos x。試作數(shù)列

      (1){xn} 使得 xn→∞(n→∞), f(xn)→0(n→∞);(2){yn} 使得 yn→∞(n→∞), f(yn)→0(n→∞);(3){zn} 使得 zn→∞(n→∞), f(zn)→0(n→∞).7. 證明:若數(shù)列{an}滿足下列條件之一,則{an}是無窮大數(shù)列:

      (1)liman?r?1

      n??

      (2)lim

      an?1

      ?s?1(an≠0,n=1,2,…)

      n??an

      n2

      n2

      8. 利用上題(1)的結(jié)論求極限:

      (1)lim?1?

      ?n??

      ?1??1??(2)lim?1??

      n??n??n?

      9. 設(shè)liman???,證明

      n??

      (1)lim

      (a1?a2???an)??? n??n

      n??

      (2)若an > 0(n=1,2,…),則lima1a2?an??? 10.利用上題結(jié)果求極限:

      (1)limn!(2)lim

      n??

      In(n!)

      n??n

      11.設(shè)f為U-0(x0)內(nèi)的遞增函數(shù)。證明:若存在數(shù)列{xn}?U-0(x0)且xn→x0(n→∞),使得

      limf(xn)?A,則有

      n??

      f(x0-0)=

      supf(x)?A

      0x?U?(x0)

      12.設(shè)函數(shù)f在(0,+∞)上滿足方程f(2x)=f(x),且limf(x)?A。證明:f(x)?A,x∈(0,+∞)

      x???

      13.設(shè)函數(shù)f在(0,+∞)此上滿足方程f(x2)= f(x),且

      f(x)=limf(x)?f(1)lim?

      x?0

      x???

      證明:f(x)?f(1),x∈(0,+∞)

      14.設(shè)函數(shù)f定義在(a,+∞)上,f在每一個(gè)有限區(qū)間內(nèi)(a,b)有界,并滿足

      x???

      lim(f(x?1)?f(1))?A證明

      x???

      lim

      f(x)

      ?A x

      第五篇:函數(shù)極限

      《數(shù)學(xué)分析》教案

      第三章 函數(shù)極限

      xbl

      第三章 函數(shù)極限

      教學(xué)目的:

      1.使學(xué)生牢固地建立起函數(shù)極限的一般概念,掌握函數(shù)極限的基本性質(zhì); 2.理解并運(yùn)用海涅定理與柯西準(zhǔn)則判定某些函數(shù)極限的存在性; 3.掌握兩個(gè)重要極限

      和,并能熟練運(yùn)用;

      4.理解無窮?。ù螅┝考捌潆A的概念,會(huì)利用它們求某些函數(shù)的極限。教學(xué)重(難)點(diǎn):

      本章的重點(diǎn)是函數(shù)極限的概念、性質(zhì)及其計(jì)算;難點(diǎn)是海涅定理與柯西準(zhǔn)則的應(yīng)用。

      教學(xué)時(shí)數(shù):16學(xué)時(shí)

      § 1 函數(shù)極限概念(3學(xué)時(shí))

      教學(xué)目的:使學(xué)生建立起函數(shù)極限的準(zhǔn)確概念;會(huì)用函數(shù)極限的定義證明函數(shù)極限等有關(guān)命題。

      教學(xué)要求:使學(xué)生逐步建立起函數(shù)極限的???定義的清晰概念。會(huì)應(yīng)用函數(shù)極限的???定義證明函數(shù)的有關(guān)命題,并能運(yùn)用???語言正確表述函數(shù)不以某實(shí)數(shù)為極限等相應(yīng)陳述。

      教學(xué)重點(diǎn):函數(shù)極限的概念。

      教學(xué)難點(diǎn):函數(shù)極限的???定義及其應(yīng)用。

      一、復(fù)習(xí):數(shù)列極限的概念、性質(zhì)等

      二、講授新課:

      (一)時(shí)函數(shù)的極限:

      《數(shù)學(xué)分析》教案

      第三章 函數(shù)極限

      xbl

      例4 驗(yàn)證

      例5 驗(yàn)證

      例6 驗(yàn)證

      證 由 =

      為使

      需有

      需有

      為使

      于是, 倘限制 , 就有

      例7 驗(yàn)證

      例8 驗(yàn)證(類似有

      (三)單側(cè)極限:

      1.定義:單側(cè)極限的定義及記法.幾何意義: 介紹半鄰域

      《數(shù)學(xué)分析》教案

      第三章 函數(shù)極限

      xbl

      我們引進(jìn)了六種極限:.以下以極限,為例討論性質(zhì).均給出證明或簡證.二、講授新課:

      (一)函數(shù)極限的性質(zhì): 以下性質(zhì)均以定理形式給出.1.唯一性:

      2.局部有界性:

      3.局部保號(hào)性:

      4.單調(diào)性(不等式性質(zhì)):

      Th 4 若使,證 設(shè)

      和都有 =

      (現(xiàn)證對(duì) 都存在, 且存在點(diǎn) 的空心鄰域),有

      註: 若在Th 4的條件中, 改“ 就有

      5.6.以

      迫斂性:

      ”為“ 舉例說明.”, 未必

      四則運(yùn)算性質(zhì):(只證“+”和“ ”)

      (二)利用極限性質(zhì)求極限: 已證明過以下幾個(gè)極限:

      《數(shù)學(xué)分析》教案

      第三章 函數(shù)極限

      xbl

      例8

      例9

      例10 已知

      求和

      補(bǔ)充題:已知

      求和()§ 3 函數(shù)極限存在的條件(4學(xué)時(shí))

      教學(xué)目的:理解并運(yùn)用海涅定理與柯西準(zhǔn)則判定某些函數(shù)極限的存在性。教學(xué)要求:掌握海涅定理與柯西準(zhǔn)則,領(lǐng)會(huì)其實(shí)質(zhì)以及證明的基本思路。教學(xué)重點(diǎn):海涅定理及柯西準(zhǔn)則。教學(xué)難點(diǎn):海涅定理及柯西準(zhǔn)則 運(yùn)用。

      教學(xué)方法:講授為主,輔以練習(xí)加深理解,掌握運(yùn)用。本節(jié)介紹函數(shù)極限存在的兩個(gè)充要條件.仍以極限

      為例.一.Heine歸并原則——函數(shù)極限與數(shù)列極限的關(guān)系:

      Th 1 設(shè)函數(shù)在,對(duì)任何在點(diǎn)

      且的某空心鄰域

      內(nèi)有定義.則極限都存在且相等.(證)

      存Heine歸并原則反映了離散性與連續(xù)性變量之間的關(guān)系,是證明極限不存在的有力工具.對(duì)單側(cè)極限,還可加強(qiáng)為

      單調(diào)趨于

      .參閱[1]P70.例1 證明函數(shù)極限的雙逼原理.7 《數(shù)學(xué)分析》教案

      第三章 函數(shù)極限

      xbl

      教學(xué)難點(diǎn):兩個(gè)重要極限的證明及運(yùn)用。

      教學(xué)方法:講授定理的證明,舉例說明應(yīng)用,練習(xí)。一.

      (證)(同理有)

      例1

      例2.例3

      例4

      例5 證明極限 不存在.二.證 對(duì)

      例6

      特別當(dāng) 等.例7

      例8

      《數(shù)學(xué)分析》教案

      第三章 函數(shù)極限

      xbl

      三. 等價(jià)無窮小:

      Th 2(等價(jià)關(guān)系的傳遞性).等價(jià)無窮小在極限計(jì)算中的應(yīng)用: Th 3(等價(jià)無窮小替換法則)

      幾組常用等價(jià)無窮小:(見[2])

      例3 時(shí), 無窮小

      是否等價(jià)? 例4

      四.無窮大量:

      1.定義:

      2.性質(zhì):

      性質(zhì)1 同號(hào)無窮大的和是無窮大.性質(zhì)2 無窮大與無窮大的積是無窮大.性質(zhì)3 與無界量的關(guān)系.無窮大的階、等價(jià)關(guān)系以及應(yīng)用, 可仿無窮小討論, 有平行的結(jié)果.3.無窮小與無窮大的關(guān)系:

      無窮大的倒數(shù)是無窮小,非零無窮小的倒數(shù)是無窮大

      習(xí)題 課(2學(xué)時(shí))

      一、理論概述:

      《數(shù)學(xué)分析》教案

      第三章 函數(shù)極限

      xbl

      例7.求

      .注意 時(shí), 且

      .先求

      由Heine歸并原則

      即求得所求極限

      .例8 求是否存在.和.并說明極限

      解;

      可見極限 不存在.--32

      下載基本初等函數(shù)的極限(全文5篇)word格式文檔
      下載基本初等函數(shù)的極限(全文5篇).doc
      將本文檔下載到自己電腦,方便修改和收藏,請(qǐng)勿使用迅雷等下載。
      點(diǎn)此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會(huì)在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        函數(shù)極限

        數(shù)學(xué)之美2006年7月第1期函數(shù)極限的綜合分析與理解經(jīng)濟(jì)學(xué)院 財(cái)政學(xué) 任銀濤 0511666數(shù)學(xué)不僅僅是工具,更是一種能力。一些數(shù)學(xué)的方法被其它學(xué)科廣泛地運(yùn)用。例如,經(jīng)濟(jì)學(xué)中的邊際......

        函數(shù)與基本初等函數(shù)2.6冪函數(shù)(作業(yè))

        響水二中高三數(shù)學(xué)(理)一輪復(fù)習(xí)作業(yè) 第二編 函數(shù)與基本初等函數(shù)Ⅰ主備人張靈芝總第9期§2.6冪函數(shù) 一、填空題 1.設(shè)α∈{-1,1,12α ,3},則使函數(shù)y=x定義域?yàn)镽且為奇函數(shù)的所有......

        高一數(shù)學(xué)必修一基本初等函數(shù)教案

        狀元坊專用 基本初等函數(shù) 一.【要點(diǎn)精講】 1.指數(shù)與對(duì)數(shù)運(yùn)算 (1)根式的概念: ①定義:若一個(gè)數(shù)的n次方等于a(n?1,且n?N?),則這個(gè)數(shù)稱a的n次方根。即若xn?a,則x稱a的n次方根n?1且n?N?), 1)當(dāng)n為......

        函數(shù)極限證明

        函數(shù)極限證明記g(x)=lim^(1/n),n趨于正無窮;下面證明limg(x)=max{a1,...am},x趨于正無窮。把max{a1,...am}記作a。不妨設(shè)f1(x)趨于a;作b>a>=0,M>1;那么存在N1,當(dāng)x>N1,有a/MN2......

        1-2函數(shù)極限

        高等數(shù)學(xué)教案§1.2函數(shù)極限教學(xué)目標(biāo):1. 掌握各種情形下的函數(shù)極限的基本概念和性質(zhì)。2. 掌握極限存在性的判定及應(yīng)用。3. 熟練掌握求函數(shù)極限的基本方法。教學(xué)重難點(diǎn):函數(shù)極限......

        函數(shù)極限概念

        一. 函數(shù)極限的概念 1.x趨于?時(shí)函數(shù)的極限 設(shè)函數(shù)f定義在??,???上,類似于數(shù)列情形,我們研究當(dāng)自變量x趨于+?時(shí),對(duì)應(yīng)的函數(shù)值能否無線地接近于某個(gè)定數(shù)A.例如,對(duì)于函數(shù)f?x?=,從圖象上可見,當(dāng)......

        2.3函數(shù)極限

        高三極限同步練習(xí)3(函數(shù)的極限) 求第一類函數(shù)的極限 例1、討論下列函數(shù)當(dāng)x???,x???,x??時(shí)的極限: ?1?(1)f(x)????1 ?2? (2)f(x)?x1 x?1 (x?0)?2?(3)h(x)??x?2 x?0)??x?1求函數(shù)的左右極限 例2、討論下列函數(shù)在點(diǎn)x?1處的......

        2018考研高等數(shù)學(xué)基本定理:函數(shù)與極限部分

        凱程考研輔導(dǎo)班,中國最權(quán)威的考研輔導(dǎo)機(jī)構(gòu) 2018考研高等數(shù)學(xué)基本定理:函數(shù)與極限部分 在暑期完成第一輪基礎(chǔ)考點(diǎn)的復(fù)習(xí)之后,9月份開始需要對(duì)考研數(shù)學(xué)所考的定理定義進(jìn)行必要......