第一篇:高中數(shù)學(xué)“立體幾何”教學(xué)研究
高中數(shù)學(xué)“立體幾何”教學(xué)研究
一.“立體幾何”的知識(shí)能力結(jié)構(gòu)
高中的立體幾何是按照從局部到整體的方式呈現(xiàn)的,在必修2中,先從對空間幾何體的整體認(rèn)識(shí)入手,主通過直觀感知、操作確認(rèn),獲得空間幾何體的性質(zhì),此后,在空間幾何體的點(diǎn)、直線和平面的學(xué)習(xí)中,充分利用對模型的觀察,發(fā)現(xiàn)幾何體的幾何性質(zhì)并通過簡單的“推理”得到一些直線和平面平行、垂直的幾何性質(zhì),從微觀上為進(jìn)一步深入研究空間幾何體做了必要的準(zhǔn)備.在選修2-1中,首先引入空間向量,在必修2的基礎(chǔ)上完善了幾何論證的理論基礎(chǔ),在此基礎(chǔ)上對空間幾何體進(jìn)行了深入的研究.首先安排的是對空間幾何體的整體認(rèn)識(shí),要求發(fā)展學(xué)生的空間想像能力,幾何直觀能力,而沒有對演繹推理做出要求.在“空間點(diǎn)、直線、平面之間的位置關(guān)系”的研究中,以長方體為模型,通過說理(歸納出判定定理,不證明)或簡單推理進(jìn)行論證(歸納并論證明性質(zhì)定理),在“空間向量與立體幾何”的學(xué)習(xí)中,又以幾何直觀、邏輯推理與向量運(yùn)算相結(jié)合,完善了空間幾何推理論證的理論基礎(chǔ),并對空間幾何中較難的問題進(jìn)行證明.可見在立體幾何這三部分中,把空間想像能力,邏輯推理能力,適當(dāng)分開,有所側(cè)重地、分階段地進(jìn)行培養(yǎng),這一編排有助于發(fā)展學(xué)生的空間觀念、培養(yǎng)學(xué)生的空間想象能力、幾何直觀能力,同時(shí)降低學(xué)習(xí)立體幾何的門檻,同時(shí)體現(xiàn)了讓不同的學(xué)生在數(shù)學(xué)上得到不同的發(fā)展的課標(biāo)理念.二.“立體幾何”教學(xué)內(nèi)容的重點(diǎn)、難點(diǎn)
1.重點(diǎn):
空間幾何體的結(jié)構(gòu)特征:柱、錐、臺(tái)、球的結(jié)構(gòu)特征的概括; 空間幾何體的三視圖與直觀圖:幾何體的三視圖和直觀圖的畫法;
空間幾何體的表面積與體積:了解柱、錐、臺(tái)、球的表面積與體積的計(jì)算公式; 空間點(diǎn)、直線、平面的位置關(guān)系:空間直線、平面的位置關(guān)系; 直線、平面平行的判定及其性質(zhì):判定定理和性質(zhì)定理的歸納; 直線、平面垂直的判定及其性質(zhì):判定定理和性質(zhì)定理的歸納.2.難點(diǎn):
空間幾何體結(jié)構(gòu)特征的概括:柱、錐、臺(tái)球的結(jié)構(gòu)特征的概括; 空間幾何體的三視圖與直觀圖:識(shí)別三視圖所表示的幾何體; 空間點(diǎn)、直線、平面的位置關(guān)系:三種語言的轉(zhuǎn)化; 直線、平面平行的判定及其性質(zhì):性質(zhì)定理的證明; 直線、平面垂直的判定及其性質(zhì):性質(zhì)定理的證明.三.空間幾何體的教學(xué)要與空間想象能力培養(yǎng)緊密結(jié)合
空間幾何體的教學(xué)要注意加強(qiáng)幾何直觀與空間想象能力的培養(yǎng),在立體幾何的入門階段,建立空間觀念,培養(yǎng)空間想象能力是學(xué)習(xí)的一個(gè)難點(diǎn),要注重培養(yǎng)空間想象能力的途徑,例如:
