欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      新人教版小學數(shù)學六年級下冊《圓錐的體積》精品教案

      時間:2019-05-13 00:55:53下載本文作者:會員上傳
      簡介:寫寫幫文庫小編為你整理了多篇相關的《新人教版小學數(shù)學六年級下冊《圓錐的體積》精品教案》,但愿對你工作學習有幫助,當然你在寫寫幫文庫還可以找到更多《新人教版小學數(shù)學六年級下冊《圓錐的體積》精品教案》。

      第一篇:新人教版小學數(shù)學六年級下冊《圓錐的體積》精品教案

      新人教版小學數(shù)學六年級下冊《圓錐的體積》精品教案

      一、教學內(nèi)容:人教版教材六年級下冊25——26頁,例

      2、例3及相關的練習。

      二、教學目標:

      1、結合具體情境和實踐活動,了解圓錐的體積或容積的含義,進一步體會物體體積和容積的含義。

      2、經(jīng)歷“類比猜想——驗證推理”探索圓錐體積計算方法的過程,掌握圓錐體積的計算方法,能正確計算圓錐的體積,并能解決一些簡單的實際問題。

      3、培養(yǎng)學生動手操作、觀察分析的能力,在探究中體驗學習的樂趣。

      三、教學重點:

      理解、掌握圓錐體積計算的公式,能運用公式正確地計算圓錐的體積。

      四、教學難點: 圓錐體積公式的推導

      五、教學要素:

      1、已有的知識和經(jīng)驗:體積、圓錐的特點、圓柱的體積計算公式。

      2、原型:鉛錘,若干圓柱和圓錐、長方體和正方體。

      3、探究的問題:

      (1)如何推導圓錐的體積?

      (2)圓錐的體積和圓柱的體積有什么關系?(3)圓錐的體積應該怎樣計算?

      六、教學過程:

      (一)喚起與生成

      1.圓錐有哪些特點?讓學生結合上節(jié)課的學習,說出圓錐具有四個一(即一個圓形底面、一個側(cè)面、一個頂點、一條高)的特點。

      2.切入:研究圓錐的體積計算公式,揭示課題:圓錐的體積

      (二)探究與解決

      1.提出問題,引發(fā)聯(lián)想:

      (出示一個圓錐形的鉛錘),你有辦法知道這個鉛錘的體積嗎?學生可能會借助盛水的量杯來測量鉛錘的體積等等。(引導學生評價測量的方法,引起認知沖突)有沒有求圓錐體積的計算方法?

      2.類比猜想,提出假設:

      (1)讓學生觀察課前準備的立體圖形,要探究圓錐的體積公式,你會想到哪種立體圖形?為什么?引導學生類比發(fā)現(xiàn):圓柱和圓錐的底面都是圓形的,側(cè)面都是曲面,它們都有高等等。(教師針對學生的回答予以肯定。)以前我們是怎樣探究長方體和圓柱的體積計算公式的?

      學生進一步大膽猜想:圓錐的體積可能和圓柱的體積有關系;如果把圓錐轉(zhuǎn)化成圓柱,就有可能求出圓錐體積的計算公式。(教師對學生的回答給予評價。)

      既然圓錐的體積可能和圓柱的體積有關系。你覺得它們之間會存在怎樣的關系?學生提出假設:圓錐的體積可能會比圓柱的體積?。粓A錐的體積可能是圓柱體積的一半等等。

      (2)實驗操作,驗證推理

      ①說明實驗要求。

      在老師提供的實驗材料中任意選擇你們小組認為合適的器具,可以采用多種方法,最后小組長匯報實驗結果。

      教師提示:盛滿沙子的圓柱的體積就是沙子的體積(厚度不計),圓錐也是如此。

      ②分小組進行實驗,教師巡視,適當指導。

      ③小組匯報:都選用的都是等底、底高的圓柱和圓錐,發(fā)現(xiàn):把圓柱裝滿水,再往圓錐里倒,正好倒了3次;把圓錐裝滿沙子再倒進圓柱,3次正好裝滿。

      提出問題:為什么選用的容器都是等底、等高的圓柱和圓錐? ④歸納總結,達成共識

      等底等高的圓錐的體積是圓柱體積的三分之一。用字母表示:V圓錐=1/3V圓柱=1/3Sh ⑤運用公式,計算體積

      出示例3,分析數(shù)學信息,要求這堆沙子大約多少立方米?實際求的是什么?需要分幾步進行計算?(同時強調(diào)應用題的格式和單位名稱等應注意的事項)