①注重模型的作用,讓學(xué)生動(dòng)手進(jìn)行模型制作,培養(yǎng)利用模型解決問題的意識(shí)與方法.②培養(yǎng)學(xué)生的畫幾何圖形能力,畫圖不是描字模(只模仿),而是要邊畫邊思考所畫圖與實(shí)際幾何體的對應(yīng)關(guān)系.③空間想象不是簡單的觀察、空想,應(yīng)與概念思辨相結(jié)合(前面已經(jīng)談到).④發(fā)揮三視圖與直觀圖培養(yǎng)空間想象能力的作用,利用空間幾何體的三視圖與直觀圖的轉(zhuǎn)化過程,可以使學(xué)生認(rèn)識(shí)到:空間圖形向平面圖形的轉(zhuǎn)化有利于分析和表示較為復(fù)雜的空間圖形;變換觀察視角對空間幾何體進(jìn)行觀察可以更容易理解較為復(fù)雜的空間圖形,把握空間圖形中元素之間的關(guān)系.四.加強(qiáng)對概念、定理的理解與把握的教學(xué)
①用圖形輔助理解概念、定理和性質(zhì)
例如,我們可以按照推理的類別,用圖形刻畫幾何元素的關(guān)系,可以避免死記硬背文字和符號(hào)的機(jī)械式學(xué)習(xí),更容易理解公理、定理、性質(zhì)等的幾何本質(zhì),發(fā)現(xiàn)問題圖形中的元素關(guān)系關(guān)系.讓學(xué)生對照圖形敘述相關(guān)定理或性質(zhì),特別要求對定理或性質(zhì)的使用條件加以說明.例如,用圖形表示平行關(guān)系
例如,用圖形表示垂直關(guān)系
②強(qiáng)化證明的言必有據(jù)
所謂“言必有據(jù)”,是指每一步推理的根據(jù)(即三段論推理的大前提)必須是課本中給出的公理、定義、定理,不可以自造理由,不可以隨意將習(xí)題的結(jié)論作為根據(jù),不可以把平面幾何結(jié)論在立體幾何中不加證明地隨意使用.不僅在文字語言和符號(hào)語言的推理中,要言必有據(jù),在幾何作圖中也是如此,因?yàn)閹缀巫鲌D是幾何推理的特珠形式.立體幾何作圖也必須步步有據(jù).③梳理推理依據(jù)
例如,從確定平行、垂直關(guān)系梳理推理依據(jù)(如圖),在解決問題時(shí)由圖形中尋找依據(jù).把推理依據(jù)轉(zhuǎn)化為系列圖形納入立體幾何的學(xué)習(xí)中,用圖形歸納立體幾何知識(shí),串聯(lián)立體幾何推理的思路,形成對圖思考,以圖交流,使得邏輯推理與幾何直觀有機(jī)整合,提高了學(xué)生的空間想象能力和推理論證能力.五.總結(jié)《課程標(biāo)準(zhǔn)》與高考對“立體幾何初步專題”的要求 《課程標(biāo)準(zhǔn)》對“立體幾何初步專題”的要求
(1)空間幾何體
①利用實(shí)物模型、計(jì)算機(jī)軟件觀察大量空間圖形,認(rèn)識(shí)柱、錐、臺(tái)、球及其簡單組合體的結(jié)構(gòu)特征,并能運(yùn)用這些特征描述現(xiàn)實(shí)生活中簡單物體的結(jié)構(gòu).②能畫出簡單空間圖形(長方體、球、圓柱、圓錐、棱柱等的簡易組合)的三視圖,能識(shí)別上述的三視圖所表示的立體模型,會(huì)使用材料(如:紙板)制作模型,會(huì)用斜二側(cè)法畫出它們的直觀圖.③通過觀察用兩種方法(平行投影與中心投影)畫出的視圖與直觀圖,了解空間圖形的不同表示形式.④完成實(shí)習(xí)作業(yè),如畫出某些建筑的視圖與直觀圖(在不影響圖形特征的基礎(chǔ)上,尺寸、線條等不作嚴(yán)格要求).⑤了解球、棱柱、棱錐、臺(tái)的表面積和體積的計(jì)算公式(不要求記憶公式).(2)點(diǎn)、線、面之間的位置關(guān)系
①借助長方體模型,在直觀認(rèn)識(shí)和理解空間點(diǎn)、線、面的位置關(guān)系的基礎(chǔ)上,抽象出空間線、面位置關(guān)系的定義,并了解如下可以作為推理依據(jù)的公理和定理:
◆公理1:如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在此平面內(nèi).◆公理2:過不在一條直線上的三點(diǎn),有且只有一個(gè)平面.◆公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線.◆公理4:平行于同一條直線的兩條直線平行.◆定理:空間中如果兩個(gè)角的兩條邊分別對應(yīng)平行,那么這兩個(gè)角相等或互補(bǔ).②以立體幾何的上述定義、公理和定理為出發(fā)點(diǎn),通過直觀感知、操作確認(rèn)、思辨論證,認(rèn)識(shí)和理解空間中線面平行、垂直的有關(guān)性質(zhì)與判定.通過直觀感知、操作確認(rèn),歸納出以下判定定理:
◆平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行.◆一個(gè)平面內(nèi)的兩條相交直線與另一個(gè)平面平行,則這兩個(gè)平面平行.◆一條直線與一個(gè)平面內(nèi)的兩條相交直線垂直,則該直線與此平面垂直.◆一個(gè)平面過另一個(gè)平面的垂線,則兩個(gè)平面垂直.通過直觀感知、操作確認(rèn),歸納出以下性質(zhì)定理,并加以證明:
◆一條直線與一個(gè)平面平行,則過該直線的任一個(gè)平面與此平面的交線與該直線平行.◆兩個(gè)平面平行,則任意一個(gè)平面與這兩個(gè)平面相交所得的交線相互平行.◆垂直于同一個(gè)平面的兩條直線平行.◆兩個(gè)平面垂直,則一個(gè)平面內(nèi)垂直于交線的直線與另一個(gè)平面垂直.③能運(yùn)用已獲得的結(jié)論證明一些空間位置關(guān)系的簡單命題.高考對“立體幾何初步專題”的要求(1)空間幾何體
①認(rèn)識(shí)柱、錐、臺(tái)、球及其簡單組合體的結(jié)構(gòu)特征,并能運(yùn)用這些特征描述現(xiàn)實(shí)生活中簡單物體的結(jié)構(gòu).②能畫出簡單空間圖形(長方體、球、圓柱、圓錐、棱柱等的簡易組合)的三視圖,能識(shí)別上述的三視圖所表示的立體模型,會(huì)用斜二測法畫出它們的直觀圖.③會(huì)用平行投影與中心投影兩種方法,畫出簡單空間圖形的三視圖與直觀圖,了解空間圖形的不同表示形式.④會(huì)畫某些建筑物的視圖與直觀圖(在不影響圖形特征的基礎(chǔ)上,尺寸、線條等不作嚴(yán)格要求).⑤了解球、棱柱、棱錐、臺(tái)的表面積和體積的計(jì)算公式(不要求記憶公式).(2)點(diǎn)、直線、平面之間的位置關(guān)系
①理解空間直線、平面位置關(guān)系的定義,并了解如下可以作為推理依據(jù)的公理和定理.◆公理1:如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線上所有的點(diǎn)在此平面內(nèi).◆公理2:過不在同一條直線上的三點(diǎn),有且只有一個(gè)平面.◆公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線.◆公理4:平行于同一條直線的兩條直線互相平行.◆定理:空間中如果一個(gè)角的兩邊與另一個(gè)角的兩邊分別平行,那么這兩個(gè)角相等或互補(bǔ).②以立體幾何的上述定義、公理和定理為出發(fā)點(diǎn),認(rèn)識(shí)和理解空間中線面平行、垂直的有關(guān)性質(zhì)與判定.理解以下判定定理.◆如果平面外一條直線與此平面內(nèi)的一條直線平行,那么該直線與此平面平行.◆如果一個(gè)平面內(nèi)的兩條相交直線與另一個(gè)平面都平行,那么這兩個(gè)平面平行.◆如果一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,那么該直線與此平面垂直.◆如果一個(gè)平面經(jīng)過另一個(gè)平面的垂線,那么這兩個(gè)平面互相垂直.理解以下性質(zhì)定理,并能夠證明.◆如果一條直線與一個(gè)平面平行,經(jīng)過該直線的任一個(gè)平面與此平面相交,那么這條直線就和交線平行.◆如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線相互平行.◆垂直于同一個(gè)平面的兩條直線平行.◆如果兩個(gè)平面垂直,那么一個(gè)平面內(nèi)垂直于它們交線的直線與另一個(gè)平面垂直.③能運(yùn)用公理、定理和已獲得的結(jié)論證明一些空間位置關(guān)系的簡單命題.
第二篇:高中數(shù)學(xué)知識(shí)點(diǎn)--立體幾何
【高中數(shù)學(xué)知識(shí)點(diǎn)】立體幾何學(xué)習(xí)的幾點(diǎn)建議.txt
一 逐漸提高邏輯論證能力
立體幾何的證明是數(shù)學(xué)學(xué)科中任一分之也替代不了的。因此,歷年高考中都有立體幾何論證的考察。論證時(shí),首先要保持嚴(yán)密性,對任何一個(gè)定義、定理及推論的理解要做到準(zhǔn)確無誤。符號(hào)表示與定理完全一致,定理的所有條件都具備了,才能推出相關(guān)結(jié)論。切忌條件不全就下結(jié)論。其次,在論證問題時(shí),思考應(yīng)多用分析法,即逐步地找到結(jié)論成立的充分條件,向已知靠攏,然后用綜合法(“推出法”)形式寫出。
二 立足課本,夯實(shí)基礎(chǔ)
直線和平面這些內(nèi)容,是立體幾何的基礎(chǔ),學(xué)好這部分的一個(gè)捷徑就是認(rèn)真學(xué)習(xí)定理的證明,尤其是一些很關(guān)鍵的定理的證明。例如:三垂線定理。定理的內(nèi)容都很簡單,就是線與線,線與面,面與面之間的關(guān)系的闡述。但定理的證明在初學(xué)的時(shí)候一般都很復(fù)雜,甚至很抽象。掌握好定理有以下三點(diǎn)好處:
(1)深刻掌握定理的內(nèi)容,明確定理的作用是什么,多用在那些地方,怎么用。(2)培養(yǎng)空間想象力。
(3)得出一些解題方面的啟示。
在學(xué)習(xí)這些內(nèi)容的時(shí)候,可以用筆、直尺、書之類的東西搭出一個(gè)圖形的框架,用以幫助提高空間想象力。對后面的學(xué)習(xí)也打下了很好的基礎(chǔ)。
三 “轉(zhuǎn)化”思想的應(yīng)用
我個(gè)人覺得,解立體幾何的問題,主要是充分運(yùn)用“轉(zhuǎn)化”這種數(shù)學(xué)思想,要明確在轉(zhuǎn)化過程中什么變了,什么沒變,有什么聯(lián)系,這是非常關(guān)鍵的。例如:
1.兩條異面直線所成的角轉(zhuǎn)化為兩條相交直線的夾角即過空間任意一點(diǎn)引兩條異面直線的平行線。斜線與平面所成的角轉(zhuǎn)化為直線與直線所成的角即斜線與斜線在該平面內(nèi)的射影所成的角。
2.異面直線的距離可以轉(zhuǎn)化為直線和與它平行的平面間的距離,也可以轉(zhuǎn)化為兩平行平面的距離,即異面直線的距離與線面距離、面面距離三者可以相互轉(zhuǎn)化。而面面距離可以轉(zhuǎn)化為線面距離,再轉(zhuǎn)化為點(diǎn)面距離,點(diǎn)面距離又可轉(zhuǎn)化為點(diǎn)線距離。
3.面和面平行可以轉(zhuǎn)化為線面平行,線面平行又可轉(zhuǎn)化為線線平行。而線線平行又可以由線面平行或面面平行得到,它們之間可以相互轉(zhuǎn)化。同樣面面垂直可以轉(zhuǎn)化為線面垂直,進(jìn)而轉(zhuǎn)化為線線垂直。
4.三垂線定理可以把平面內(nèi)的兩條直線垂直轉(zhuǎn)化為空間的兩條直線垂直,而三垂線逆定理可以把空間的兩條直線垂直轉(zhuǎn)化為平面內(nèi)的兩條直線垂直。
以上這些都是數(shù)學(xué)思想中轉(zhuǎn)化思想的應(yīng)用,通過轉(zhuǎn)化可以使問題得以大大簡化。
四 培養(yǎng)空間想象力