      (三)訓練與應用

      1、練習四的第3、4題。獨立完成,全班訂正。

      (設計基本練習題,從而鞏固學生對圓錐體積公式的理解。)

      2、練習四第7題。

      (四)小結與提高

      小結學習收獲:圓錐體積計算公式,推理計算公式的方法,評價學習的表現(xiàn)等。

      第二篇:六年級數(shù)學下冊《圓錐的體積》教案

      六年級數(shù)學下冊《圓錐的體積》教案

      圓錐的體積

      教學內(nèi)容:教科書第42~~43頁的例

      1、例2,完成“做一做”和練習九的第3—題。

      教學目的:使學生初步掌握圓錐體積的計算公式,并能運用公式正確地計算圓錐的體積,發(fā)展學生的空間觀念。

      教具準備:等底等高的圓柱和圓錐各一個,比圓柱體積多的沙土.

      教學過程:

      一、復習、圓錐有什么特征?

      使學生進一步熟悉圓錐的特征:底面,側(cè)面,高和頂點。

      2、圓柱體積的計算公式是什么?

      指名學生回答,并板書公式:“圓柱的體積=底面積×高”。

      二、導人新

      我們已經(jīng)學過圓柱體積的計算公式,那么圓錐的體積又該如何計算呢?今天我們就來學習圓錐體積的計算。

      板書題:圓錐的體積

      三、新、教學圓錐體積的計算公式。

      教師:請大家回億一下,我們是怎樣得到圓柱體積的計算公式的?

      指名學生敘述圓柱體積計算公式的推導過程,使學生明確求圓柱的體積是通過切拼成長方體來求得的。

      教師:那么圓錐的體積該怎樣求呢?能不能也通過已學過的圖形來求呢?

      先讓學生討論一下用什么方法求,然后指出:我們可以通過實驗的方法,得到計算圓錐體積的公式。

      教師拿出等底等高的圓柱和圓錐各一個,“大家看,這個圓錐和圓柱有什么共同的地方?”

      然后通過演示后,指出:“這個圓錐和圓柱是等底等高的,下面我們通過實驗,看看它們之間的體積有什么關系?”

      接著,教師邊演示邊敘述:現(xiàn)在圓錐和圓柱里都是空的。我先在圓錐里裝滿沙土,然后倒入圓柱。請大家注意觀察,看看能夠倒幾次正好把圓柱裝滿?

      問:把圓柱裝滿一共倒了幾次?

      學生:3次。

      教師:這說明了什么?

      學生:這說明圓錐的體積是和它等底等高的圓柱的體積的。

      板書:圓錐的體積=1/3

      ×

      圓柱體積

      教師:圓柱的體積等于什么?

      學生:等于“底面積×高”。

      教師:那么,圓錐的體積可以怎樣表示呢?

      引導學生想到可以用“底面積×高”來替換“圓柱的體積”,于是可以得到圓錐體積的計算公式。

      板書:圓錐的體積=

      /3

      ×底面積×高

      教師:用字母應該怎樣表示?

      然后板書字母公式:V=1/3

      SH

      2、教學例1。

      一個圓錐形的零,底面積是19平方厘米,高是12厘米。這個零的體積是多少?

      教師:這道題已知什么?求什么?

      指名學生回答后,再問:已知圓錐的底面積和高應該怎樣計算?