為了培養(yǎng)空間想象力,可以在剛開始學(xué)習(xí)時(shí),動(dòng)手制作一些簡單的模型用以幫助想象。例如:正方體或長方體。在正方體中尋找線與線、線與面、面與面之間的關(guān)系。通過模型中的點(diǎn)、線、面之間的位臵關(guān)系的觀察,逐步培養(yǎng)自己對空間圖形的想象能力和識(shí)別能力。其次,要培養(yǎng)自己的畫圖能力??梢詮暮唵蔚膱D形(如:直線和平面)、簡單的幾何體(如:正方體)開始畫起。最后要做的就是樹立起立體觀念,做到能想象出空間圖形并把它畫在一個(gè)平面(如:紙、黑板)上,還要能根據(jù)畫在平面上的“立體”圖形,想象出原來空間圖形的真實(shí)形狀??臻g想象力并不是漫無邊際的胡思亂想,而是以提設(shè)為根據(jù),以幾何體為依托,這樣就會(huì)給空間想象力插上翱翔的翅膀。
五 總結(jié)規(guī)律,規(guī)范訓(xùn)練
立體幾何解題過程中,常有明顯的規(guī)律性。例如:求角先定平面角、三角形去解決,正余弦定理、三角定義常用,若是余弦值為負(fù)值,異面、線面取銳角。對距離可歸納為:距離多是垂線段,放到三角形中去計(jì)算,經(jīng)常用正余弦定理、勾股定理,若是垂線難做出,用等積等高來轉(zhuǎn)換。不斷總結(jié),才能不斷高。還要注重規(guī)范訓(xùn)練,高考中反映的這方面的問題十分嚴(yán)重,不少考生對作、證、求三個(gè)環(huán)節(jié)交待不清,表達(dá)不夠規(guī)范、嚴(yán)謹(jǐn),因果關(guān)系不充分,圖形中各元素關(guān)系理解錯(cuò)誤,符號(hào)語言不會(huì)運(yùn)用等。這就要求我們在平時(shí)養(yǎng)成良好的答題習(xí)慣,具體來講就是按課本上例題的答題格式、步驟、推理過程等一步步把題目演算出來。答題的規(guī)范性在數(shù)學(xué)的每一部分考試中都很重要,在立體幾何中尤為重要,因?yàn)樗⒅剡壿嬐评?。對于即將參加高考的同學(xué)來說,考試的每一分都是重要的,在“按步給分”的原則下,從平時(shí)的每一道題開始培養(yǎng)這種規(guī)范性的好處是很明顯的,而且很多情況下,本來很難答出來的題,一步步寫下來,思維也逐漸打開了。六 典型結(jié)論的應(yīng)用
在平時(shí)的學(xué)習(xí)過程中,對于證明過的一些典型命題,可以把其作為結(jié)論記下來。利用這些結(jié)論可以很快地求出一些運(yùn)算起來很繁瑣的題目,尤其是在求解選擇或填空題時(shí)更為方便。對于一些解答題雖然不能直接應(yīng)用這些結(jié)論,但其也會(huì)幫助我們打開解題思路,進(jìn)而求解出答案。
第三篇:高中數(shù)學(xué)立體幾何初步知識(shí)點(diǎn)
高中數(shù)學(xué)立體幾何初步知識(shí)點(diǎn)
高中幾何是高中的一個(gè)難點(diǎn)。大家只要記住下面這幾點(diǎn)相信你成績一定會(huì)突飛猛進(jìn)的!立體幾何初步:①柱、錐、臺(tái)、球及其簡單組合體等內(nèi)容是立體幾何的基礎(chǔ),也是研究空間問題的基本載體,是高考考查的重要方面,在學(xué)習(xí)中應(yīng)注意這些幾何體的概念、性質(zhì)以及對面積、體積公式的理解和運(yùn)用。②三視圖和直觀圖是認(rèn)知幾何體的基本內(nèi)容,在高考中,對這兩個(gè)知識(shí)點(diǎn)的考查集中在兩個(gè)方面,一是考查三視圖與直觀圖的基本知識(shí)和基本的視圖能力,二是根據(jù)三視圖與直觀圖進(jìn)行簡單的計(jì)算,常以選擇題、填空題的形式出現(xiàn)。③幾何體的表面積和體積,在高考中有所加強(qiáng),一般以選擇題、填空、簡答等形式出現(xiàn),難度不大,但是常與其他問題一起考查④平面的基本性質(zhì)與推理主要包括平面的有關(guān)概念,四個(gè)公理,等角定理以及異面直線的有關(guān)知識(shí),是整個(gè)立體幾何的基礎(chǔ),學(xué)習(xí)時(shí)應(yīng)加強(qiáng)對有關(guān)概念、定理的理解。⑤平行關(guān)系和垂直關(guān)系是立體幾何中的兩種重要關(guān)系,也是解決立體幾何的重要關(guān)系,要重點(diǎn)掌握。跟幾何說886吧,只要用心去學(xué),相信成績上不會(huì)再因?yàn)閹缀味鴣G大量的分?jǐn)?shù)!