      引導學生對照圓錐體積的計算公式代入數(shù)據(jù),然后讓學生自己進行計算,做完后集體訂正。

      3、做第0頁“做一做”的第1題。

      讓學生獨立做在練習本上,教師行間巡視。

      做完后集體訂正。

      4、教學例2。

      在打谷場上,有一個近似于圓錐形的小麥堆,測得底面直徑是4米,高是12米。每立方米小麥約重73千克,這堆小麥大約有多少千克?

      教師:這道題已知什么?求什么?

      學生:已知近似于圓錐形的麥堆的底面直徑和高,以及每立方米小麥的重量;求這堆小麥的重量。

      教師:要求小麥的重量,必須先求出什么?

      學生:必須先求出這堆小麥的體積。

      教師:要求這堆小麥的體積又該怎么辦?

      學生:由于這堆小麥近似于圓錐形,所以可利用圓錐的體積公式來求。

      教師:但是題目的條中不知道圓錐的底面積,應該怎么辦。?

      學生:先算出麥堆的底面半徑,再利用圓的面積公式算出麥堆的底面積,然后根據(jù)圓錐的體積公式求出麥堆的體積。

      教師:求得小麥的體積后.應該怎樣求小麥的重量?

      學生:用每立方米小麥的重量乘以小麥的體積就可以求得小麥的重量。

      分析完后,指定兩名學生板演.其余學生將計算步驟寫在教科書第0頁上。做完后集體訂正,注意學生最后得數(shù)的取舍方法是否正確。教師要說明小麥每立方米的重量隨著含水量的不同而不同,要經(jīng)過量才能確定,73千克并不是一個固定的常數(shù)

      組織學生討論,怎樣測量小麥堆的底面直徑和高?

      討論后.先讓學生說出自己的想法.然后教師再介紹一下測量的方法:測量底面直徑時??梢杂脙筛窀推叫械胤旁谛←湺褍蓚?cè),測量出兩根竹竿間的距離就是底面直徑:也可以用繩子在底部圓的周圍圍上一圈量得小麥堆的周長,再算出直徑。測量小麥堆的高??捎脙筛窀停畬⒁桓窀瓦^小麥堆的頂部水平放置,另一根竹竿豎直與水平的竹竿成直角即可量得高。、做“做一做”的第2題。

      教師:這道題應該先求什么?

      學生:要先求圓錐的底面積。讓學生做在練習本上,教師行間巡視。

      做完后集體訂正。

      四、小結

      五、堂練習、做練習九的第3題。

      指定3名學生在黑板上板演,其余學生做在練習本上。

      集體訂正時.讓學生說一說自己的計算方法。

      2,做練習九的第4題。

      教師可以讓學生回答以下問題:

      這道題已知什么?求什么?

      求圓錐的體積必須知道什么?

      求出這堆煤的體積后,應該怎樣計算這堆煤的重量?

      然后讓學生做在練習本上,教師巡視,做完后集體訂正。

      3、做練習九的第題。

      教師指名學生先后回答下面問題:

      圓柱的側(cè)面積等于多少?

      圓柱的表面積的含義是什么?怎樣計算?

      圓柱體積的計算公式是什么?

      圓錐的體積公式是什么?

      然后,讓學生把計算結果填寫在教科書第1頁的表格中。做完后集體訂正。

      第三篇:六年級數(shù)學下冊《圓錐的體積》教案

      六年級數(shù)學下冊《圓錐的體積》教案

      【教學內(nèi)容】 圓錐的體積

      【教學目的】 會運用圓錐的體積公式計算圓錐的體積,培養(yǎng)學生觀察、比較、分析、綜合的能力及初步的空間觀念。

      【教具準備】 等底等高的圓柱和圓錐各一個,比圓柱體積多的沙土,直尺,卷尺等。

      【教學過程】

      一、復習舊知導入新課

      1、圓錐有什么特征?

      2、圓柱體積的計算公式是什么?