第四篇:高中數(shù)學(xué)立體幾何部分定理
高中數(shù)學(xué)立體幾何部分定理
公理1:如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線上的所有的點(diǎn)都在這個(gè)平面內(nèi)。
公理2:如果兩個(gè)平面有一個(gè)公共點(diǎn),那么它們有且只有一條通過這個(gè)點(diǎn)的公共直線。
公理3: 過不在同一條直線上的三個(gè)點(diǎn),有且只有一個(gè)平面。推論1: 經(jīng)過一條直線和這條直線外一點(diǎn),有且只有一個(gè)平面。推論2:經(jīng)過兩條相交直線,有且只有一個(gè)平面。
推論3:經(jīng)過兩條平行直線,有且只有一個(gè)平面。
公理4 :平行于同一條直線的兩條直線互相平行。
等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行并且方向相同,那么這兩個(gè)角相等。
空間兩直線的位置關(guān)系:空間兩條直線只有三種位置關(guān)系:平行、相交、異面
1、按是否共面可分為兩類:
(1)共面:平行、相交
(2)異面:
異面直線的定義:不同在任何一個(gè)平面內(nèi)的兩條直線或既不平行也不相交。異面直線判定定理:用平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線,與平面內(nèi)不經(jīng)過該點(diǎn)的直線是異面直線。
兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法 兩異面直線間距離: 公垂線段(有且只有一條)esp.空間向量法
2、若從有無公共點(diǎn)的角度看可分為兩類:
(1)有且僅有一個(gè)公共點(diǎn)——相交直線;(2)沒有公共點(diǎn)——平行或異面
直線和平面的位置關(guān)系: 直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行
①直線在平面內(nèi)——有無數(shù)個(gè)公共點(diǎn)
②直線和平面相交——有且只有一個(gè)公共點(diǎn)
直線與平面所成的角:平面的一條斜線和它在這個(gè)平面內(nèi)的射影所成的銳角。esp.空間向量法(找平面的法向量)
規(guī)定:a、直線與平面垂直時(shí),所成的角為直角,b、直線與平面平行或在平面內(nèi),所成的角為0°角
由此得直線和平面所成角的取值范圍為 [0°,90°]
最小角定理: 斜線與平面所成的角是斜線與該平面內(nèi)任一條直線所成角中的最小角
三垂線定理及逆定理: 如果平面內(nèi)的一條直線,與這個(gè)平面的一條斜線的射影垂直,那么它也與這條斜線垂直
esp.直線和平面垂直
直線和平面垂直的定義:如果一條直線a和一個(gè)平面 內(nèi)的任意一條直線都垂直,我們就說直線a和平面 互相垂直.直線a叫做平面 的垂線,平面 叫做直線a的垂面。
直線與平面垂直的判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個(gè)平面。
直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。
③直線和平面平行——沒有公共點(diǎn)
直線和平面平行的定義:如果一條直線和一個(gè)平面沒有公共點(diǎn),那么我們就說這條直線和這個(gè)平面平行。
直線和平面平行的判定定理:如果平面外一條直線和這個(gè)平面內(nèi)的一條直線平行,那么這條直線和這個(gè)平面平行。