      使學生進一步熟悉圓錐的特征:底面,側(cè)面,高和頂點。

      指名學生回答,并板書公式:“圓柱的體積=底面積×高”。

      練習題:

      (1)底面積為160cm2,高為5 cm。

      (2)半徑為10 m,高為20 m。

      (3)底面周長為12.56 dm,高為4dm。

      我們已經(jīng)學過圓柱體積的計算公式,那么圓錐的體積又該如何計算呢?今天我們就來學習圓錐體積的計算。

      板書課題:圓錐的體積

      二、新授

      1、教學圓錐體積的計算公式。

      教師:請大家回億一下,我們是怎樣得到圓柱體積的計算公式的?

      指名學生敘述圓柱體積計算公式的推導過程,使學生明確求圓柱的體積是通過切拼成長方體來求得的。

      教師:那么圓錐的體積該怎樣求呢?能不能也通過已學過的知識來求呢?

      先讓學生討論一下用什么方法求,然后指出:我們可以通過實驗的方法,得到計算圓錐體積的公式。

      計算圓柱的體積:

      3、導入新課

      教師拿出等底等高的圓柱和圓錐各一個,“大家看,這個圓錐和圓柱有什么共同的地方?”

      然后通過演示后,指出:“這個圓錐和圓柱是等底等高的,下面我們通過實驗,看看它們之間的體積有什么關系?”

      接著,教師邊演示邊敘述:現(xiàn)在圓錐和圓柱里都是空的。我先在圓錐里裝滿沙土,然后倒入圓柱。請大家注意觀察,看看能夠倒幾次正好把圓柱裝滿? 問:把圓柱裝滿一共倒了幾次?

      學生:3次。

      教師:這說明了什么?

      學生:這說明圓錐的體積是和它等底等高的圓柱的體積的演示

      sh =1π r2h

      3(1)一個圓柱的體積是一個圓錐體積的3倍速。

      ()(2)把一個圓柱削成最大的圓錐,削去部分占圓柱體體積的。()(3)一個圓錐體的體積是和它等底等高的圓柱的體積的()二.填空題

      (1)一個圓柱的體積為78 cm3,和它等底等高的圓錐的體積是()cm3。

      (2)一個圓錐的體積為45 cm3,和它等底等高的圓柱的體積是()cm3。

      2313三.計算下列圓錐體的體積(1)S底 = 30cm h =10cm(2)S底 = 20cm h =18cm 22

      3、教學例2

      一堆圓錐形黃沙,底面半徑是4m,高3m,每立方米黃沙重1.2噸,這堆黃沙有多少立方米?重多少噸?(得數(shù)兩位小數(shù)學)

      分析過程略

      4、組織學生討論,怎樣測量生活中遇到的圓錐物體的直徑和高?

      討論后,先讓學生說出自己的想法。然后教師再介紹一下測量的方法:測量底面直徑時??梢杂脙筛窀推叫械胤旁趫A錐物體兩側(cè),測量出兩根竹竿間的距離就是底面直徑:也可以用繩子在底部圓的周圍圍上一圈量得圓錐物體的周長,再算出直徑,測量圓錐物體的高??捎脙筛窀停瑢⒁桓窀蛨A錐物體的頂部水平放置,另一根竹竿豎直與水平的竹竿成直角即可量得高。

      四、小結(略)

      【板書設計】

      圓 錐 的 體 積

      圓柱的體積=底面積×高 底面積: 3.14×4=50.24(cm)等底等高的圓錐和圓柱,圓錐的體積是圓柱體積的圓錐的體積=1/3 × 圓柱體積 體積:1312π rh 3

      231

      3×50.24×3=50.24(cm)3圓錐的體積= 1/3 ×底面積×高 黃沙的重量:50.24×1.2=60.288(噸)V=sh =

      五、課后練習。

      1、一個圓錐形沙堆,底面直徑8m,高3m,每立方米沙重1.7噸。(1)這堆沙重多少噸?(得數(shù)保留整數(shù))

      (2)如果用一輛載重5.2噸的汽車去運,幾次可以運完?

      2、一個圓錐形的黃沙堆,底面周長25.12m,高3m,每立方米黃沙重1.4噸,求這堆黃沙堆重多少噸?(得數(shù)保留整數(shù))

      3、一個圓錐形沙堆,底面半徑3 m,高2.5 m,用這堆沙在5 m寬的公路上鋪3 cm厚的路面,能鋪多少米遠?

      第四篇:蘇教版六年級數(shù)學下冊《圓錐的體積》教案

      第2課時 圓錐的體積(1)

      【教學內(nèi)容】

      圓錐的體積(1)(教材第33頁例2)?!窘虒W目標】

      1.參與實驗,從而推導出圓錐體積的計算公式,會運用圓錐的體積公式計算圓錐的體積。

      2.培養(yǎng)學生初步的空間觀念,讓學生經(jīng)歷圓錐體積公式的推導過程,體驗觀察、比較、分析、總結、歸納的學習方法。

      【重點難點】

      圓錐體積公式的推導過程?!窘虒W準備】

      同樣的圓柱形容器若干,與圓柱等底等高的圓錐形容器,與圓柱不等底等高的圓錐形容器若干,沙子和水。

      【情景導入】

      1.復習舊知,作出鋪墊。

      (1)教師用電腦出示一個透明的圓錐。

      教師:同學們仔細觀察,圓錐有哪些主要特征呢?(2)復習高的概念。A.什么叫做圓錐的高?

      B.請一名同學上來指出用橡皮泥制作的圓錐模型的高。(提供刀片、橡皮泥模型等,幫助學生進行操作)

      2.創(chuàng)設情境,引發(fā)猜想。

      (1)電腦呈現(xiàn)出動畫情境(伴圖配音)。

      夏天,森林里悶熱極了,小動物們都熱得透不過氣來。一只小白兔去“動物超市”購物,它在冷飲專柜熊伯伯那兒買了一個圓柱形的雪糕。這一切都被躲在一旁的狐貍看見了,它也去熊伯伯的專柜里買了一個圓錐形的雪糕。小白兔剛張開嘴,滿頭大汗的狐貍拿著一個圓錐形的雪糕一溜煙跑了過來。(動畫中圓柱形和圓錐形的雪糕是等底等高的)

      (2)引導學生圍繞問題展開討論。

      問題一:狐貍貪婪地問:“小白兔,用我手中的雪糕跟你換一個怎么樣?”(如果這時小白兔和狐貍換了雪糕,你覺得小白兔有沒有上當?)

      問題二:(動畫演示)狐貍手上又多了一個同樣大小的圓錐形雪糕。(小白兔這時和狐貍換雪糕,你覺得公平嗎?)

      問題三:如果你是森林中的小白兔,狐貍手中的圓錐形雪糕有幾個時,你才肯與它交換?(把你的想法跟小組交流一下,再向全班同學匯報)

      過渡:小白兔究竟跟狐貍怎樣交換才合理呢?學習了“圓錐的體積”后,大家就會弄明白這個問題。

      【新課講授】 自主探究,操作實驗

      下面,請同學們利用老師提供的實驗材料分組操作,自己發(fā)現(xiàn)屏幕上的圓柱與圓錐體積之間的關系,解決電腦博士給我們提出的問題。

      出示思考題:通過實驗,你們發(fā)現(xiàn)圓柱的體積和圓錐的體積之間有什么關系?你們的小組是怎樣進行實驗的?

      (1)小組實驗。

      A.學生分6組操作實驗,教師巡回指導。(其中4個小組的實驗材料:沙子、水、水槽、量杯、等底等高的圓柱形和圓錐形容器各一個;另外2個小組的實驗材料:沙子,既不等底也不等高的圓柱形和圓錐形容器各一個,體積有8倍關系的也有5倍關系的。)

      B.同組的學生做完實驗后,進行交流,并把實驗結果寫在黑板上。(2)全班交流。①組織收集信息。

      學生匯報時可能會出現(xiàn)下面幾種情況,教師把這些信息逐一呈現(xiàn)在黑板上: A.圓柱的體積正好等于圓錐體積的3倍。B.圓柱的體積不是圓錐體積的3倍。C.圓柱的體積正好等于圓錐體積的8倍。D.圓柱的體積正好等于圓錐體積的5倍。E.圓柱的體積是等底等高圓錐體積的3倍。

      F.圓錐的體積是等底等高圓柱體積的。

      ②引導整理信息。指導學生仔細觀察,把黑板上的信息分類整理。(根據(jù)學生反饋的實際情況靈活進行)

      ③參與處理信息。圍繞3倍關系情況討論:請這幾個小組同學說出他們是怎樣通過實驗得出這一結論的?哪個小組得出的結論更科學合理一些?