直線和平面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行。
兩個(gè)平面的位置關(guān)系:
(1)兩個(gè)平面互相平行的定義:空間兩平面沒有公共點(diǎn)
(2)兩個(gè)平面的位置關(guān)系:
兩個(gè)平面平行-----沒有公共點(diǎn); 兩個(gè)平面相交-----有一條公共直線。a、平行
兩個(gè)平面平行的判定定理:如果一個(gè)平面內(nèi)有兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行。
兩個(gè)平面平行的性質(zhì)定理:如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么交線平行。
b、相交
二面角
(1)半平面:平面內(nèi)的一條直線把這個(gè)平面分成兩個(gè)部分,其中每一個(gè)部分叫做半平面。
(2)二面角:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角。二面角的取值范圍為 [0°,180°]
(3)二面角的棱:這一條直線叫做二面角的棱。
(4)二面角的面:這兩個(gè)半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一點(diǎn)為端點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
esp.兩平面垂直
兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個(gè)平面互相垂直。記為 ⊥
兩平面垂直的判定定理:如果一個(gè)平面經(jīng)過另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直
兩個(gè)平面垂直的性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于交線的直線垂直于另一個(gè)平面。
Attention:
二面角求法:直接法(作出平面角)、三垂線定理及逆定理、面積射影定理、空間向量之法向量法(注意求出的角與所需要求的角之間的等補(bǔ)關(guān)系)
多面體
棱柱
棱柱的定義:有兩個(gè)面互相平行,其余各面都是四邊形,并且每兩個(gè)四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。
棱柱的性質(zhì)
(1)側(cè)棱都相等,側(cè)面是平行四邊形
(2)兩個(gè)底面與平行于底面的截面是全等的多邊形
(3)過不相鄰的兩條側(cè)棱的截面(對角面)是平行四邊形
棱錐
棱錐的定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐
棱錐的性質(zhì):
(1)側(cè)棱交于一點(diǎn)。側(cè)面都是三角形
(2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠(yuǎn)棱錐高的比的平方
正棱錐
正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。
正棱錐的性質(zhì):
(1)各側(cè)棱交于一點(diǎn)且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
(3)多個(gè)特殊的直角三角形
esp: a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。
b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。
Attention:
1、注意建立空間直角坐標(biāo)系
2、空間向量也可在無坐標(biāo)系的情況下應(yīng)用