      圓錐的體積是等底等高圓柱體積的。(突出等底等高,并請學生拿出實驗用的器材,自己比劃、驗證這個結論)引導學生自主修正另外兩個結論。

      (3)誘導反思。為什么有兩個實驗小組的結果不是3倍的關系呢?(4)推導公式。嘗試運用信息推導圓錐的體積公式。這里的Sh表示什么?為什么要乘?要求圓錐體積需要知道幾個條件?

      (5)解決問題。童話故事中的小白兔和狐貍怎樣交換才公平合理呢?它需要什么前提條件?(動畫演示:等底等高,之后播放狐貍拿著圓錐形雪糕離去的畫面)

      【課堂作業(yè)】

      完成教材第34頁“做一做”第1題。

      先組織學生在練習本上算一算,然后指名匯報。答案:13×19×12=76(cm3)【課堂小結】

      教師:請你說說知道哪些條件就可以求圓錐的體積?學生自由交流?!菊n后作業(yè)】

      1.完成練習冊中本課時的練習。2.教材第35頁第3、4、5題。

      答案:第3題:提示:可以利用直尺、軟尺等工具測量出圓錐形實物的底面直徑(或者底面周長)和高,再根據(jù)V圓錐=1/3Sh計算出該物體的體積。第4題:(1)25.12(2)423.9 第5題:(1)×(2)√(3)×

      第2課時 圓錐的體積(1)

      在操作與實踐的過程中,教師要讓一些學習困難的學生參與其中,使他們感受到學習的快樂,并懂得可以通過玩讓他們掌握知識。

      本課讓學生都經(jīng)歷“猜想估計——設計實驗驗證——發(fā)現(xiàn)算法”的自主探究學習的過程。在教師適當?shù)囊龑?,學生根據(jù)自己的設想自主探究等底等高的圓錐體和圓柱體體積之間的關系、圓錐體體積的計算方法,每個學生都經(jīng)歷一次探究學習的過程。

      在實際教學中,課堂出現(xiàn)了驗證等底等高的圓錐和圓柱體積關系的方法,出現(xiàn)了對圓錐體積計算公式中的的不同理解,實現(xiàn)了學習策略的多樣化,豐富了學生的學習資源。雖然學生的學習用具是固定的,但是他們所采用的驗證方式是不一樣的。這也證明了學生是有著各自不同思維方式的。

      第五篇:北師大版六年級數(shù)學下冊教案-圓錐的體積

      圓錐的體積

      教學內(nèi)容:北師大數(shù)學六年級下冊第11-12頁內(nèi)容。

      教材分析:

      本節(jié)課屬于空間與圖形知識的教學,是小學階段幾何知識的重難點部分,是小學學習立體圖形體積計算的飛躍,通過這部分知識的教學,可以發(fā)展學生的空間觀念、想象能力,較深入地理解幾何體體積推導方法的新領域,為學生進一步學習幾何知識奠定良好的基礎。本節(jié)內(nèi)容是在學生了解了圓錐的特征,掌握了圓柱體積的計算方法基礎上進行教學的,教材重視類比,轉(zhuǎn)化思想的滲透,直觀引導學生經(jīng)歷“猜測、類比、觀察、實驗、探究、推理、總結”的探索過程,理解掌握求圓錐體積的計算公式,會運用公式計算圓錐的體積。這樣不僅幫助學生建立空間觀念,還能培養(yǎng)學生抽象的邏輯思維能力,激發(fā)學生的想象力。

      學情分析:

      學生已學習了圓柱的體積計算,在教學中采用放手讓學生操作、小組合作探討的形式,讓學生在研討中自主探索,發(fā)現(xiàn)問題并運用學過的圓柱知識遷移到圓錐,得出結論。所以對于新的知識教學,他們一定能表現(xiàn)出極大的熱情。

      教學目標:

      知識與技能:

      1.通過學生參與實驗,從而推導出圓錐體積的計算方法。

      2.會運用圓錐的體積公式計算圓錐的體積,并解決簡單的實際問題。

      過程與方法:

      1.經(jīng)歷體驗圓錐的體積公式的推導過程,體驗觀察、比較、分析、總結、歸納的學習方法。

      2.經(jīng)歷計算圓錐體積的過程,體驗數(shù)學知識的廣泛應用性。

      情感態(tài)度與價值觀:

      感受發(fā)現(xiàn)知識的快樂,激發(fā)學習的興趣,感受數(shù)學與生活的聯(lián)系,培養(yǎng)學數(shù)學,用數(shù)學的樂趣。

      重難點:

      重點:理解圓錐體積公式的推導過程。

      難點:掌握圓錐體積的計算公式,運用其解決實際問題。

      教法與學法:

      教法:講解引導

      學法:觀察發(fā)現(xiàn),比較分析,歸納概括

      教學準備:

      等底等高的圓錐形和圓柱形容器,水或沙子,多媒體課件等。

      教學過程:

      一、引入

      課件出示一麥堆,問:你有辦法知道這堆小麥的體積嗎?

      二、探究新知

      1.猜想圓錐的體積計算方法。

      學生猜想,說出自己的想法。

      教師提出疑問:圓錐和圓柱都有圓形底面,側(cè)面都是曲面,他們的體積是否存在一定的聯(lián)系呢?

      2.探討圓錐的體積與圓柱的體積的關系。

      (1)引導學生進行實驗探究。

      用準備好的等底等高的圓柱形和圓錐形容器,用倒水的方法試一試。引導學生仔細觀察,問:你發(fā)現(xiàn)了什么?

      學生根據(jù)情況說說自己的發(fā)現(xiàn)。

      (2)小組內(nèi)議一議:通過實驗,你發(fā)現(xiàn)等底等高的圓柱與圓錐有什么關系?

      組織學生在小組內(nèi)討論、總結,達成共識。再組織學生在全班內(nèi)交流。

      教師強調(diào):等底等高的圓柱與圓錐,圓柱的體積是圓錐體積的3倍,也可以說圓錐的體積是圓柱體積的。

      教師提問:“圓錐體積是圓柱體積的”,這句話是對的嗎?

      指名學生回答,教師強調(diào):只有在等底等高的條件下才是對的。

      3.推導圓錐體積的計算公式

      教師:因為圓柱的體積=底面積×高,所以圓錐的體積等于與它等底等高的圓柱體積的。所以圓錐體積=×底面積×高。如果用V表示圓錐的體積,S表示底面積,h表示高,你能寫出圓錐體積的計算公式嗎?

      學生小組交流,然后匯報:V圓錐=V圓柱=Sh。(板書)

      4.教學教材第11頁,最下面的例題。

      (1)組織學生讀題目,理解題意。

      教師指導:近似圓錐體形的小麥堆,可用圓錐的體積公式求出小麥堆的體積。

      (2)組織學生獨立思考,嘗試解答。

      (3)組織學生交流反饋,結合學生發(fā)言,教師板書:

      小麥堆的底面積:3.14×2×2=12.56(立方米)

      小麥堆的體積:×12.56×1.5=6.28(立方米)

      (4)教師指出:求圓錐的體積時,如果題中給出底面半徑和高,可以直接運用公式進行計算。

      5.講解古代人們計算的方法。

      結合講解,進行思想教育:早在2000年前,我國人們就會計算圓柱與圓錐的體積了,是多么了不起??!作為炎黃子孫,我們應該感到驕傲和自豪!

      三、鞏固練習

      完成書上第12頁的相關練習,學生完成,教師根據(jù)情況進行

      調(diào)整。

      四、全課總結

      通過今天的學習,你有什么收獲?你還有什么疑惑?