多面體歐拉公式:V(角)+F(面)-E(棱)=
2正多面體只有五種:正四、六、八、十二、二十面體。
球
attention:
1、球與球面積的區(qū)別
2、經(jīng)度(面面角)與緯度(線面角)
3、球的表面積及體積公式
4、球內(nèi)兩平行平面間距離的多解性
cool2009-01-29 15:44
兩點(diǎn)確定一直線,兩直線確定一平面。
一條直線a與一個(gè)平面o垂直,則該直線與平面o內(nèi)任何一條直線垂直。
一條直線a與一平面o內(nèi)兩條相交直線都垂直,則該直線與該平面垂直。若直線a在平面y內(nèi),則平面y與平面o垂直。
平面o與平面y相交,相交直線為b,若平面o內(nèi)衣直線a與直線b垂直,則平面o與平面y垂直。
一條直a與平面o內(nèi)任何一條直線平行,則直線a與平面o平行。
直線a與平面o以及平面y都垂直,則平面o與平面y平行。
第五篇:高中數(shù)學(xué)立體幾何模塊公理定理
高中數(shù)學(xué)立體幾何模塊公理定理匯編
Hzoue/2009-12-12
公理1 如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在此平面內(nèi).
A?l,B?l,且A?α,B?α?l?α.(作用:證明直線在平面內(nèi))
公理2 過不在一條直線上的三個(gè)點(diǎn),有且只有一個(gè)平面.(作用:確定平面)推論 ①直線與直線外一點(diǎn)確定一個(gè)平面.
②兩條相交直線確定一個(gè)平面.
③兩條平行直線確定一個(gè)平面.
公理3 如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線. P?α,且P?β?α?β=l,且P?l.(作用:證明三點(diǎn)/多點(diǎn)共線)
公理4平行于同一條直線的兩條直線互相平行.(平行線的傳遞性)空間等角定理 空間中如果兩個(gè)角的兩邊分別對應(yīng)平行,那么這兩個(gè)角相等或互補(bǔ). 線面平行判定定理平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行. 面面平行判定定理 一個(gè)平面內(nèi)的兩條相交直線與另一個(gè)平面平行,則這兩個(gè)平面平行. 推論 一個(gè)平面內(nèi)兩條相交直線與另一個(gè)平面內(nèi)的兩條直線分別平行,則這兩個(gè)平面平行. 線面平行性質(zhì)定理 一條直線與一個(gè)平面平行,則過這條直線的任意平面與此平面的交線與該直線平行. 面面平行性質(zhì)定理 如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,則它們的交線平行. 線面垂直判定定理 一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面平行. 三垂線定理 如果平面內(nèi)一條直線和平面的一條斜線的射影垂直,則它和這條斜線垂直. 逆定理 如果平面內(nèi)一條直線與平面的一條斜線垂直,則它和這條直線的射影垂直. 射影定理 從平面外一點(diǎn)出發(fā)的所有斜線段中,若斜線段長度相等則射影相等,斜線段較長則射影較長,斜線段較短則射影較短. 面面垂直判定定理 一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直.
線面垂直性質(zhì)定理1 如果一條直線垂直于一個(gè)平面,則它垂直于平面內(nèi)的所有直線. 線面垂直性質(zhì)定理2 垂直于同一個(gè)平面的兩條直線平行.
面面垂直性質(zhì)定理1 兩個(gè)平面垂直,則一個(gè)平面內(nèi)垂直于交線的直線與另一個(gè)平面垂直. 面面垂直性質(zhì)定理2 兩個(gè)平面垂直,過一個(gè)平面內(nèi)一點(diǎn)與另一個(gè)平面垂直的直線在該平面內(nèi).