      板書設計:

      圓錐的體積

      因為圓柱的體積=底面積×高,所以圓錐的體積等于與它等底等高的圓柱體積的。

      圓錐體積=×底面積×高。

      V圓錐=V圓柱=Sh

      小麥堆的底面積:3.14×2×2=12.56(立方米)

      小麥堆的體積:×12.56×1.5=6.28(立方米)

      答:小麥堆的體積是6.28立方米。

      下載新人教版小學數(shù)學六年級下冊《圓錐的體積》精品教案word格式文檔
      下載新人教版小學數(shù)學六年級下冊《圓錐的體積》精品教案.doc
      將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
      點此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻自行上傳,本網(wǎng)站不擁有所有權,未作人工編輯處理,也不承擔相關法律責任。如果您發(fā)現(xiàn)有涉嫌版權的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進行舉報,并提供相關證據(jù),工作人員會在5個工作日內(nèi)聯(lián)系你,一經(jīng)查實,本站將立刻刪除涉嫌侵權內(nèi)容。

      相關范文推薦

        六年級數(shù)學下冊教案-3.2.2 圓錐的體積-人教版

        教學內(nèi)容圓錐體積的計算方法課型新授課教學目標[來源:學#科#網(wǎng)]知識與能力:[來源:學科網(wǎng)]1、經(jīng)歷圓錐體積計算公式的推導過程,理解并掌握圓錐體積的計算公式,能正確地計算圓錐......

        六年級數(shù)學下冊 圓錐的體積教案 蘇教版五篇

        圓錐的體積學案設計與分析 【學習內(nèi)容】: 九年義務教育小學數(shù)學第十二冊《圓錐的體積》 【學情分析】: 學生已經(jīng)有了圓錐的特征與圓柱體體積計算公式的知識儲備,從而為本課自主......

        人教版小學六年級數(shù)學下冊《圓錐的體積》教案及教學反思(精選合集)

        【教學內(nèi)容】《義教課標實驗教科書數(shù)學》(人教版)六年級下冊p25-26頁例2、例3及練習四第3、4題。 【教學目標】 1、通過實驗操作,理解和掌握圓錐體積公式,能運用公式正確地計算......

        [小學六年級]圓錐的體積

        2010|——2011學年度第二學期 公 開 課 教 案 課題: 圓錐的體積執(zhí)教: 常凱旋單位:朱寨中心小學 時間:2011-3-9 圓錐的體積教學設計 教學內(nèi)容:北師大版小學數(shù)學教材下冊第11-13頁......

        小學六年級下冊數(shù)學圓柱圓錐教案

        公式 例題 題型一:展開圓柱的情況 1、 展開側(cè)面 (1)圓柱的底面周長和高相等時,展開后的側(cè)面一定是個( )。 (2)一個圓柱體,兩底面之間的距離是10厘米,底面周長是31.4厘米,把這個圓柱體......

        六年級數(shù)學下冊 圓錐的體積說課稿 人教版

        (人教版)六年級數(shù)學下冊說課稿 圓錐的體積 一、說教材 (一)我今天教學的內(nèi)容是圓錐的體積,圓錐是小學幾何初步知識的最后一個教學單元中的內(nèi)容,是在掌握了圓的周長、面積和圓柱的......

        六年級下冊數(shù)學課時訓練《圓錐的體積》

        六年級下冊數(shù)學課時訓練《圓錐的體積》 一、判斷題. (1)圓柱體積是圓錐體積的3倍.() (2)把一個圓柱木塊削成一個最大的圓錐,應削去圓柱體積的2/3.() (3)一個圓錐,底面半徑是6厘米,高是10厘米......

        六年級數(shù)學下冊教案-3.2.2 圓錐的體積66-人教版

        《圓錐的體積》教學設計課例名稱《圓錐的體積》學段學科小學數(shù)學教材版本冀教版章節(jié)六年級下冊第四單元第七節(jié)年級六教學目標過程與方法:通過觀察、討論、實驗等活動,經(jīng)歷認識......